

中國科學院為能物招加完備 Institute of High Energy Physics Chinese Academy of Sciences

CEPC Accelerator TDR Status Overview

On behalf of CEPC Accelerator Group

J. Gao

1st CEPC International Accelerator Review Committee Meeting in 2022 June 7, 2022, IHEP

- Transfer - Barrison -

Contents

• Introduction

- CEPC accelerator system optimization design in TDR
 - Collider rings
 - Booster
 - Linac
 - MDI

• CEPC Accelerator System Key Hardware R&D Progresses in TDR

- SRF (platform, cavities, other components, cryomodules...)
- 650MHz high power and high efficiency klystrons
- Magnets in collider and booster rings (dipoles, quadrupoles and sextupoles)
- Vacuum system
- Electro-magnet seperator
- Final focus SC quadrupoles, sextupoles in IR region
- High field SC magnets for SppC
- CEPC Siting, Civil Engineering, CEPC TDR Power Consumption
- CEPC Time Plan and Accelerator TDR Schedule
- CEPC International Collaborations
- Summary

Feedbacks and Answers to CEPC IARC Reports from CEPC Accelerator Group

CEPC Accelerator Group Feedbacks (Answers) to CEPC IARC Report of Oct. 2021 was sent to IARC on May 1, 2022

2021 Second CEPC IARC Meeting

IARC Committee

Answers to 2021 Second CEPC IARC Meeting Report

General comments

The Committee congratulates the CEPC team for the work performed in the last months and presented at this meeting. In particular, the progress on the R&D of the hardware components looks very promising. The team has updated the table of parameters for the high-luminosity running, as well as the lattices and components for all accelerator systems: sources, Linac, Booster and Collider.

Recommendations

1. The Committee regrets that the talk on the civil engineering and auxiliary facilities

These topics are very ied before the end of

The Circular E Collider (SppC) S ergy Physics of th design of the CEP ternational Adviso Report (TDR) pha get year of 2022. ... The IARC meetings with questions, remarks suggestions from IARC members and the recommendations in the IARC Reports are extremely important and helpful in CEPC accelerator TDR development and beyond towards EDR. We appreciate your helps and efforts very much!

lar Electron-Positron n XI, three talks on t by three companies

(IARC) has been established to advise on all matters related to CEPC accelerator design, the R&D program, the study of the machine-detector interface region, and the compatibility with an upgrade to the t-tbar energy region, as well as with a future SppC.

The second 2021 CEPC International Accelerator Review Committee was held remotely due to the Covid-19 pandemic on October 11th to 14th 2021.

A total of 22 talks were presented on a variety of topics.

2. A clear alignment strategy was not presented, although a new instrument for alignment is being developed and was presented. Since there will be a total of about 310 km to align (Linac, Booster, two rings), the Committee suggests that a strategy be developed and presented at the next meeting;

A talk will be arranged in the next IARC meeting of June.

In the 2021 international workshop on the high energy Circular Electron-Positron Collider (CEPC) November 8-12, 2021, in Accelerator session XI, a talk on "CEPC Installation and allignment strategies and technologies" have been given by Xiaolong Wang (https://indico.ihep.ac.cn/event/14938/other-view?view=standard)

CEPC Accelerator System Design and Optimizations inTDR

CEPC TDR Layout

£ CEPC as a Higgs Factory: H, W, Z, upgradable to tt-bar, followed by a SppC ~125TeV **30MW SR power per beam (upgradale to 50MW)** H/tt-bar **Off-axis injection Off-axis injection** H Mode Outer Ring Outer Ring **Positron Ring Electron Ring** W and Z Inner Ring Inner Ring CEPC MDI W & Z Mode Outer Ring Outer Ring TUNNEL CROSS SECTION OF THE ARC AREA Inner Ring Inner Ring **RF** station Injection energy 20GeV CEPC Outside of the ring RF RF Booster Linac **On-axis injection On-axis injection** CEPC booster ring (100km) CEPC collider ring (100km) **CEPC Civil Engineering CEPC TDR S+C-band 20GeV linac injector** ESBS: Electron source & bunching system PSPAS: Positron source & pre-accelerating section FAS: First accelerating section Second accelerating section SAS: EBTL: Electron bypass transport line TAS: Third accelerating section DR: EBTL Damping ring PSPAS SAS TAS FAS 11 50MeV 1.1GeV 4GeV 200MeV 1.1GeV 1.1GeV 20GeV 335.5m 17.7m 102.4m 250.2m 67.6m 777.1m 350.6m 1215m

Z [mm]

Inside of the rind

CEPC TDR Parameters

	Higgs	Z	W	ttbar
Number of IPs		2		
Circumference [km]		100	.0	
SR power per beam [MW]		30		
Half crossing angle at IP [mrad]		16.	5	
Bending radius [km]		10.	7	
Energy [GeV]	120	45.5	80	180
Energy loss per turn [GeV]	1.8	0.037	0.357	9.1
Piwinski angle	5.94	24.68	6.08	1.21
Bunch number	268	11934	1297	35
Bunch spacing [ns]	591 (53% gap)	23 (18% gap)	257	4524 (53% gap)
Bunch population [10 ¹⁰]	13	14	13.5	20
Beam current [mA]	16.7	803.5	84.1	3.3
Momentum compaction [10 ⁻⁵]	0.71	1.43	1.43	0.71
Beta functions at IP (bx/by) [m/mm]	0.3/1	0.13/0.9	0.21/1	1.04/2.7
Emittance (ex/ey) [nm/pm]	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7
Beam size at IP (sigx/sigy) [um/nm]	14/36	6/35	13/42	39/113
Bunch length (natural/total) [mm]	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9
Energy spread (natural/total) [%]	0.10/0.17	0.04/0.13	0.07/0.14	0.15/0.20
Energy acceptance (DA/RF) [%]	1.6/2.2	1.3/1.7	1.2/2.5	2.3/2.6
Beam-beam parameters (ksix/ksiy)	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1
RF voltage [GV]	2.2	0.12	0.7	10
RF frequency [MHz]	650	650	650	650
Longitudinal tune Qs	0.049	0.035	0.062	0.078
Beam lifetime (bhabha/beamstrahlung)[min]	39/40	80/18000	60/700	81/23
Beam lifetime [min]	20	80	55	18
Hour glass Factor	0.9	0.97	0.9	0.89
Luminosity per IP[1e34/cm^2/s]	5.0	115	16	0.5

CEPC TDR Parameters (upgrade)

	Higgs	w	Z	ttbar	
Number of IPs		•	2		
Circumference [km]			100.0		This parameter table
SR power per beam [MW]			50		is used by US
Half crossing angle at IP [mrad]			16.5		Snowmass21
Bending radius [km]			10.7		for CEPC physics
Energy [GeV]	120	80	45.5	180	norformance notential
Energy loss per turn [GeV]	1.8	0.357	0.037	9.1	
Piwinski angle	5.94	6.08	24.68	1.21	evaluation
Bunch number	415	2162	19918	58	
Bunch spacing [ns]	385	154	15(10% gap)	2640	CEPC Accelerator white
Bunch population [10 ¹⁰]	14	13.5	14	20	naper to Snowss21
Beam current [mA]	27.8	140.2	1339.2	5.5	
Momentum compaction [10 ⁻⁵]	0.71	1.43	1.43	0.71	arXIV:2203.09451
Phase advance of arc FODOs [degree]	90	60	60	90	
Beta functions at IP (bx/by) [m/mm]	0.33/1	0.21/1	0.13/0.9	1.04/2.7	
Emittance (ex/ey) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7	
Beam size at IP (sx/sy) [um/nm]	15/36	13/42	6/35	39/113	
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9	
Energy spread (SR/total) [%]	0.10/0.17	0.07/0.14	0.04/0.13	0.15/0.20	
Energy acceptance (DA/RF) [%]	1.7/2.2	1.2/2.5	1.3/1.7	2.3/2.6	
Beam-beam parameters (xx/xy)	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1	
RF voltage [GV]	2.2 (2cell)	0.7 (2cell)	0.12 (1cell)	10 (5cell)	
RF frequency [MHz]			650		
Beam lifetime [min]	20	55	80	18	
Luminosity per IP[10 ³⁴ /cm ² /s]	8.3	26.6	191.7	0.8	

CEPC TDR RF Parameters (Collider Ring)

J.Y.Zhai

30 MW SR power per beam for each mode.	ttb	bar			z
ttbar and Higgs half fill with common cavities for two rings, W and Z with separate cavities for two rings.	additional 5-cell cavities	existing 2-cell cavities	Higgs	w	bypass with 1-cell cavities
Luminosity / IP [10 ³⁴ cm ⁻² s ⁻¹]	0.	.5	5	16	115
RF voltage [GV]	10 (7.8	3 + 2.2)	2.2	0.7	0.12
Beam current / beam [mA]	3.	.3	16.7	84.1	803.5
Bunch charge [nC]	3	2	20.8	21.6	22.4
Bunch length [mm]	2.	.9	4.1	4.9	8.7
650 MHz cavity number	240	240	240	120/ring	30/ring
Cell number / cavity	5	2	2	2	1
Gradient [MV/m]	28.5	20	20	12.7	8.7
Q_0 @ 2 K at operating gradient (long term)	5E10		2E	10	
HOM power / cavity [kW]	0.4	0.16	0.45	0.93	2.9
Input power / cavity [kW]	194	56	250	250	1000
Optimal Q∟	1E7	7E6	1.6E6	6.4E5	7.5E4
Optimal detuning [kHz]	0.01	0.02	0.1	0.9	13.3
Cavity number / klystron	4	12	2	2	1
Klystron power [kW]	1400	1400	800	800	1400
Klystron number	60	20	120	60	60
Cavity number / cryomodule	4		6		1
Cryomodule number	60		40		30
Total cavity wall loss @ 2 K [kW]	9.5	4	.7	1.9	0.45

- RF staging and bypass. Seamless mode switching.
- Z lumi in Stage 1: 1/6 Lumi if CAV HOM < 1 kW.
- If start from Stage 2. W: 1/2 Lumi. Z: 1/12 Lumi.
- Transfer Higgs/ttbar RF power to high lumi Z.
- Klystron power and HOM handling capacity allow for 50 MW upgrade of ttbar, H, W. Add 30 cavities for Z 50 MW upgrade.

CEPC Collider Ring Interaction Region for Four Energies Y.W. Wang

• For the interaction region, the IP beta functions are refitted with the different combination of final doulets and the matching quadruples.

	L [m]		Strengt	h [T/m]	
		ttbar	Higgs	W	Ζ
Q1AIRU	1.21	-141	-141	-94	-110
Q1BIRU	1.21	-59	-85	-56	+65
Q2IRU	1.5	-51	+95	+63	0
Q3AIRU	1.5	+40	0	0	+2
Q3BIRU	1.5	+40	0	0	+2
Q1AIRD	1.21	-142	-142	-95	-110
Q1BIRD	1.21	-64	-85	-57	+65
Q2IRD	1.5	-47	+96	+64	0
Q3AIRD	1.5	+40	0	0	+2
Q3BIRD	1.5	+40	0	0	+2

Strength of other modes doesn't exceeded the one of Higgs mode.

CEPC Collider Ring Lattice of Half Ring for Four Energies

Y.W. Wang

CEPC IARC Meeting, June 7-10, 2022, IHEP

CEPC Collider Ring Dynamic Aperture Status @ Higgs and ttbar Y.W. Wang

• Tracking to get DA without errors, with turns for one transvers damping time, with 4 initial phases

• DA optimized with 84 variables (64 arc sextupoles + 8 IR sextupoles + 4 multipoles + 8 phase advance)

CEPC Collider Ring Dynamic Aperture Status @ Z and W

Y.W. Wang

- Tracking to get DA without errors, with turns for one transvers damping time, with 4 initial phases
- DA optimized with 116 variables (96 arc sextupole families + 8 IR sextupoles + 4 multipoles + 8 phase advance)

CEPC collider ring TDR lattice dynamic apertures with errors for Higgs energy

Yiwei Wang

CEPC TDR Parameter Luminosity Check by Beam-beam Simulations

Y. Zhang

Higgs : 5*10^34/cm^2/s (BB Simulation) Parameter table:5*10^34/cm^2/s Z-pole : 125*10^34/cm^2/s (BB Simulation) Parameter table:115*10^34/cm^2/s

) W-pole : 18*10^34/cm^2/s(BB Simulation) Parameter table:16*10^34/cm^2/s

CEPC MDI TDR Study Progresses

- IR Superconducting magnet design
- IR beam pipe
- Synchrotron radiation
- Beam loss background
- Shielding
- Mechanical support
- Full detector simulation

S. Bai

Temperature studies in IR beam pipe

CEPC TDR MDI Parameters

S. Bai

	range	Peak filed in coil	Central filed gradien t	Bending angle	length	Beam stay clear region	Minimal distance between two aperture	Inner diamete r	Outer diamete r	Critical energy (Horizonta I)	Critical energy (Vertical)	SR power (Horizont al)	SR power (Vertica I)
L*	0~1.9m				1.9m								
Crossing angle	33mrad												
MDI length	±7m												
Detector requirement of accelerator components in opening angle	8.11°												
QDa/QDb		3.2/2. 8T	141/84.7 T/m		1.21m	15.2/17.9mm	62.71/105. 28mm	48mm	59mm	724.7/663. 1keV	396.3/26 3keV	212.2/239. 23W	99.9/42. 8W
QF1		3.3T	94.8T/m		1.5m	24.14mm	155.11m m	56mm	69mm	675.2keV	499.4ke V	472.9W	135.1W
Lumical	0.95~1.11m				0.16m			57mm	200mm				
Anti-solenoid before QD0		8.2T			1.1m			120mm	390mm				
Anti-solenoid QD0		3T			2.5m			120mm	390mm				
Anti-solenoid QF1		3T			1.5m			120mm	390mm				
Beryllium pipe					±120mm			20mm					
Last B upstream	64.97~153.5m			0.77mrad	88.5m					33.3keV			
First B downstream	44.4~102m			1.17mrad	57.6m					77.9keV			
Beampipe within QDa/QDb					1.21m							1.19/1.31 W	
Beampipe within QF1					1.5m							2.39W	
Beampipe between QD0/QF1					0.3m							26.5W	16

CEPC Full Detector Simulation – detector impacts

S. Bai

Detector Impacts, Vertex : CDR→TDR(Scale)

	Higgs			Z		
	CDR	TDR-30	TDR-50	CDR	TDR-30	TDR-50
Hit Density($cm^{-2} \cdot BX^{-1}$)	2.3	2.3	2.3	0.63	0.63	0.63
$TID(\mathbf{krad} \cdot \mathbf{yr^{-1}})$	930	1490	2540	10.5	3150	5360
$\frac{NIEL(n_{eq} \times 10^{12} \cdot cm^{-2} \cdot yr^{-1})}{cm^{-2} \cdot yr^{-1})}$	2.2	3,5	6.0	23.6	70.8	120.4

Detector Impacts, Ecal Barrel : CDR→TDR(Scale)

		Higgs			Z	
	CDR	TDR-30	TDR-50	CDR	TDR-30	TDR-50
Hit Density($cm^{-2} \cdot BX^{-1}$)	1.162e- 3	1.162e- 3	1.162e- 3	2.714e- 4	2.714e- 4	2.714e- 4
$TID(\mathbf{k}rad \cdot yr^{-1})$	0.319	0.544	0.871	5.505	19.722	31.555
$\frac{NIEL(n_{eq} \times 10^{12} \cdot cm^{-2} \cdot yr^{-1})}{cm^{-2} \cdot yr^{-1})}$	0.1285	0.2193	0.3509	1.396	5.001	8.002

Detector Impacts, HCal Barrel : CDR→TDR(Scale)

	Higgs			z			
	CDR	TDR-30	TDR-50	CDR	TDR-30	TDR-50	
Hit Density($cm^{-2} \cdot BX^{-1}$)	2.778e- 5	2.778e- 5	2.778e- 5	1.1e-5	1.1e-5	1.1e-5	
$TID(\mathbf{krad} \cdot \mathbf{yr^{-1}})$	7.603e- 3	12.974e -3	20.76e- 3	0.2529	0.906	1.450	
June 7, 2022 J. Gao NIEL $(n_{eq} \times 10^{12} \cdot cm^{-2} \cdot yr^{-1})$	0.0116	0.198	0.317	0.1627	0.5829	CEPC I 0.9326	

Detector Impacts, TPC : CDR→TDR(Scale)

	Higgs			Z		
	CDR	TDR-30	TDR-50	CDR	TDR-30	TDR-50
Hit Density($cm^{-2} \cdot BX^{-1}$)	2.59e-2	2.59e-2	2.59e-2	6.365e-3	6.365e-3	6.365e-3
$TID(\mathbf{k}rad \cdot yr^{-1})$	4.385	7.483	11.973	67.53	241.93	387.09
$NIEL(n_{eq} imes \mathbf{10^{12}} \cdot \ cm^{-2} \cdot yr^{-1})$	0.4519	0.7712	1.234	7.415	26.565	42.503

Detector Impacts, Ecal Endcup: CDR→TDR(Scale)

	Higgs			Z		
	CDR	TDR-30	TDR-50	CDR	TDR-30	TDR-50
Hit Density($cm^{-2} \cdot BX^{-1}$)	1.356e-3	1.356e-3	1.356e-3	2.335e-4	2.335e-4	2.335e-4
$TID(\mathbf{k}rad \cdot yr^{-1})$	0.2841	0.4848	0.7757	2.473	8.860	14.175
$\begin{array}{c} NIEL(n_{eq} \times 10^{12} \cdot \\ cm^{-2} \cdot yr^{-1}) \end{array}$	0.1248	0.2130	0.3408	1.069	3.830	6.128

Detector Impacts, HCal Endcup: CDR→TDR(Scale)

		Higgs			z	
	CDR	TDR-30	TDR-50	CDR	TDR-30	TDR-50
Hit Density($cm^{-2} \cdot BX^{-1}$)	1.321e-3	1.321e-3	1.321e-3	2.732e-4	2.732e-4	2.732e-4
$TID(\mathbf{k}rad \cdot yr^{-1})$	0.284	0.485	0.775	4.589	16.44	26.31
ng, June 7-10, 2022, IF NIEL $(n_{eq} \times 10^{12}, r^{-1})$	IEP 0.159	0.271	0.434	1.108	3.97	6.351

CEPC TDR Collective Effects

- No apparent show stoppers for ttbar, Higgs, W from collective instability point of view. The beam intensity of Z is restricted by the resistive wall instability and electron cloud effects.
 - Resistive wall instability \Rightarrow Tough requirement on feedback damping

	30 MW	50 MW
Instability growth time [ms]	1.9 (~6 turns)	1.1 (~3 turns)
Radiation damping [ms]	-	850
Bunch by bunch feedback [ms]	1.0 (~3 turns)	0.5 (~1.5 turns)
4.50E+11 4.00E+11 3.50E+11 3.00E+11 2.50E+11 1.50E+11 1.00E+11 5.00E+10 0.00E+00		30MW (SEY<1. round chamber Realized by NE coating)

Collective effects satisfy TDR requirments

N. Wang

Y.D. Liu

Total impedance budget @3mm@ Z

Components	Number	$Z_{ }/n, m\Omega$	k _{loss} , V/pC	ky, kV/pC/m
Resistive wall	₩.	6.2	363.7	11.3
RF cavities	240	-1.0	225.2	0.3
Flanges	20000	2.8	19.8	2.8
BPMs	1450	0.12	13.1	0.3
Bellows	12000	2.2	65.8	2.9
Pumping ports	5000	0.02	0.4	0.6
IP chambers	2	0.02	6.7	1.3
Electro-separators	22	0.2	41.2	0.2
Taper transitions	164	0.8	50.9	0.5
Total		11.4	786.8	20.2

CEPC Booster TDR Parameters

D. Wang

W

Off axis

injection

80

1297

Η

injection injection

120

On axis

261+7

Off axis

268

tt

Off axis

injection

180

35

GeV

Ζ

Off axis injection

45.5

5967

3978

- Injection energy: $10 \text{GeV} \rightarrow 20 \text{GeV}$
- Max energy: $120 \text{GeV} \rightarrow 180 \text{GeV}$

• Lower amittance — new lattice (TME)					Maximum bunch charge	nC	0.99	0.7	20.3	0.73	0.8	0.81		
• Lower emittance	:e —	- new	Tattic		LE)		Maximum single bunch current	μΑ	3.0	2.1	61.2	2.2	2.4	2.42
		1	1		1		Threshold of single bunch current	μΑ	91.5	7	0	22.16	9.5	7
Injection		tt	$tt \mid H \mid W \mid Z \mid T$		Threshold of beam current	mA	0.3		1	4	16			
Beam energy	GeV		_	20	_		(limited by RF system)	1112 1	0.5		1 1	-	10	
Bunch number		35	268	1297	3978	5967	Beam current	mA	0.11	0.56	0.98	2.85	9.5	14.4
Threshold of single bunch current	μΑ	5.79	4.20		3.92		Growth time (coupled bunch instability)	ms	16611	2359	1215	297.8	49.5	31.6
Threshold of beam current (limited by coupled bunch instability)	mA		27			Bunches per pulse of Linac		1		1	1	2		
Bunch charge	nC	1.1	0.78	0.81	0.87	0.9	Time for ramping up	s	7.3	4	.5	2.7	1.6	
Single bunch current	μΑ	3.4	2.3	2.4	2.65	2.69	Injection duration for top-up (Both beams)	s	30.0	23.3	32.8	39.4	139.0	
Beam current	mA	0.12	0.12 0.62 3.1 10.5 16.0		Injection interval for top-up	s	65	38 155		153	.5			
Growth time (coupled bunch instability)	ms	1690 358 67 19.4 12.5 Current decay during injection interval				3	%							
Energy spread	%	0.016				Energy spread	0/.	0.15	0.0	0.099 0.066 0		0.03	7	
Synchrotron radiation loss/turn	MeV		1.3		Energy spread	70	0.15	0.039 0.080		0.05				
Momentum compaction factor	10-5		1.12			Synchrotron radiation loss/turn	GeV	8.45	.45 1.69 0.33		0.03	4		
Emittance	nm		0.035			Momentum compaction factor	10-5	1.12						
Natural chromaticity	H/V			-372/-269			Emittance	nm	2.83 1.26 0.56 0.19			9		
RF voltage	MV	531.0	230.2		200.0		Natural chromaticity	H/V		1	-372	/-269		
Betatron tune v_x/v_y			3	21.23/117.18	;		Betatron tune v_x/v_y				321.27	/117.19		
Longitudinal tune		0.14	0.0943		0.0879		RF voltage	GV	9.7	2.	17	0.87	0.4	6
RF energy acceptance	%	5.9	3.7		3.6		Longitudinal tune		0.14	0.0	943	0.0879	0.08	79
Damping time	S			10.4			RF energy acceptance	%	1.78	1.	59	2.6	3.4	
Bunch length of linac beam	mm			0.5			Domning time		14.2	47	16	160.9	879)
Energy spread of linac beam	%			0.16				ms	14.2	4,	.0	100.8	07	, -
Emittance of linac beam	nm			10			Natural bunch length	mm	1.8	1.	85	1.3	0.7	5
							Full injection from empty ring	h	0.1	0.14	0.16	0.27	1.8	0.8

Extraction

Beam energy

Bunch number

*Diameter of beam pipe is 55mm for re-injection with high single bunch current @120GeV.

CEPC Booster TDR Optics and DA with Errors

- TME like structure (cell length=80m)
- Overall idea: uniform distribution for the Q
- Combined magnet (B+S) scheme possible
- Interleave sextupole scheme

β (m)

• Emittance@120GeV=1.26nm

Dispersion sup.

D. Wang, D.H. Ji, C. H. Yu, Y. M. Peng..

dipole	quadrupole	sextupole
$B1/B0 \le 2{\times}10^{-4}$		
$B2/B0\leq 3{\times}10^{4}$	$B2/B1 \leq 3{\times}10^{\text{-4}}$	
$B3/B0 \le 2{\times}10^{\text{-5}}$	$B3/B1 \leq 1{\times}10^{\text{-4}}$	$B3/B2 {\leq 1 {\times} 10^{\text{-3}}}$
$B4/B0\leq 8{\times}10^{\text{-5}}$	$B4/B1 \le 1{\times}10^{\text{-}4}$	$B4/B2 \le 3{\times}10^{-4}$
$B5/B0 \le 2{\times}10^{\text{-5}}$	$B5/B1 \le 1{\times}10^{\text{-4}}$	$B5/B2 \le 1 \times 10^{-3}$
$B6/B0 \le 8{\times}10^{-5}$	$B6/B1 \le 5 \times 10^{-5}$	$B6/B2 \le 3 \times 10^{-4}$
$B7/B0 \le 2{\times}10^{\text{-5}}$	$B7/B1 \le 5{\times}10^{\text{-5}}$	$B7/B2 \le 1 \times 10^{-3}$
$B8/B0 \le 8{\times}10^{\text{-5}}$	$B8/B1 \le 5{\times}10^{\text{-5}}$	$B8/B2 \le 3{\times}10^{-4}$
$B9/B0 \le 2{\times}10^{\text{-5}}$	$B9/B1 \leq 5 \times 10^{\text{-5}}$	$B9/B2 \le 1{\times}10^{\text{-3}}$
$B10/B0 \leq 8{\times}10^{\text{-5}}$	$B10/B1 \leq 5{\times}10^{\text{-5}}$	$B10/B2 \le 3{\times}10^{-4}$

DA @180GeV

TME DA with installation errors and multipole errors satisfy design goals

CEPC TDR SRF Parameters (Booster Ring)

30 MW Collider SR power per beam for each mode. 20 GeV injection.	ttbar	Higgs off/on-axis	W	Z high current
Extraction beam energy [GeV]	180	120	80	45.5
Extraction average SR power [MW]	0.087	0.09	0.01	0.004
Bunch charge [nC]	0.96	0.7	0.73	0.83
Beam current [mA]	0.11	0.56/0.98	2.85	14.4
Injection RF voltage [GV]	0.438	0.197	0.122	0.122
Extraction RF voltage [GV]	9.7	2.17	0.87	0.46
Extraction bunch length [mm]	1.8	1.85	1.3	0.75
Cavity number (1.3 GHz 9-cell)	336	96	64	32
Extraction gradient [MV/m]	27.8	21.8	13.1	13.8
Q ₀ @ 2 K at operating gradient (long term)		1E	10	
QL	4E7		1E7	
Cavity bandwidth [Hz]	33		130	
Peak HOM power per cavity [W]	0.4	1.4/2.7	9.8	108.5
Input peak power per cavity [kW]	7.9	15.3/21.3	15	33
SSA peak power [kW] (one cavity per SSA)	10	25	25	40
Cryomodule number (8 cavities per module)	42	12	8	4

CDR Higgs energy:

J.Y. Zhai

-collider ring: 240 2cell 650MHz cavities

-booster: 96 1.3GHz 9cell cavities

-Nb consumption: 20 tons

For ttbar energy:

In addition to CDR Higgs energy, SRF cavity numbers have to be increased: -collider ring:+350 5cell 650MHz cavities -booster ring:+350 1.3GHz 9 cell cavities -Additional Nb consumption:65 tons

For 30MW SR/beam Mode at Higgs energy, the cryogenic system need **32000liter Hellium**

For 50MW/beam SR Mode: at Higgs energy, the cryogenic system needs 42000liter Hellium; at ttbar energy 130000liter Hellium needed

Refrigerators: 4*18kW@4.5K

CEPC Booster Ramping

Dou Wang, Xiaohao Cui

Extraction from Booster Collider Ring

X.H. Cui

	tt	Higgs	W		Z
Energy (GeV)	180	120	80	Energy (GeV)	45.5
Bunch number	37	240	1230	Bunch number/train	80
Bunch seperation (us)	4.2	0.647	0.2677	Bunch separation (ns)	23.076
Extraction scheme	bunch by	bunch by bunch	bunch by	Number of trains	48
Extraction seneme	bunch	ounon oy ounon	bunch	Train separation (us)	5.11
	1000	1000	1000	Extraction scheme	train by train
Kicker frequency(Hz)	1000	1000	1000	Kicker frequency(Hz)	1000
Kicker pules duration (us)	<8.4	<1.29	< 0.535	Flat top (us)	1.83
Kicker rise up/ fall down	<4.2	< 0.647	< 0.2677	Kicker pules duration (us)	<12.05
(us)				Kicker rise up/ fall down (us)	<5.11
Timing delay(us)	4.2	0.647	0.2677	Timing delay(us)	6.94
Extraction duration (s)	0.037	0.24	1.23	Extraction duration (s)	0.048

Complete transport lines and timing from electron gun to damping ring, booster, collider ring till beam dump have been studied

23

CEPC 20GeV Linac for TDR

• EBTL is in vertical plane with 1.2 m separation

J.R. Zhang C. Meng

- Avoid interference with energy analyzing station, transport lines between the Linac and damping ring, waveguide and positron source
- Reduce the tunnel width
- Accelerating structure
 - S-band: FAS/PSPAS/SAS
 - C-band: TAS

CEPC 20GeV Linac TDR Parameters

June 7, 2022 J. Gao

- Baseline scheme
 - 20 GeV
 - Low magnetic field & large magnetic field range
 - C-band
 - Higher gradient → Shorter linac tunnel length
 - Small aperture & Strong wakefield
 - 10 nm
 - High luminosity
 - 100 Hz
 - Injection efficiency
 - High luminosity Z need faster injection process
 - 200 Hz
 - 100 Hz & two-bunch-per-pulse
 - 200 Hz & two-bunch-per-pulse (?)

	C. Meng					
Parameter	Symbol	Unit	Baseline			
e⁻ /e⁺ beam energy	E_{e}/E_{e^+}	GeV	20			
Repetition rate	f _{rep}	Hz	100			
o-lot bunch population	Ne-/Ne+	×10 ¹⁰	0.94(1.88)			
		nC	1.5 (3)			
Energy spread (e [_] /e ⁺)	σ_{E}		1.5×10 ⁻³			
Emittance (e [_] /e ⁺)	$\mathcal{E}_{x,y}$	nm	10			

Parameter	Unit	S- band	C-band
Frequency	MHz	2860	5720
Length	m	3.1	1.8
Cavity mode		2π/3	3π/4
Aperture diameter	mm	20~24	11.8~16
Gradient	MV/m	21	45

J.R. Zhang

CEPC 20GeV Positron Linac Design J.R. Zhang,

• Positron Linac

- Wakefield & CSR
- Emittance(w/o error)
 - Growth: 5%
 - 5.2nm@20GeV

Parameter	Unit	Baseline	Electron	Positron
e [_] /e⁺ beam energy	GeV	20	20.38	20.37
Repetition rate	Hz	100	100	100
e ⁻ /e ⁺ bunch population	×10 ¹⁰	0.94(1.88)	1.88	1.88
	nC	1.5 (3)	3	3
Energy spread (e [_] /e ⁺)		1.5×10 ⁻³	1.3×10 ⁻³	1.3×10 ⁻³
Emittance (e [_] /e ⁺)	nm	10	2.5	5.2

June 7, 2022 J. Gao

CEPC linac injector reached design goals taking into account of errors

C.Meng

CEPC SRF Cryogenic Systems in TDR

For 30MW SR/beam Mode at Higgs energy, the cryogenic system need 32000liter Hellium

For 50MW/beam SR Mode: at Higgs energy, the cryogenic system needs 42000liter Hellium; at ttbar energy 130000liter Hellium needed

CEPC Control System and Beam Diagnostic System

Overall hardware architecture of the control system

- 50 stations along the storage ring and connecting with PC sever station with the star topology fiber optic network.
- Consider the delay of whole system, the BPM COD measurement takes about 1s.

CEPC Machine Protection,

G.Y. Tang Beam Abort and Dump System

• A set of kicker magnets has been used to dilute the beam horizontally and vertically;

X.H. Cui

- The area of bunch distribution in front of dump is assumed to be 6cm x 6cm; These dimensions haven't been optimized yet.
- The length of transfer tunnel is about 100m; the diameter is about 2m, considering the vacuum equipment, pipe installation.

		Extraction kicker	Septum	Dilution kickers
Length	(m)	2	20	10
Magnatia	Z	281		
flux	WW	494		40
density	Higgs	741	7000	40
(Gauss)	ttbar	1110		

Beam dump graphite core (example) temperature rise

	`	• •	•	
	Higgs	WW	Z	ttbar
Beam energy/GeV	120	80	45.5	182.5
Ne/bunch/10 ¹⁰	14	13.5	14	20
Bunch number (50MW)	415	2162	19918	58
Max. temperature rise	510 ± 15℃	1020 ± 30°C	2620 ± 15°C	
Maximum temperature rise by one bunch	7.31 ± 0.03°C	5.38 ± 0.03°C	3.76 ± 0.02°C	10.08 ± 0.04°

CEPC Accelerator System Key Hardware R&D Progresses in TDR

CEPC TDR R&D Status of Key Technologies

CEPC SRF Facilities and Componets

J.Y. Zhai, P. Sha

IHEP PAPS is in full operation since 2021

CEPC 650 MHz 1-cell Cavity

The 650Mhz 1-cell cavity's results (8E10@22MV/m, 1.5E10@37.5MV/m) have broken China's gradient record of low-frequency (<1 GHz) elliptical cavities. **World record Q** of 650 MHz cavity above 30 MV/m.

Vertical Test (N11-16)

1.3 GHz High Q Mid-T Cavity Horizontal Test

Horizontal Test (N5/7/9/10) (self excited loop mode)

1.3 GHz High Q Cryomodule (8x9-cell)

J.Y. Zhai

CEPC booster 1.3 GHz SRF R&D and industrialization in synergy with CW FEL projects.

- Horizontal test of 4 mid-T 9-cell cavities: avg. Q₀ 3.5E10 @ 16 MV/m, 3.1E10 @ 21 MV/m avg. E_{acc} 24.6 MV/m, usable 22.6 MV/m (sporadic quench) horizontal test average performance better than LCLS-II
- 8 NEW mid-T 9-cell cavities for the 1.3 GHz module:

VT avg. $Q_0 4.1E10 @ 16~21 MV/m$, $E_{acc} 27.7 MV/m$ vertical test average performance better than previous batch and LCLS-II-HE cavities.

one cavity now horizontal testing with tuner in GDR mode

Mid-T (medium temperature furnace baked) cavities have higher gradient and Q than Nitrogen doped cavities with less EP process (1 vs 3)

Horizontal Test (N5/7/9/10) (self excited loop mode)

Vertical Test (N11-16)

1.3 GHz High Q Cryomodule (8x9-cell)

J.Y. Zhai

- Vacuum vessel, upper cold mass, assembly tooling, SSAs deliver to PAPS in June
- 8 cavities, input couplers, tuners etc finish testing at PAPS in June
- Superconducting magnet test and degaussing, BPM calibration at IHEP in June
- Module cart, feed-cap, end-cap, volve-box, LLRF system ... in fabrication
- Cavity string and module assembly at PAPS in August-October, 2022
- Horizontal test in November, 2022

CEPC 650 MHz 2 x 2-cell Test Cryomodule

J.Y. Zhai

- Module automatic cool-down experiment (first time in China)
 - For more intelligent control of future CEPC cavity & cryogenic system
 - Designed and implemented automatic cool-down/warming-up procedure for SRF cavity cryomodule with Model Predict Control (MPC) method & Artificial Neural Network (ANN)
- LLRF system commissioning and high power test
 - Pended in May by local prevention policy. Hope to continue in mid June, 2022
- DC photo-cathode gun voltage conditioning up to 400 kV

反射功率
0W
Infinity MV/m Infinity MV/m
-144.77
1 11
۲
10.0 Hz
000.00
/2
۲
1200

1. 300 to 150 K: < 10 K/hr. Cavity top and bottom ΔT < 20 K 2. 150 to 4.5 K: Cavity surface > 1 K/min

3. 4.5 to 2 K

CEPC 650MHz High Efficiency Klystrons

CEPC Full Size Booster Dipole Magnets

W. Kang

Works for 10GeV injection energy

Two types of 4.7m long full size booster dipoles prototype fabrication in progress

CEPC Collider Ring Magnets

M. Yang

• Modification of the dual aperture quadrupole magnet

After iron modification with center shim, X0 shifts is lower, which is agreed with the simulation results.

CEPC Vacuum System R&D

Y.S. Ma

New round pipe of Copper (3mm) with NEG coating (200nm) for collider ring in TDR SEY<1.2

6 m vacuum pipe have been installed on the NEG coating setup

All metal gate valve different from VTA

Vacuum pipes and RF shielding bellows

Facility of pumping speed test have been finished in Dongguan

Pumping speed test of 2 meters long CEPC Cu pipe of NEG coating in IHEP

June 7, 2022 J. Gao

CEPC IARC Meeting, June 7-10, 2022, IHEP

CEPC Electrostatic-Magnetic Deflector

B. Chen

- The Electrostatic-Magnetic Deflector is a device consisting of perpendicular electric and magnetic fields.
- One set of Electrostatic-Magnetic Deflectors including 8 units, total 32 units will be need for CEPC.

The high voltage of prototype test can reach $\pm 90kV$, which meets the requirements of Higgs Mode operation, the operating voltage of the electrostatic separator in Higgs Mode (120GeV) is $\pm 75kV$

CEPC QD0 SC Magnet R&D (0.5m short model)

Magnet name	0.5m QD0 model magnet
Field gradient (T/m)	136
Magnetic length (m)	0.5
Coil turns per pole	21
Excitation current (A)	2070
Coil layers	2
Conductor	Rutherford Cable, width 3 mm, mid thickness 0.93 mm, keystone angle 1.9 deg, Cu:Sc=1.3, 12 strands
Stored energy (KJ)	2.6
(Single aperture)	
Inductance (H)	0.001
Peak field in coil (T)	3.4
Coil inner diameter (mm)	40
Coil outer diameter (mm)	53
Yoke outer diameter (mm)	108
X direction Lorentz force/octant (kN)	24.6
Y direction Lorentz force/octant (kN)	-23.7
Net weight (kg)	25

Fabrication of NbTi Rutherford cable is finished (12 strands). SC quadrupole coil winding machine, coil heating and curing system has been finished.

Fabrication of QD0 single aperture short model magnet (NbTi, 136T/m) will be completed in June, 2022, and a dual aperture SC quadrupole will be the next step

CEPC IARC Meeting, June 7-10, 2022, IHEP

Y.S. Zhu

Status of CEPC Beam instrumentation R&D Y.F. Sui

System	R	&D Work support	ed by	Work to be done
	BEPCII	HEPS/HEPS TF	Funding	
BPM electronics	\checkmark		\checkmark	Radiation hardness Industrialization
Beam position monitor fabrication	6		\checkmark	detection;
Longitudinal feedback system	V			
Transverse feedback system				
Synchrotron radiation monitor				X-ray interferometer: Gas jet scanner
BI at the interaction point		ADC_a		itc
Bunch current monitor				D based home-
Beam loss monitor				R&D

CEPC Inj.&Ext. Hardwares' R&D

J.H. Chen

Slotted-pipe kicker

250ns-fast kicker pulser

Delay-line dipole kicker

CEPC Technology Demonstration in Synergy with Other Projects

China company made 850kW@4K cryogenic plant installed in IHEP South Ligh Source test facility in Dongguan (May, 2022) (Next step is 10~18kw@4K)

^c HEPS S-band Linac (May, 2022)

50MW 50Hz C-band klystron by Institute AIR of CAS for Shanghai Soft XFEL (Nov. 2021)

HEPS booster magnet unit (Jan. 2022)

HEPS power source for magnets magnets (June 2022)

HEPS storage ring sextupole magnets (Dec. 2021)

CEPC Plasma Injector 10 GeV \rightarrow 25 GeV Pratically Feasible

Theoretical analysis:

$$x_b \sim \frac{1.27\sigma_r}{\sqrt{1+1.67R}} \times 10^{-5} \times e^{1.3\left(\frac{\gamma_0}{2}\right)^{\frac{1}{6}} c^{\frac{1}{3}} c_b^{\frac{1}{3}} R^{\frac{1}{3}} \left(\sqrt{2R} + \frac{1}{\sqrt{2}}\right)^{\frac{2}{3}}}$$

The driver should be stable enough, if the beam centroid x_b is no more than k_p^{-1} . For a 10 GeV driver, let the beam size $k_p \sigma_r = 0.2$, c = 0.7, $c_b = 0.8$

The transformer ratio *R* should be less than 1.8, which means:

10 GeV \rightarrow 25 GeV CPI scheme ($R \sim 1.5$) should be safe.

Simulation analysis for 10 GeV \rightarrow 25 GeV CPI scheme

			Time = 1000.00 $[\omega_{-}^{-1}]$
beam	Driver	Trailer	1.00
plasma density n _p	0.5×10^{-10}	$^{16}cm^{-3}$	0.75 - 6 -
Driver energy $E(GeV)$	10	10	₹ 0.25 · · · · · · · · · · · · · · · · · · ·
Normalized emittance $\epsilon_n(mm mrad)$	20	100	
Length(um)	300	77	-0.50
(matched)Spot size(um)	3.87	8.65	-0.75
Charge(nC)	4	1.24	
Energy spread $\delta_E(\%)$	0	0	$\xi[k_p^{-1}]$
Beam distance(um)	18	4	Acceleration process for Idea case

Symmetry Ratio	Energy	Emittance (mm·mrad)	Bunch charge	rms Energy spread
100 (Ideal case)	25.02 GeV	100 / 100	1.36 nC	0.4%
97.5% (real case)	24.89 GeV	431 / 294	1.33 nC	0.62%

Error tolerance analysis shows the transverse and longitudinal offset thresholds is (- 6μ m, 6μ m) and (- 1.2μ m, 1.35μ m), which is acceptable to conventional linac accelerators.

D.Z. Li

-14

Latest performance of LPF1-U (SppC)

Qingjin Xu

Picture of LPF1-U

Dual aperture superconducting dipole achieves 12.47 T at 4.2 K Entirely fabricated in China. The next step is reaching 16-19T field

Development of CCT dipole magnets for HL-LHC by IHEP

- The first set of CCT superconducting magnets MCBRD01 with satisfactory field strength and field quality, has been shipped to Europe in October, 2021.
- The assembly of the 2nd set of HL-LHC CCT superconducting magnets has been finished in Jan, 2022, and now the magnet is tested at IMP
- Fabrication of a full size prototype magnet MCBRDP2 was completed in May, 2020. Both apertures reached the ultimate current.

Qingjin Xu

CEPC Accelerator Advanced Technology Development

CEPC Siting, Civil Engineering, Installation Strategy

CEPC Siting, Civil Engineering (Changsha site as an example)

CEPC IR Region

Name	L×W×H	Numb.
Experimental hall	39.4×20.4× 31	×2
Axiliary hall	101.4×20× 26.2	×2
Booster tunnel	1679×3.5× 3.5	×4
Collider tunnel	1659.3x(6~ 11.4)x5	×4
Travel shaft	1200x7.5x7. 5	×2
Connection, electric cable and ventilation shaft	70x10x10	×2

CEPC Auxiliary Facilities

CEPC Site Rock Environment (Changsha example) G.Y. Tang

- Average components of different kinds of rock are used for radiation calculation
- Simulate residual nuclei in:
 - Cooling water
 - Air in tunnel
 - Water outside tunnel
 - Rock

		Soil	Average components of 花 岗岩、片麻岩、黄土、砂岩	Changsha site 长沙黑麋峰
der	nsity	1.6g/cm^3	1.2~3.3g/cm^3	~2.9g/cm^3
	С	1.0		
	Ν	0.12		
	0	34	30~70	48.3
	Na	0.50	0.1~2.9	2.4
Majo	Mg	0.52	0.4~3.7	0.2
or el	AI	8.0	3.5~9.7	7.8
eme	Si	40	26~39	34
nt (v	Р		0.02~0.16	0.06
vt%)	K	2.36	1.8~3.7	4.2
	Ca	2.26	0.2~4.8	1.0
	Ti	1.0	0.09~0.8	0.11
	Mn	0.24	0.02~0.12	0.02
	Fe	9.6	0.8~6.3	1.1

Radiation in the rock around the tunnel

				Case 1	
		Half-life	Specific activity/GB1 8871	Activity/ GB1887 l	Stat. error (%)
	Ar37	35d	4.45E-08	8.52E+01	0.697
	C136	3e5a	1.45E-11	2.77E-02	0.563
	S35	87d	9.35E-09	1.79E+00	6.826
	P33	25d	5.57E-09	1.07E+00	8.923
	P32	14d	1.44E-06	2.76E+03	5.557
Beam	Si31	2.6h	6.82E-04	1.31E+05	0.123
losses	Na24	15h	3.26E-01	6.24E+06	0.113
@Z-pole	Na22	2.6y	7.20E-04	1.38E+03	1.322
	F18	1.8h	7.62E-04	1.46E+03	2.468
	O15	122s	1.34E-03	2.58E+01	0.694
	C14	5700y	3.47E-10	6.65E-02	1.337
	Be7	53d	2.09E-05	4.00E+02	1.632
	H3	12a	5.90E-09	1.13E+00	0.884
				Case 1	
		Half-life	Specific activity/GB1 8871	Activity/ GB1887 l	Stat. error (%)
SP Otther	C14	5700a	1.5e-12	2.9e-4	99
or winai	H3	12a	9.5e-11	1.8e-2	71

Radiation in the air of the tunnel G.Y. Tang

			(Case 1		(Case 2	
		Half -life	Specific activity/GB 18871	Activity /GB188 71	Stat. error (%)	Specific activity/ GB18871	Activit y/GB1 8871	Stat. error (%)
	O15	122s	2.7e-4	0.13	52	3.2e-4	0.15	17
	C14	5700 a	7.7e-7	3.6	1	3.2e-7	1.5	0.5
	Be7	53d	1.1e-5	5.4	57	1.0e-5	4.8	27
Beam	H3	12a	3.5e-9	1.7e-2	32	3.9e-9	1.8e-2	10
losses	P32	14d		/		1.9e-7	9.0	100
pole	P33	25d	1.9e-8	9.0e-2	100	3.8e-9	1.8e-2	100
•	C136	3e5a				1.6e-14	7.7e-7	100
	C138	37m				7.e-5	3.6	61
	Ar37	35d	6.1e-9	0.29	59	1.4e-9	6.5e-2	38
	Ar41	2h	1.4e-3	0.65	12	5.4e-4	0.26	6
SR @ttba	C14	5700 a	6.5e-6	31	2	2.5e-6	11.7	3
r	Ar41	2h	1.5e-2	7.2	20	3.3e-3	1.6	29

Radiation in the cooling water

			•	Case 1			Case 2	
		Half -life	Specific activity/GB 18871	Activity /GB188 71	Stat. error (%)	Specific activity/ GB18871	Activit y/GB1 8871	Stat. error (%)
	O15	122s	2.44	2.76	10	2.37	2.67	3
Beam losses	C14	5700 a	3.5e-7	3.9e-3	23	3.4e-7	3.9e-3	9
pole	Be7	53d	1.3e-2	15.2	34	1.3e-2	14.4	12
+	H3	12a	2.3e-6	2.6e-2	22	2.8e-6	3.2e-2	7
SR					i			

June 7, 2022 J. Gao

CEPC IARC Meeting, June 7-1@ttbar, IHEP

Preliminary Studies on CEPC Ground Motion

• Ground motion will increase cause beam orbit variation and also beam emittance

Ground vibration transmission to colliding beams

CEPC colliding beam orbit variation due to ground motion

Ground vibration in different sites, LHC site is a good reference~3nm

CEPC Installation Strategy-1

X.L. Wang

- Installation and alignment scheme
- -Ring installation: phase I, phase II, each phase: half a ring

CEPC Installation Strategy-2

X.L. Wang

Manpower and time arrangement of collider and booster ring installation and alignment

Phase	Group	Month	1	2	3	4	5	6	7	8	9	10	11	12	13	14	11	51	61'	71	81	.92	202	21 2	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
	8	Network construction																																							
	16	Network measurement																																							
Ι	16	Support setting out																																							
	16	Support installation																																							
	32+32	Ring installation																																							
	8	Network construction																																							
	16	Network measurement																																							
II	16	Support setting out																																							
	16	Support installation																																							
	32+32	Ring installation																																							

 \succ The peak time I, it needs 64 alignment groups and 56 installation groups.

 \succ The Peak time II, it needs 48 alignment groups and 48 installation groups.

CEPC Accelerator Mechanical Supports and Installation Tools Inside the Tunnel H.J. Wang

- Adjustment Ranges of magnets TUNNEL CROSS SECTION OF THE ARC AREA Flexible load support for X ≥±20 mm Δθx ≥±10 mrad Outside of the ring Inside of the ring "long" devices and Y >±30 mm Δθν $\geq \pm 10 \text{ mrad}$ "short" devices Booster ≥±10 mrad Ζ ≥±20 mm Δθz Transportation and coarse location of magnets in Booster Collider Transportation and coarse location of magnets in Collider * Cooperate with Beijing North Vehicle Group Corporation.
- Over 80% of the length is covered by magnets of about 138 types.

CEPC TDR Power (preliminary)

CEPC CDR Power for Higgs and Z

	Custom for Illing	L	ocation a	and elec	trical de	emand(M	W)	Tatal
	(30MW)	Ring	Booster	LINAC	BTL	IR	Surface building	(MW)
1	RF Power Source	103.8	0.15	5.8				109.75
2	Cryogenic System	11.62	0.68			1.72		14.02
3	Vacuum System	9.784	3.792	0.646				14.222
4	Magnet Power Supplies	47.21	11.62	1.75	1.06	0.26		61.9
5	Instrumentation	0.9	0.6	0.2				1.7
6	Radiation Protection	0.25		0.1				0.35
7	Control System	1	0.6	0.2	0.005	0.005		1.81
8	Experimental devices					4		4
9	Utilities	31.79	3.53	1.38	0.63	1.2		38.53
10	General services	7.2		0.2	0.15	0.2	12	19.75
	Total	213.554	20.972	10.276	1.845	7.385	12	266.032

		L	ocation a	and elec	trical de	emand(N	IW)	T -1-1	
	System for Z	Ring	Booster	LINAC	BTL	IR	Surface building	(MW)	
1	RF Power Source	57.1	0.15	5.8		2		63.05	
2	Cryogenic System	2.91	0.31			1.72		4.94	
3	Vacuum System	9.784	3.792	0.646				14.222	
4	Magnet Power Supplies	9.52	2.14	1.75	0.19	0.05		13.65	
5	Instrumentation	0.9	0.6	0.2				1.7	
6	Radiation Protection	0.25	10	0.1				0.35	
7	Control System	1	0.6	0.2	0.005	0.005		1.81	
8	Experimental devices					4		4	
9	Utilities	19.95	2.22	1.38	0.55	1.2		25.3	
10	General services	7.2		0.2	0.15	0.2	12	19.75	\sim
	Total	108.614	9.812	10.276	0.895	7.175	12	148.772	I ∕ 149M

CEPC TDR Power for Higgs and Z

At Higgs energy (30MW) : Collider ring power increment (MW): 9.81 Booster (MW):1 Linac (MW):10.4

Total power increment in TDR@Higgs:21.2

266MW Total TDR power at Higgs: 266+15.8=287MW

At Z energy (SR/beam CDR16.5MW to TDR30MW):

Collider ring power increment (MW): 46.7 Booster (MW):2 Linac (MW):10.4 Total power increment in TDR@Z: 59.1

Total TDR power at Z: 149+59.1=208MW

• CEPC TDR power increase at Higgs energy compared with CDR is due to new lattices and linac increasing energy from 10GeV to 20 GeV

• CEPC TDR power increase at Z energy compared with CDR is due to new lattices and SR power/beam from CDR 16.5MW to 59 June 7, 2022 J. Gao TDR 30MW.

CEPC IARC Meeting, June 7-10, 2022, IHEP

CEPC Cost Model Study in Relation with Collider Circumference

Global scientific goals (particle numers)/construction and operation costs shows that around 100km seems a very good choice

CEPC Time Plan and Accelerator TDR Schedule

CEPC Accelerator TDR Documentation Preparation and EDR Plans

TDR Contents (Draft)

0-Exectutive summary

Part I. TDR parameters and accelerator design

I-Collider lattice (Higgs, ttbar, , W, Z) design II-Booster: Lattice design (Higgs, tt bar,W, Z) III-Linac injector:

IV-Alternative plasma injector:

V-Global implementation:

Part II. CEPC Accelerator Key Technology

Fisibility R&D and Demonstration

I-Collider ring:

II-Booster ring;

III-Linac injector:

V-Global technologies:

VI-Facility development

Part III. CEPC TDR Cost and Power Comsumptions Part. IV CEPC Siting and Civil Engingeering Part V CEPC-SppC Compatibility Part VI General Conclusion and Perspective for CEPC EDR Plan June 7, 2022 J. Gao

TDR timeline:

TDR started to write after the first IARC reveiw in June 2022

TDR completes in Dec. 2022 (with IARC review, SC and IAC approval)

CEPC Accelerator EDR Phase Plan: Jan. 2023-Dec. 2025 -CEPC site study converging to one or two with detailed feasibility studies (tunnel and infrastructures, environment)

-Engineering design of CEPC accelerator systems and components towards fabrication in an industrial way -Site dependent civil engineering design implementation preparation

-Work closely with CAS and MOST to prepare CEPC be put in the "15th five year plan" (under way)

-EDR document completed for government's approval of starting construction around 2026 (the starting of the "15th five year plan")

CEPC Accelerator TDR Electronic Documentation System-DeepC Development

12 Common

will be put to use started in August for CEPC TDR

Civil Construction and Installation Timeline

CEPC International Collaborations

CEPC International Collaborations

Possible synergies with FCCee

Dear Xinchou,

Thank you for message.

We would like to invite you to give a 20 minute presentation in the plenary session on Monday, 30 May, from 17h40 to 18h00 with the title "Status of CEPC and possible synergies with FCC-ee developments"

Please confirm your availability and register for the conference.

Best regards,

Michael

Collaboration with KEK on Super KEK B ICFA Statement Regarding Higgs Factory Development and the ILC

The extension Multi-National Partnership Project (MNPP-01) MoU of IHEP with KEK Super B is on going. (Thanks to the support from Prof. M. Tobiyama)

Under MNPP-01 more than 10 CEPC accelerator specialists have visited KEK and workded on KEK Super KEK B collaborations

Report of the 19th Annual Meeting of the CERN Machine Advisory Committee

LHC Performance Workshop, January 24-27, 2022

The members: Ralph Assmann (DESY), Mei Bai (SLAC), Jie Gao (IHEP), Tadashi Koseki (KEK), Valerie Lebedev (JINR), Sergei Nagaitsev (FNAL), Mike Seidel (PSI, chair), and Pierre Vedrine (CEA). https://icfa.hep.net/wpcontent/uploads/ICFA_Statement_April2 022_Final.pdf

Various design studies based on different technologies are in progress, including both circular colliders

(FCC-ee and CEPC) and linear colliders (ILC and CLIC). ICFA follows with great attention the development of Higgs Factory proposals worldwide and recognizes the importance of advancing such concepts.

Since Jan. 1, 2022, J. Gao has become CERN Machine Advisory Committee Member

Since May 25, 2022, J.Gao has been approved by TTC CB to be TTC EC member

International Collaboration Meetings and Workshops

On Feb. 16, 2022, the 10th IHEP-KEK SRF Technology Collaboration Meeting was held online, more than 30 participants joined the meeting. J..Gao and Shinichiro Michizono co-chaired the meeting.

HKIAS Mini workshop, January 13-14, 2022, on : Accelerator Physics — Key Beam Physics and Technologies Issues for Colliders. 41 talks from Asia, Europe and USA. HKIAS 22 HEP Conference (ILC,CLIC,C3,FCC, CEPC, Muon Collider..) January 17-19, 2022

https://conferenceindico.kek.jp/event/171/timetable/#20220216

https://indico.cern.ch/event/1096427/timetable/#20220113.detailed

June 7, 2022 J. Gao

CEPC IARC Meeting, June 7-10, 2022, IHEP

CEPC 2021 International Workshop and CEPC IAC Meeting in 2021

The 2021 international workshop on the high energy Circular Electron-Positron Collider (CEPC)

November 8-12, 2021, Nanjing (online) https://indico.ihep.ac.cn/event/14938/other-view?view=standard

		Monday 8th	Tuesday 9th	Wednesday 10th	Thursday 11th
Morning	9:00-10:30	Discussions	Discussions	Discussions	Discussions
	10:30 - 12:30	Higgs Silicon Accel. CIPC	EW Calor. Accel. CIPC	BSM TDAQ Accel.	Flavor Software Perform, CIPC
	12:30-14:00	Lunch/break	Lunch break	Lunch break	Lunch break
Afternoon	14:00-15:30	Higgs Stlicon Accel. CIPC	EW GasDet Accel. CIPC	BSM TDAQ Accel.	Flavor MDI Accel. CIPC
	15:30-16:00	Coffee break	Coffee break	Coffee break	Coffee break
	16:00-17:30	Higgs Calor, Accel, CIPC	QCD GasDet Accel. CIPC	QCD Soft Accel. CIPC	CompMe MDI Perform. CIPC
	17:30-20:00	Dinner		Dinner	Dinner
Evening	20:00-21:30	Plenary	Banquet		Plenary
	21:30-22:00	Coffee break			Coffee break
	22:00-23:30	Plenary		Speci Speci Speci	Plenary

Accelerator Parallel Session C 52 Accelerator talks from around C the world, Asia, Europe and US June 7, 2022 J. Gao

CIPC Parallel Session on CEPC R&D

25 CIPC speakers in CEPC workshop CEPC IARC Meeting, June 7-10, 2022, IHEP

CEPC IAC Meeting in Nov. 2021 https://indico.ihep.ac.cn/event/15229/

Report:

The Seventh Meeting of the CEPC-SppC International Advisory Committee

November 9, 2021

Snowmass2021 White Paper AF3- CEPC

CEPC Accelerator Study Group¹

1. Design Overview

1.1 Introduction and status

The discovery of the Higgs boson at CERN's Large Hadron Collider (LHC) in July 2012 raised new opportunities for large-scale accelerators. The Higgs boson is the heart of the Standard Model (SM), and is at the center of many biggest mysteries, such as the large hierarchy between the weak scale and the Planck scale, the nature of the electroweak phase transition, the original of mass, the nature of dark matter, the stability of vacuum, etc. and many other related questions. Precise measurements of the properties of the Higgs boson serve as probes of the underlying fundamental physics principles of the SM and beyond. Due to the modest Higgs boson mass of 125 GeV, it is possible to produce it in the relatively clean environment of a circular electron–positron collider with high luminosity, new technologies, low cost, and reduced power consumption. In September 2012, Chinese scientists proposed a 240 GeV *Circular Electron Positron Collider* (CEPC), serving two large detectors for Higgs studies and other topics as shown in Fig. 1. The ~100 km tunnel for such a machine could also host a *Super Proton Proton Collider* (SPPC) to reach energies well beyond the LHC.

The CEPC is a large international scientific project initiated and to be hosted by China. It was presented for the first time to the international community at the ICFA Workshop "Accelerators for a Higgs Factory: Linear vs. Circular" (HF2012) in November 2012 at Fermilab. A Preliminary Conceptual Design Report (Pre-CDR, the White Report)[1] was published in March 2015, followed by a Progress Report (the Yellow Report)[2] in April 2017, in which the CEPC accelerator baseline choice was made. The Conceptual Design Report (CEPC Accelerator CDR, the Blue Report) [3] has been completed in July 2018 by hundreds of scientists and engineers after an international review from June 28-30, 2018 and was formally released in Nov. 2018. In May 2019, CEPC accelerator document was submitted to European High Energy Physics Strategy workshop for worldwide discussions [4]. After the CEPC CDR, CEPC accelerator entered the phase of Technical Design Report (TDR) endorsed by CEPC International Advisory Committee (IAC). In TDR phase, CEPC optimization design with higher performance compared with CDR and the key technologies such as 650MHz high power and high efficiency klystron, high quality SRF accelerator technology, high precision magnets for booster and collider rings, vacuum system, MDI, etc. have been carried out, and the CEPC accelerator TDR will be completed at

CEPC Accelerator White Paper submissions to Snowmass21

CEPC Accelerator white paper to Snowmass21, arXiv:2203.09451 Snowmass21 series meetings and document submissions

1)J. Gao, Circular Electron Positron Collider (CEPC), Snowmass21 Agora meeting, Jan. 19, 2022.

2) J.Gao, "CEPC 50MW upgrade parameters", Snowmass21 AF ITF Meeting, Feb. 10, 2022

¹ Correspondance: J. Gao, Institute of High Energy Physics, CAS, China Email: gaoj@ihep.ac.cn

Summary

- CEPC accelerator system optimization design based on TDR parametersc considering also 50MW and tt bar energy upgrade possibilities are converging
- CEPC accelerator key hardware R&D made important progresses with the aim of finishing TDR at the end of 2022
- SppC high field magnet R&D progress well
- CEPC siting, civil engeering, installation planning, international collaborations and CIPC collaborations are progressing well
- Preparation for EDR and beyond (15th five year plan) is underway

Acknowledgements

- Thanks go to CEPC-SppC accelerator team's hardworks, international and CIPC collaborations
- Special thanks to CEPC SC, IAC and IARC's critical comments, suggestions and encouragement
Backup Slides

CEPC CDR-Higgs

Peak Luminosity = 3×10^{34} cm⁻²s⁻¹

Ingetrated Luminosity = 5.6 ab^{-1}

Higgs annual luminosity =0.8 ab⁻¹

CEPC CDR Vol. I, Accelerator

IHEP-CEPC-DR-2018-01 IHEP-AC-2018-01

CEPC Conceptual Design Report

Volume I - Accelerator

The CEPC Study Group August 2018

CEPC TDR-Higgs

Peak Luminosity = 5×10^{34} cm⁻²s⁻¹

Ingetrated Luminosity = 9.3 ab^{-1}

Higgs annual luminosity =1.3 ab⁻¹

CEPC Accelerator Snowmass 21 AF White Paper

1) CEPC Accelerator white paper to Snowmass21, arXiv:2203.09451

2) CEPC CDR Vol. I, Accelerator ,http://cepc.ihep.ac.cn/CEPC_CDR_Vol1_Accelerator.pdf

3) CEPC CDR Vol. II, Physics and Detector, http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf

CEPC TDR-Higgs (upgrade)

Peak Luminosity = 8.3× 10³⁴cm⁻²s⁻¹

Ingetrated Luminosity = 15.4 ab⁻¹

Higgs annual luminosity =2.2 ab⁻¹

These parameters are used for Snowmass21

CEPC CDR Vol. II, Physics/Detector

IHEP-CEPC-DR-2018-02 IHEP-EP-2018-02 IHEP-TH-2018-02

CEPC Conceptual Design Report

Volume II - Physics & Detector

The CEPC Study Group October 2018

SppC Collider Accelerator Physics -Parameter list (updated Feb. 2022)

Jingyu Tang Haocheng Xu

	Main parameters			Normalized rms transverse emittance	12	um
	Circumference	100	km	Room life time due to burn off	81	how
	Beam energy	62.5	TeV	Termenerer d time	0.1	hou
	Lorentz gamma	66631		Tumaround time	2.3	nou
	Dipole field	20.00	Т	l otal cycle time	10.4	hou
	Dipole curvature radius	10415.4	m	Total / inelastic cross section	161	mbar
	Arc filling factor	0.780		Reduction factor in luminosity	0.81	
	Total dipole magnet length	65442.0	m	Full crossing angle	73	urac
	Arc length	83900	m	rms bunch length	60	mm
	Total straight section length	16100	m	rms IP spot size	3.0	um
	Energy gain factor in collider rings	19.53	TeV	Beta at the 1st parasitic encounter	28 625	m
	Injection energy	3.20		rms spot size at the 1st parasitic encoun	20.020	
	Number of IPs	2		Stand aparty par beam	4.0	μin CT
	Revolution frequency	3.00	kHz	Stored energy per beam	4.0	GJ
	Revolution period	333.3	μs	SR power per ring	2.2	MW
	Physics performance and beam parameters			SR heat load at arc per aperture	26.3	W/n
	Initial luminosity per IP	4.3E+34	$cm^{-2}s^{-1}$	Critical photon energy	8.4	keV
	Beta function at initial collision	0.5	m	Energy loss per turn	11.40	Me
	Circulating beam current	0.19	A	Damping partition number	1	
	Nominal beam-beam tune shift limit per	0.015		Damping partition number	1	
	Bunch separation	25	ns	Damping partition number	2	
	Bunch filling factor	0.756		Transverse emittance damning time	0.51	hou
	Number of bunches	10080		Longitudinal emittance damping time	0.25	hou
	Bunch population	4.0E+10			0.25	noui
	Accumulated particles per beam	4.0E+14				

SppC Lattice Design

• Lattice of SPPC ring, IP and collimator

• Dynamic Aperture Optimization

Haocheng Xu

Yiwei Wang

CEPC Conventional Facility and Civil Engineering

Electrical Equipment General Layout in Auxiliary

