

Instrumentation and Beam Diagnostics

Yanfeng Sui

On behalf Beam Instrumentation Team, Accelerator Center, IHEP

Outline

- Update of CEPC beam instrumentation system design
- Progress of beam instrumentation R&D
 - BPM electronics
- Summary

The beam instrumentation in CEPC Linac

	Item	Method	Parameter	Amounts
	Beam position	Stripline BPM	Resolution : 30um	140
	Beam current	ICT	2.5%@1nC-10nC	42
Linac	Beam profile	YAG/OTR	Resolution: 30um	80
	Beam emittance	Q+PR	10%	3
	Beam energy & spread	AM+PR	0.1%	3
Damning	Average current	DCCT	Resolution :50uA@0.1mA- 30mA	1
ring	Beam position	Button BPM	Resolution : 20um @ 5mA TBT	40
	Tune measurement	Frequency sweeping	Resolution:0.001	1

The beam instrumentation in CEPC booster

	Item		Method	Parameter	Amounts
	Beam position monitor	Turn by Seam turn	Button electrode BPM	Measurementarea $(x \times y)$: $\pm 20 \text{mm} \times \pm 10 \text{mm}$ Resolution:<0.02 \text{mm}Measurement time of COD:<4 s	1808
		Bunch by bunch	Button electrode BPM	Measurementarea $(x \times y)$: $\pm 40 \text{mm} \times \pm 20 \text{mm}$ Resolution:0.1 mm	
	Bunch	current	BCM	Measurement range: 10mA / per bunch Relatively precision: 1/4095	2
-	Average current		DCCT	Dynamic measurement range: 0.0~1.5A Resolution:50uA@0.6-8mA Linearity: 0.1 % Zero drift: <0.05mA	2
Booster	Beam size		Double slit interferometer x ray pin hole	Resolution:0.2 µm	2
	Bunch length		Streak camera Two photon intensity interferometer	Resolution:1 ps	2
	Tune measurement		Frequency sweeping method	Resolution:0.001	2
	Beam loss monitor		optical fiber	Space resolution:0.6m	400
	Feedbac	k system	TFB	Damping time<=3ms	2
	Feedback system		LFB	Damping time<=35ms (50ms)	2

The beam instrumentation in CEPC ring

	ltem		Method	Parameter	Amounts
	Beam position	Closed orbit	Button electrode BPM	Measurement area (x × y) : ±20mm×±10mm Resolution: <0.6um Measurement time of COD: <4 s	2900
	monitor	Bunch by bunch	Button electrode BPM	Measurement area $(x \times y)$: $\pm 40 \text{mm} \times \pm 20 \text{mm}$ Resolution: 0.1mm	
	Bunch	unch current BCM		Measurement range: 10mA / per bunch Relatively precision: 1/4095	2
Storage ring	Average	e current	DCCT	Dynamic measurement range: 0.0~1.5A Linearity: 0.1 % Zero drift: <0.05mA	
	Beam size		Double slit interferometer x ray pin hole	Resolution:0.2 µm	4
	Bunch length		Streak camera Two photon intensity interferometer	Resolution:1ps@10ps	2
	Tune measurement		Frequency sweeping method	Resolution:0.001	2
			DDD	Resolution:0.001	
	Beam los	s monitor	PIN-diode	Maximum counting rates 210 MHz	5800
	Feedless	la gratana	TFB	Damping time<=2.2ms	2
	reeabac	k system	LFB	Damping time<=12ms	2

Update of BPM pick-ups

- Due to modification of vacuum chamber in storage ring, the BPM pick-ups have been redesigned.
- Considering the suggestions of the IARC, the diameter of the button are reduced to 5mm.

	ttbar		Higgs		W		Z	
	Real	CST	Real	CST	Real	CST	Real	CST
Charge	20e10	32 nC	14e10	22.4 nC	13.5e10	21.6 nC	14e10	22.4 nC
Bunch length	2.2/2.9	3 mm	2.3/3.9	4 mm	2.5/4.9	5 mm	2.5/8.7	8.7 mm
Vpp	635V		359V		295V		179V	
Z_500M	0.22Ω		0.22Ω		0.22Ω		0.22Ω	
P_500M	-7.3dBm/320mA		-12.8dBm/170mA		-10.6dBm/216mA		-10.4dBm/224mA	
Кх=Ку	19.9	Əmm	19.9mm		19.9mm		19.9mm	

Time cost calculation of the COD measurement

- 50 stations along the storage ring and connecting with PC sever station with the star topology fiber optic network.
- Consider the delay of whole system, the BPM COD measurement takes about 1s. 6/9/2022

Update of beam feedback system

Transverse resistive wall instability - wang na

$$\tau^{-1} = \frac{I_0 v_{\beta}}{4\pi (E_k/e) v_{\beta}} \sum_{\mu=0}^{M-1} \sum_{p=-\infty}^{\infty} Z_1 \left((\mu + PM) \omega_0 + \omega_{\beta} \right)$$

• The worst case lowest energy and highest current, so Z mode is the most dangerous.

	30 MW
Instability growth time [ms]	2.2 (~7 turns)
Radiation damping [ms]	850

Growth of the most dangerous mode vs. damping factors

The power of transverse feedback

$$\frac{1}{\tau_{FB}} = \frac{f_{rf}\sqrt{\beta_m\beta_k}}{2\cdot h\cdot E/e} \cdot G$$

TFB CEPC ring (CDR)					
Parameter	Value				
E	4.55E+10				
R	1.55E+05				
Beta-k	2.25E+02				
Beta-m	2.25E+02				
A	2.00E-04				
Т	3.30E-04				
tao	1.60E-03				
P (W)	8.98E+02				

$$P = \frac{1}{2} \cdot \frac{\Delta V_{FB}^2}{R_K}$$

TFB CEPC Ring (30MW)					
Parameter	Value				
E	4.55E+10				
R	1.55E+05				
Beta-k	2.25E+02				
Beta-m	2.25E+02				
А	2.00E-04				
Т	3.30E-04				
tao	2.2E-03				
P (W)	4.75E+02				

The update of TFB feedback system

- Narrow-band feedback + bunch by bunch feedback
- Consider narrow-band feedback, in addition to bunch-bybunch ones, for specific instabilities such as resistive wall coupled bunch. Mode No. 11616 & 11615

<i>f</i> [kHz]	Mode index	Growth t [ms]
-2.338	11616	2.2 (7 turns)
-5.335	11615	3.2 (10 turns)
-8.332	11614	4.0 (12 turns)
-11.330	11613	4.6 (14 turns)

The update of TFB kicker

Variable diameter of pins to overcome the thermal deformation in electrodes

The electrode with slotted holes connecting with feed through

- To reduce deformation, the electrodes will be made of copper plated aluminum to reduce own weight.
- For the thermal deformation of kicker, slotted holes on electrode are adopted to allow relative movement between the electrodes and the feed through along the beam direction; second, the pin of the feed through will use variable diameter to allow the deformation. ¹²

The power of longitudinal feedback

1	$-\frac{f_{rf}\alpha}{G}$
$\overline{ au}_F$	$r_B = \frac{1}{2\nu_s E/e} \cdot 0$
CEPC I	LFB (CDR)
Parameters	Value
f	6.50E+08
alpha	1.11E-05
mus	2.80E-02
deltaphi	1.70E-03
Tao(s)	2.00E-01
E	4.55E+10
$Rk(\Omega)$	2600
V(V)	3.00E+03
P(W)	1.73E+03

 $P = \frac{1}{2} \cdot \frac{\Delta V_{FB}^2}{R_K}$

CEPC LFB	(30MW-12ms)
Parameters	Value
f	6.50E+08
alpha	1.48E-05
mus	3.50E-02
deltaphi	1.70E-03
Tao(s)	1.20E-02
E	4.55E+10
$Rk(\Omega)$	2600
V(V)	4.69E+04
P(W)	4.23E+05

CEPC TDR Collider Ring Cavity HOM CBI – Zhai Jiyuan

R/Q (Ω)

65.20

1.29 279.82

420.05

R/Q (Ω)

84.80

54.15

832.23

681.15

R/Q (Ω) 28.17

0.82

157.00

291.07

f (GHz)

1.17

1.38

0.84

0.91

f (GHz)

1.17

1.43

0.82

0.93

f (GHz)

1.09

1.32

0.79

0.90

	ttbar		Higgs	w	Z
30 MW SR per beam. Consider only SR damping for HOM Q_L requirement. Cavity HOM spread not included.	new 5-cell common cavity	old 2-cell common cavity	common cavity	separate cavity	by-pass separate cavity
Cell number / cavity	5	2	2	2	1
Beam energy [GeV]	180.0	180.0	120.0	80.0	45.5
Beam current per beam [mA]	3.4	3.4	16.7	84.0	802.6
Revolution time [µs]	333.6	333.6	333.6	333.6	333.6
Momentum compaction	7.1E-06	7.1E-06	7.1E-06	1.4E-05	1.4E-05
Synchrotron tune	0.08	0.08	0.05	0.06	0.04

No beam feedback is needed for 30 MW.

Cavity number on line per beam	240	240	240	120	30	
Average beta-x/y in RF region [m]	30	30	30	30	30	
Longitudinal impedance threshold per cavity [ohm*MHz]	3.58E+11	3.58E+11	9.62E+09	9.05E+08	2.27E+07	
Transverse impedance threshold per cavity [ohm/m]	1.88E+08	1.88E+08	7.48E+06	1.18E+06	5.12E+04	
Cavity higher order mode	Required QL					
TM011	7.2E+06	9.4E+06	2.5E+05	2.4E+04	1.5E+03	
TM020	9.3E+06	4.0E+08	1.1E+07	1.0E+06	4.2E+04	
TE111	4.5E+05	1.3E+06	5.3E+04	8.4E+03	6.5E+02	
TM110	5.5E+05	9.0E+05	3.6E+04	5.6E+03	3.5E+02	

signed 650 MHz 2-cell cavity HOM coupler Q_L can meet Higgs and W damping requirement.

1-cell cavity similar to BEPCII can meet 30/50 MW Z HOM damping requirement. No beam feedback is needed even for 50 MW.

Low lumi Z with 2-cell cavities may need beam feedback depending on the operation beam current.

Study of LFB kicker

 $\frac{\Delta V_{FB}}{R_{K}}$ $P = \frac{1}{2}$

Resonant strip-line type longitudinal kicker

Pillbox cavity with ridged waveguides type kicker

Study of longitudinal feedback kicker

- The procedure for designing the was based on initially rescaling Spring-8 design to our vacuum chamber diameter and desired center frequency.
- The CST Microwave Studio and HFSS code has been used for the electromagnetic simulations.
- Multiple parameter sweeps were performed to set the longitudinal shunt impedance curve, with maximum amplitude (Rs).

Sweep the geometric parameters to maximum RS

Rs VS a1 17mm->25mm

Rs VS b1 30mm->42mm 42mm->47mm

Sweep the geometric parameters to maximum RS

Sweep the geometric parameters to maximum RS

Study of LFB kicker

R&D Motivation

- To reduce the budget of BI system, due to a large number of monitors and the high price of commercial products.
- To grasp key technologies of beam diagnostics.
- To make the whole system easy to maintain and upgrade

Overview of the BPM electronics R&D

- The R&D of BPM electronics founded by seed money of IHEP and other funding (HEPS-TF etc.)
- Kicked off in the start of 2015
- The first version(V1.0) of the electronics was finished in 2018.
- The second version(V2.0) was finished in middle of 2019. Modification was done to improve the performance of the electronics. 8 versions have been tested in the past six years.
- In 2019, self-developed electronics were put into use in the BEPCII.

Overview of the BPM Electronics

- Since of ADF interface is not suitable for RF signal transmission, so we developed new hardware, ADC&CLK in AFE board.
- AFE board: RF Processing+ ADCs + Clock + Pilot tone;
- DFE board: FPGA(ZYNQ) + DDR3 memory + SFPs + Ethernets;
- EPICS IOC: In ZYNQ FPGA, Increase the convenience of the BPM system;

BPM TbT/FA/SA Resolution Test in Lab

TBT RMS (X=767nm,y=786nm)

FA RMS (X=103nm,y=98nm)

SA RMS(X=30nm,Y=38nm) 10points STD

- We test the performance of DBPM in house
- RF frequency is 499.8MHz(-15dBm) from R&S SMA100
- TBT data rms xpos ≈767nm, ypos ≈786nm;
- FA data rms xpos ≈103nm, ypos ≈98nm;
- SA data rms xpos ≈30nm, ypos ≈38nm;
- Kx=Ky=8.26mm;

Beam test in **BEPCI**

• Resolution of BPM electronics (110 bunches, 1/3)

BPM3

BPM4

BPM5

BPM electronics NO.	Beam current (10-20mA)		Beam current (20-818mA)	
	ΔX(um)	ΔY(um)	ΔX(um)	ΔY(um)
Commercial product	-	-	6	7
BPM1	-	-	10	17
ВРМЗ	22	11	29	11
BPM4	71	61	11	36
BPM5	5	17	4	31

Beam current dependence of BPM electronics

Comparative test of self-developed product and commercial product

- Libera brilliance+ VS Home-made BPM
- Both are the same pick-up signal from button-> splitter

Long time stability (1 hour)

Long time stability (7 days)

Application of home-made BPM electronics

- There are 20 singal-pass BPM electronics were installed and operating in BEPCII Linac in 2019.
- All Bergoz type BPM electronics had been upgraded to homemade electronics by the end of last year. Totally ,92 sets of electronics running online now.
- There will be 700+ sets electronics in the new project -HEPS

Summary

- The BPM pick-ups and the feedback systems are refined based on latest parameters and suggestion of IARC.
- We clearly understand the CEPC beam position measurement requirements. Based on that, BPM electronics have been developed in house in the past 6 years.
- 112 sets of home-made electronics running online in BEPCII. More than 700 units will be used on both injector and storage ring in HEPS.
- The application of electronics is conducive to improving the performance of electronics and accumulating experience, which is helpful for the CEPC BPM electronics R&D.

Thanks for your attention !