

叶志鸿,清华大学物理系 yez@tsinghua.edu.cn

复旦大学2022年"优秀学生培养计划"粒子物理与核物理暑期学校 08/20/2022

▶ 第一节:物质结构概要

▶ 第二节:实验方法详解和实验分析实例

▶ 第三节:未来展望

推荐读物(请联系本人索取英文版PDF):

未来展望

New data: PRAD Experiment and E12-11-112 (Tritium)

✓ Three types of Parton Distribution Functions (PDFs):

- ✓ Density (well measured)
- New data from MARATHON (Tritium)
- ✓ Helicity (Spin puzzle)
- ✓ Transversity (need 3D info)

▶ 电子-核子碰撞的未来目标→核子三维结构

□ 核子的3维结构测量 (TMD,GPD) 需要高能极化电子加速器,极化靶 技术和全新的探测器系统 (高流量,全方位角,多粒子)

Quark Polarization

Leading

Hall-B

≻四个实验大厅→四种探测器系统

- □ Hall-A: HRS, then Super-BigBite Spectrometer (SBS), then MOLLER are for dedicated purpose experiments
- \Box Hall-B: CLAS12 is a multiple purpose 4 π detector (low luminosity, large acceptance, limited resolution)
- □ Hall-C: HMS and Super-HMS are high-luminosity, limited acceptance, for precision measurement at limited region.
- □ Hall-D: GLUX detector system is for real-photon production experiment to search exotic gluon states

>3D Nucleon Tomography is the major Program at Jlab 12GeV Eva:

□ Many approved experiments in SBS & SoLID (Hall-A), CLAS12 (Hall-B), HMS+SHMS (Hall-C)

12 GeV Approved Experiments by Physics Topics

Торіс	Hall A	Hall B	Hall C	Hall D	Other	Total
The Hadron spectra as probes of QCD	0	3	1	3	0	7
The transverse structure of the hadrons	6	4	3	1	0	14
The longitudinal structure of the hadrons	2	3	6	0	0	11
The 3D structure of the hadrons	5	9	6	0	0	20
Hadrons and cold nuclear matter	8	4	7	0	1	20
Low-energy tests of the Standard Model and Fundamental Symmetries	3	1	0	1	1	6
Total	24	24	23	5	2	78
Total Experiments Completed	2.5	1.1	0	0.4	0	4.0
Total Experiments Remaining	21.5	22.9	23.0	4.6	2.0	74.0

Solenoidal Large Intensity Detector

- □ SoLID will *maximize* the science return of the 12-GeV CEBAF upgrade by **combining...**
- □ Unique advantages:
 - ✓ High Intensity $(10^{37} ~ 10^{39} \text{ cm}^{-2}\text{s}^{-1})$,
 - ✓ Large Acceptance, 4Pi Coverage
 - $\checkmark\,$ Both polarized proton and "neutron" targets

$\hfill\square$ Three initial topics:

- ✓ SIDIS w/ long.- & tans.-pol. proton & He3
- ✓ PVDIS w/ unpol. protons
- ✓ J/ ψ w/ unpol. protons

□ Approved GPD experiments:

- ✓ TCS with J/Psi
- ✓ DVMP with polarized He3 target & SIDIS

□ DVCS & DVMP with polarized p& He3, Doubly DVCS, etc.

Solenoidal Large Intensity Detector

SoLID TMD

- $\hfill\square$ Much wider phase-space to cover the valance quark region
- \Box Full 2π azimuthal acceptance:
- □ Polarized beam & targets:
- \Box Detect π^{\pm} , and adding Kaon detections (sea quark contribution)
- \Box High statistics for 4D binning in (x, p_T, Q², z)
- \Box Overall >1000 bins for neutron and >600 bins for proton

SoLID GPD

- Deep Exclusive π⁻ Production using Transversely Polarized ³He Target
 - G.M. Huber, Z. Ahmed, Z. Ye
 - Approved as run group with Transverse Pol. ³He SIDIS (E12-10-006B)
- Timelike Compton Scattering (TCS) with circularly polarized beam and unpolarized LH₂ target
 - Z.W. Zhao, P. Nadel-Turonski, J. Zhang, M. Boer
 - Approved as run group with J/ψ (E12-12-006A)
- Double Deeply Virtual Compton Scattering (DDVCS) in di–lepton channel on unpolarized LH₂ target
 - E. Voutier, M. Boer, A. Camsonne, K. Gnanvo, N. Sparveri, Z. Zhao
 - LOI12-12-005 reviewed by PAC43
- DVCS on polarized proton and 3He targets
 - Z.Y. Ye, N. Liyanage, W. Xiong, A. Cansomme and Z.H. Ye (under study)

SoLID DVCS with Polarized He3 Projection: one (Q2, x, t) bin out of 1000+ bins

SoLID Projected Uncertainties

0.4

50.2

0.1

0.0

0.0

0.3

0.6 0.9

t (GeV²)

12

0.2

0.1 0.0

0.0

sin(de) 0.3

0.5

0.4

Azimuthal modulations of Transverse Single Spin Asymmetry allow access to different GPDs:

 $sin(\beta = \varphi - \varphi_s)$ moment sensitive to helicity-flip GPD \tilde{E} $sin(\phi_s)$ moment sensitive to transversity GPDs

0.2

Bjorken x

0.3

0.1

SoLID Dedicated Upgrade for GPD

A Recoil Detector with a Polarized He3 Target

- Add a recoil detector near the target region to detect outgoing protons and neutrons
- Improve performance of Electromagnetic Calorimeters for photon detection
- ✤ Add a muon detector for DDVCS

Electron-Ion Collider, EIC

From Quarks to Gluons

□ Jlab实验→研究物质的价夸克结构(u,d)
 □ 更高能量→研究物质的海夸克+胶子结构
 ✓ 加速极化电子+极化质子或离子

□ <u>中国电子离子对撞机 (EicC)</u>

- ✓ 3.5GeV 电子 + 20GeV质子
- ✓ 探测物质的海夸克结构
- ✓ 地点: 广东惠州
- ✓ 质子加速器在建中
- ✓ 项目申请中

□ <u>美国电子离子对撞机 (eRIHC)</u>

- ✓ 20GeV电子 + 100GeV质子
- ✓ 探测物质的胶子结构
- ✓ 地点:布鲁克海文国家实 验室
- ✓ 项目以批准,设计中

Electron-Ion Collider, EIC

From Quarks to Gluons

- $\hfill \Box$ Unlock the full power of DVMP
- \square Large Q² to go beyond the x=§ limit
- □ From valance to sea+gluons
- □ Solve spin- puzzle : JLab12 + EicC + EIC+COMPASS + Theories

US EIC Roadmap

≻Detector Layout:

≻BaBar Manget:

Currently refurbished and to be used by sPHENIX (an option to build a brand new one, to be decided in 2023)

Central Induction	1.5 T* (1.4 T in ECCE flux return)
Conductor Peak Field	2.3 T
Winding structure	Two layers, graded current density
Uniformity in tracking region	$\pm 3\%$
Winding Length	3512 mm at R.T.
Winding mean radius	1530 mm at R.T.
Operating Current	4596 A (4650 A*)
Inductance	2.57 H (2.56 H*)
Stored Energy	27 MJ
Total Turns	1067
Total Length of Conductor	10,300 m

➤Tracking System:

Si Tracker (MAPS)
uRwell (only gas detector)
AC-LGAD

21/46

□ dRICH

□ mRICH

hpDIRC frame

mRICH wall

≻Particle-Identification:

≻Calorimeters: EEMC BEMC FEMC IHCAL OHCAL LFHCAL 2x2x20 cm3 4r4r45.5 cm3 in: 1x1x37.5 cm3 5x5x140 cm3 $\Delta \eta \sim 0.1$ $\Delta \eta \sim 0.1$ tower size out: 1.6x1.6x37.5 cm3 $\Delta \phi \sim 0.1$ $\Delta \phi \sim 0.1$ projective out: 1.6x1.6x37.5 cm3 $\sim 4.5 \, \mathrm{cm}$ $l \sim 88 \text{ cm}$ projective material PbWO4 SciGlass Pb/Scintillator Steel/ Steel/W/ Steel/ Scintillator Scintillator Scintillator in: 10.2 mm dabs 1.6 mm 13 mm 16 mm out: 14.7 mm dact 45.5 cm 7 mm 20 cm 4 mm 7 mm $4 \,\mathrm{mm}$ Nlavers 66 1 5 70 1 4 Ntowers(channel) 2876 8960 19200/34416 1728 1536 9040(63280) X/X_0 ~ 22 ~ 17 ~ 19 ~ 2 36 - 4865 - 72 R_M 2.73 cm 3.58 cm 5.18 cm 2.48 cm 14.40 cm 21.11cm 0.914 0.970 0.220 0.035 0.040 0.059 fsampl ~ 0.9 ~ 1.6 ~ 0.9 $\sim 4 - 5$ 7.6 - 8.2 λ/λ_0 ~ 0.2 $-3.7 < \eta < -1.8$ $-1.7 < \eta < 1.3$ $1.3 < \eta < 4$ $1.1 < \eta < 1.1$ $1.1 < \eta < 1.1$ $1.1 < \eta < 4$ η acceptance TH HI resolution $2/\sqrt{E} \oplus 1$ 2.5/√E ⊕1.6 7.1/√E ⊕ 0.3 $75/\sqrt{E} \oplus 14.5$ 33.2/√E ⊕1.4 - energy ~ 0.03 ~ 0.05 ~ 0.04 ~ 0.25 ~ 0.1 - Φ ~ 0.015 ~ 0.018 ~ 0.02 ~ 0.06 ~ 0.08 - 11 8M Tower 8M tower conposit module (inner) - 20 cm x 10 cm x 2 m 20 cm Composite - 8 5 cm x 5 cm LFHCal towers (Outer) sPHENIX reused - 200 1 cm x 1 cm FEMC towers 4M Tower 120 cm Composite (Outer) 4 mm scintillator tiles 7x 10 fibers 1.6mm Pb sheets read-out by SiPM 16mm thungsten plates 8M Tower 4 mm scintillator tiles Composite -(Inner) 16mm steel plates U.J. HAR Demonst 10 cm Nom Plastic travellating Place 83 20 cm SciGlass 37.5 cm 4M Tower Malera Composite 100x \$B cm (Inner) 10.0 cm Plaste nteraction Contraction in the second line of the second 8M Tower point Plottin Planting 2014. Lawer enterteed lines reffinal with equivary TiOp 4M Tower rendge 0.125 rm **8M LFHCal Scintillator Tile 8M FEMC Scintillator Tile - Inner** 0.45 cm U.M. um

≻Forward/Backward Detectors:

- **B0 system** measures charged particles in the forward direction and tags neutral particles.
- Off-momentum detectors measure charged particles with different rigidity than the beam, e.g., those following decay and fission.
- Roman pot detectors measure charged particles close to the beam envelope.
- Zero-Degree Calorimeter measures neutral particles at small angles

Detector	(x,z) Position [m]	Dimensions	θ [mrad]	Notes
ZDC	(-0.96, 37.5)	(60cm, 60cm, 1.62m)	$\theta < 5.5$	\sim 4.0 mrad at $\phi = \pi$
Roman Pots (2 stations)	(-0.83, 26.0) (-0.92, 28.0)	(30cm, 10cm)	$0.0 < \theta < 5.5$	10σ cut.
Off-Momentum Detector	(-1.62, 34.5), (-1.71, 36.5)	(50cm, 35cm)	$0.0 < \theta < 5.0$	$0.4 < x_L < 0.6$
B0 Trackers and Calorimeter	(x = -0.15, 5.8 < z < 7.0)	(32cm, 38m)	$6.0 < \theta < 22.5$	$\sim 20 \mathrm{mrad}$ at $\phi = 0$

≻DAQ:

Table 2.7: PID Detector ASICs and channel counts.

PID WBS Name	Detector	ASIC	Channels	
Ramal DID	hpDIRC	High Density SoC	69,632	
barrel PID	TOF	eRD112 development	8,600,000	
Electron Forderer	mRICH	High Density SoC	65,536	
Electron Endcap	TOF	eRD112 development	920,000	
Underer Fridare	dRICH	MAROC3	5,376	
Hadron Endcap	TOF	eRD112 development	1,840,000	
E E I D-I(Roman Pots	eRD112 development	524,288	
Far-Forward Detectors	B0 Detector	eRD112 development	2.6M	
	Off-Momentum Detectors	eRD112 development	1.8M	
n n n n n n n n	Low-Q ² Tagger	eRD112 development	4.6M	
Far-backward Detectors	Luminosity Monitor	eRD112 development	268,441	

Table 2.8: Estimate of raw data storage and compute needs for first three years of ECCE, assuming ramp up to full luminosity by year 3 [32]

	ECCE Runs				
	year-1	year-2	year-3		
Luminosity	$10^{33} cm^{-2} s^{-1}$	$2\times 10^{33} cm^{-2} s^{-1}$	$10^{34} cm^{-2} s^{-1}$		
Weeks of Running	10	20	30		
Operational efficiency	40%	50%	60%		
Disk (temporary)	1.2 PB	3.0 PB	18.1 PB		
Disk (permanent)	0.4 PB	2.4 PB	20.6 PB		
Data Rate to Storage	6.7 Gbps	16.7 Gbps	100 Gbps		
Raw Data Storage (no duplicates)	4 PB	20 PB	181 PB		
Recon process time/core	5.4 s/ev	5.4 s/ev	5.4 s/ev		
Streaming-unpacked event size	33kB	33kB	33kB		
Number of events produced	121 billion	605 billion	5,443 billion		
Recon Storage	0.4 PB	2 PB	18 PB		
CPU-core hours (recon+calib)	191M core-hours	953M core-hours	8,573M core-hours		
2020-cores needed to process in 30 weeks	38k	189k	1,701k		

>China-EIC Consortium Involvement:

- □ Si Tracker: CCNU, CIAE, IMP
- □ uRwell: USTC, IMP
- EM Calo: Fudan, SDU, Tsinghua
- □ RICH: Tsinghua
- DAQ: CCNU
- □ Forward EM Cal: SCNU

→ High Intensity heavy-ion Accelerator Facility (HIAF):

- Run by Institute of Modern Physics (IMP)
- First phase ~ 0.6 km^2 ; Construction area ~ 0.12 km^2
- +2 km² is reserved for future development
- Total budget:~ 6.8 billion CNY (~1billion US Dollars)
 - \checkmark 3.5 billion comes from the central government.
 - \checkmark 2.35 billion from local government for infrastructure
 - ✓ 1.0 billion from The China National Nuclear Corporation (CNNC) for CiADS

China initiative Accelerator Driven System (**CiADS**)

≻Timeline:

D Road Map:

Construction Plan:

2019	2020	2021	2022		2023	2024	20	025
	Civil constru	iction						
		Electric power, coolin network, cryogenic,			water, comprupporting syst	essed air, em, etc.		
ECR design & fabrication SECR installa and commission				ation oning				Day
Linac design & fabrication			iL	inac installatio commissioni	on and ng		One	
Prototypes of PS, RF cavity, chamber, fai magnets, etc.		fabri	ication	on BRing installation & commissioning			exp.	
					HFRS & SRing installation		on &	
					commissioning			
					Terminals	installation		

► Accelerator Site Construction:

Taiwan

≻IMP Office Site Construction:

New IMP branch in Huizhou downtown (73km from HIAF)

EicC

>Upgraded Accelerator complex layout:

Complementary to JLab@12GeV and US-EIC:

EicC

Complementary to JLab@12GeV and US-EIC:

- Spin of the nucleon: 1D, 3D
 - Polarized electron + Polarized proton/light nuclei
 - Valance and see quarks TMDs and GPDs
- Partonic structure of nuclei and the parton interaction with the nuclear environment
 - Unpolarized electron + unpolarized various nuclei
 - Well developed heavy-ion community
- Pion/Kaon Structure
- Mass of the nucleon
 - J/Psi and Upsilon Production
- Exotic states with c/cbar, b/bbar
 - Strong BESIII community in China

>Spin of the nucleon-helicity distribution

arXiv:2103.10276 JHEP08(2021)034

≻Spin structure of the nucleon-TMDs

Green: Current accuracy Red: stat. error only Blue: sys. Error included

H. Dong, D. X. Zheng, J. Zhou, 2018

EicC SIDIS MC Data:

- Pion(+/-), Kaon(+/-)
- ep: 3.5 GeV X 20 GeV
- eHe-3: 3.5 GeV X 40 GeV
- Pol.: e(80%), p(70%), He-3(70%)
- ➤ Lumi: ep 50 fb⁻¹, eHe-3 50 fb⁻¹

≻Spin structure of the nucleon-GPDs

≻Nuclear medium effect

eA Physics:

- EMC / Anti-shadowing
- ➢ Nuclear-PDF
- ➤ Hadronization
- ➢ Nuclear-TMD, Nuclear-FF, Nuclear-GPD

IP Detector Layout

➤Very Preliminary Design:

Ongoing full Geant4 simulation

Detector Designs and R&D

➤Tracking

ITS3 + ITS2 + gaseous hybrid detector

Nupix-A1: First Protype MAPS in China

uRWELL

Micromegas

GEM (self-stretching)

Detector Designs and R&D

Detector Designs and R&D

≻Calorimeters

Strong mass production capability

Shashlyk ECal

Front End Board for SiPM-based Ecal

Projected Timeline

≻Discussion started in 2012:

Collaboration

>An International Effort:

EicC Current Collaborators:

- \succ 102 scientists
- 47 institutes8 countries

EIC User Group:

- 1330 members
- 266 institutions
- 36 countries (7 world regions)

Need strong supports from international collaborators!

EicC White Paper (arXiv: 2102.09222)

S Frontiers Journals	Home	Journals	Subscription	Open access	Editorial policy	About us		Sign in
Frontiers o	f							
Phys	ics				Title / Author	/Abstract/Geywords/DO(/A	Milation	Q Adv search
tomic molecular optical phy	sics condensed	matter, mate	rials physics, p	rticie, nuclear ph	vsics			
	UIGA2 MARKED SALE		and projection of the					
					a second a second se			

Front. Phys. >> 2021, Vol. 16 >> Issue (6) : 64701. DOI: 10.1007/s11467-021-1062-0

REPORT

Electron-ion collider in China

Daniele P. Anderle¹, Valerio Bertone², Xu Cao^{3,4}, Lei Chang⁵, Ningbo Chang⁶, Gu Chen⁷, Xurong Chen^{3,4}, Zhuojun Chen⁸, Zhufang Cui⁹, Lingyun Dai⁸, Weitian Deng¹⁰, Minghui Ding¹¹, Xu Feng¹², Chang Gong¹², Longcheng Gui¹³, Feng-Kun Guo^{4,14}, Chengdong Han^{3,4}, Jun He¹⁵, Tie-Jiun Hou²⁶, Hongxia Huang¹⁵, Yin Huang¹⁷, Krešimir KumeričKi¹⁸, L. P. Kaptari^{3,19}, Demin Li²⁰, Hengne Li¹, Minxiang Li^{3,21}, Xueqian Li⁵, Yutie Liang^{3,4}, Zuotang Liang²², Chen Liu²², Chuan Liu¹², Guoming Liu³, Jie Liu^{3,4}, Liuming Liu^{3,4}, Xiang Liu²¹, Tianbo Liu²², Xiaofeng Luo²³, Zhun Lyu²⁴, Boqiang Ma¹², Fu Ma^{3,4}, Jianping Ma^{4,14}, Yugang Ma^{4,25,26}, Lijun Mao^{3,4}, Cédric Mezrag², Hervé Moutarde², Jialun Ping¹⁵, Sixue Qin²⁷, Hang Ren^{3,4}, Craig D. Roberts⁹, Juan Rojo^{28,29}, Guodong Shen^{3,4}, Chao Shi³⁰, Qintao Song²⁰, Hao Sun³¹, Paweł Sznajder³², Enke Wang¹, Fan Wang⁹, Qian Wang¹, Rong Wang^{3,4}, Ruiru Wang^{3,4}, Taofeng Wang³³, Wei Wang³⁴, Xiaoyu Wang²⁰, Xiaoyun Wang³⁵, Jiajun Wu⁴, Xinggang Wu²⁷, Lei Xia³⁶, Bowen Xiao^{23,37}, Guoqing Xiao^{3,4}, Ju-Jun Xie^{3,4}, Yaping Xie^{3,4}, Hongxi Xing¹, Hushan Xu^{3,4}, Nu Xu^{3,4,23}, Shusheng Xu³⁸, Mengshi Yan¹², Wenblao Yan³⁶, Wencheng Yan²⁰, Xinhu Yan³⁹, Jiancheng Yang^{3,4}, Yi-Bo Yang^{4,14}, Zhi Yang⁴⁰, Deliang Yao⁸, Zhihong Ye⁴¹, Peilin Yin³⁸, C-P. Yuan⁴², Wenlong Zhan^{3,4}, Jianhui Zhang⁴³, Jinlong Zhang²², Pengming Zhang⁴⁴, Yifei Zhang³⁶, Chao-Hsi Chang^{4,14}, Zhenyu Zhang⁴⁵, Hongwei Zhao^{3,4}, Kuang-Ta Chao¹², Qiang Zhao^{4,46}, Yuxiang Zhao^{3,4}, Zhengguo Zhao^{3,4}, Jiang Zheng⁴⁷, Jian Zhou²², Xiang Zhou⁴⁵, Xiaorong Zhou^{3,6}, Bingsong Zou^{4,14}, Liping Zou^{3,4}

- ▶ 展望未来电子-核子碰撞的实验计
 - ✓ SoLID
 - ✓ US-EIC
 - ✓ China-EIC
- ▶ 本课堂没有涉及的其他重要电子散射物理课题:
 - ▶ 质子质量
 - ▶ 奇异强子态
 - ▶ 原子核结构
 - ➤ 强子化 (Hadronization)
 - ▶ 核子的介质效应 (Nuclear Medium Effect)
 - ▶ 介子的部分子结构
 - > Jets
 - ▶ 小x物理
 - ▶ 等等...

▶ 历经5000年探索的物质终极结构 Baby

Nucleus

