Beam-Beam Effects at CEPC

Yuan Zhang CEPC IARC Meeting 2022-Jun

Outline

- Update with New Longitudinal Impedance (ZL)
- Simulation with Transverse Impedance (ZT)
- Mitigation Scheme
- Summary

Longitudinal impedance has been updated in last Review Meeting, but not considered in Beam-Beam Simulation

- Na Wang, CEPC DAY (2022-Feb-23)
- Y. Zhang, IAS workshop, 2022
- The updated impedance has higher value and may induce microwave unstable ⇒ influence on the luminosity needs to be further checked.

	Higgs	W		50MW	Higgs	W
Threshold Z _∥ /n [mΩ]	6.0	4.1		Threshold $Z_{\parallel}/n \ [m\Omega]$	6.0	4.1
Evaluated Z _∥ /n [mΩ]	11	.4		Evaluated Z _∥ /n [mΩ]	15.3	
Evaluated k _{loss} [V/pC]	78	6.8		Evaluated k _{loss} [V/pC]	66	4.9

Stable tune area for Higgs is limited with old impedance model

Higgs, Collision:

Motivation

w/o Collision:

Stable tune area is too limited Higgs: $\sigma_x \& L$ versus Horizontal tune

Old Impedance

New Impedance

Optimization of Higgs Parameters: Lower bunch population (14e10->12e10)

14e10

12e10

Higgs: σ_x versus Horizontal tune Squeeze β_x^* (0.33 m-> 0.30 m)

0.33 m

0.30 m

Higgs: Bx*=0.3m, ne=13e10

- Width of stable tune area: 0.006
- Lum ~ 5e34

Luminosity

σ_{χ} versus Horizontal tune

W: σ_x versus Horizontal tune Stable tune area is still large enough, even squeezed.

Old Impedance

New Impedance

W: Luminosity versus Horizontal tune

Old Impedance

New Impedance

D. Shatilov, ICFA Beam Dyn.Newslett. 72 (2017) 30-41

Z: Luminosity versus Horizontal tune

Finite dispersion @ ZL

• It is not found any clear effect from finite dispersion

Frequency Analysis of Single Beam with Transverse Impedance (ZT) Courtesy of Mauro Migliorati

0.558

0.556

0.554

0.552

0.55

0.548

0.546

0.544

0.602

0.598

0.596

0.594

0.592

0.59

Considering ZL

5

10

the Y threshold reduces from 24e10 to 18e10.

15

20

25

0.6

Horizontal Tune

Verticla Tune

IBB

Considering ZL, the Y threshold reduces from 30e10 to 20e10.

ttbar, w/ZT

No clear effect from transverse impedance.

0,03

0,02

0,01

-0,01

-0,02

<X>/Simga_{X,0}

x=0.560

Higgs, w/ ZT

- Only X-Z instability
- Stable width seems to be reduced a little

W, w/ ZT

- Only X-Z instability
- Shift of stable region to be understood

Z, W/ZT

- Nearly no stable working points
- There exist very strong blowup in both X/Y direction

Evolution @(0.553,0.610), w/ZT

- Both dipole and quadrupole oscillation is unstable in Y direction
- TMCI like instability

Evolution @(0.560,0.610), w/ZT

- There exist exponential growth in both dipole and quadrupole oscillation in X direction, which is different from X-Z instability
- The vertical instability is damped more or less when there exist strong instability in X direction

Evolution @(0.560,0.610), w/o ZT

• Typical X-Z instability

Spectrum @(0.553,0.610), w/ ZT

• Only Y unstable

Spectrum @ (0.56,0.610), w/ZT (1000turns)

Keep same bunch length and energy spread as that with collision

Spectrum, off-col, w/ ZT

There does not exist mode coupling instability only considering ZT.

w/ ZT of FCCee

- Horizontal is stable
- Vertical is still unstable, but much weaker

Tune Chromaticity

• Even the tune chromaticity could suppress the instability, there still exist clear beam size blowup.

Evolution with finite chromaticity (w/ ZT)

- Non-zero chromaticity could help mitigate the dipole instability (TMCI)
- For Q'=10/10, it seems more like a X-Z instability

Only with Vertical tune chromaticity (Qy')

• Qy'=10 could help mitigate the vertical instability

? Vacuum Chamber: Circular -> Elliptical

Zx*1/2 + Qy'=10

- There does not exist dipole exponential growth in both X and Y direction
- However the stable horizontal tune area is too limited (0.003)

emitx = 0.64e-9 emity = 1.92e-12 Fodo45, ½*Zx, Qy'=10

Nus=0.0235(half ring)

• Even design bunch population (14e10) is fine, it is unstable for 17e10.

 $2/3*\nu_s(1.5*\sigma_{z,0}); \frac{1}{2}*Zx; Qy'=10$

Only X-Z instability

ZT @different position (only 1 kick of ZT)

• It seems there exist clear effect especially in X direction

Distributed ZT on 8 positions

- The instability in Horizontal direction is weakened, comparing to only 1 kick
 2 Azimut
- There does not exist very clear effect in Y

? Azimuthal mode number

Summary

- Updated longitudinal impedance is considered, machine parameter is optimized further
- Finite dispersion where ZL is located does not take clear effect
- The transverse impedance does not take clear effect for ttbar/Higgs/W
- It seems there exist strong instability when ZT is considered for Z mode
 - Combined X-Z instability and TMCI in X direction
 - TMCI like instability in Y direction
 - Large vertical tune chromaticity could help
- The work considering ZT is still in progress

• backup

Machine parameters of CEPC

by CEPC AP group, 2 June 2022

	Higgs	Z	W	ttbar		
Number of IPs	2					
Circumference [km]	100.0					
SR power per beam [MW]	30					
Half crossing angle at IP [mrad]	16.5					
Bending radius [km]	10.7					
Energy [GeV]	120	45.5	80	180		
Energy loss per turn [GeV]	1.8	0.037	0.357	9.1		
Piwinski angle	5.94	24.68	6.08	1.21		
Bunch number	268	11934	1297	35		
Bunch spacing [ns]	591 (53% gap)	23 (18% gap)	257	4524 (53% gap)		
Bunch population [10^10]	13	14	13.5	20		
Beam current [mA]	16.7	803.5	84.1	3.3		
Momentum compaction [10^-5]	0.71	1.43	1.43	0.71		
Beta functions at IP (bx/by) [m/mm]	0.3/1	0.13/0.9	0.21/1	1.04/2.7		
Emittance (ex/ey) [nm/pm]	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7		
Beam size at IP (sigx/sigy) [um/nm]	14/36	6/35	13/42	39/113		
Bunch length (natural/total) [mm]	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9		
Energy spread (natural/total) [%]	0.10/0.17	0.04/0.13	0.07/0.14	0.15/0.20		
Energy acceptance (DA/RF) [%]	1.6/2.2	1.3/1.7	1.2/2.5	2.3/2.6		
Beam-beam parameters (ksix/ksiy)	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1		
RF voltage [GV]	2.2	0.12	0.7	10		
RF frequency [MHz]	650	650	650	650		
Longitudinal tune Qs	0.049	0.035	0.062	0.078		
Beam lifetime (bhabha/beamstrahlung)[min]	39/40	80/18000	60/700	81/23		
Beam lifetime [min]	20	80	55	18		
Hour glass Factor	0.9	0.97	0.9	0.89		
Luminosity per IP[1e34/cm^2/s]	5.0	115	16	0.5		