
2022 Summer School Homework:

Homework Problem 1: Read through the reading assignment and reproduce the following result for

e+ + e− annihilations at NLO with dim-reg. Final results for the NLO real and virtual contributions are
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respectively. Therefore, summing over the LO and NLO contributions to the total cross section yields
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Homework Problem 2: Thrust:

(a) Consider the 2→ 3 (e+ + e− → q + q̄ + g) process and derive the following thrust distribution for T < 1
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Hint: Use 2→ 3 cross section, the thrust distribution can be cast into
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(b) After including the Born and virtual as well as real contributions, the cross section becomes
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where C is a divergent constant, which can be determined by the following integral according to Eq. (1)
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From Eq. (2), show that the following one-loop expression for the thrust distribution satisfies Eq. (4)
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where the plus distribution is defined as
∫ 1
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Homework Problem 3: EM fields of a massless particle and Weizsäcker-Williams Method

(a) Verify that the EM fields of the following shockwave solution
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satisfy the Maxwell equations with the source current jμ = enμδ(2)(r⊥)δ(t − z) and nμ = (1,0,0,1).
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(b) Show that the covariant and light-cone gauge potentials below both give rise to the above EM fields
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(c) Show that these two gauge potentials are related by a gauge transformation A
μ
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(d) Show that the above EM fields lead to the photon distribution ƒγ(k⊥) = α/(π2k2⊥).

Homework Problem 4: BFKL equation in the momentum and coordinate space

(a) As we mentioned in class, the BFKL equation in the dipole model can be written as
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with ᾱs =
αsNc

π
. Let us look for angular independent solution (the dominant one) and introduce the

shorthand notation 10 = 1 − 0, where 0,1 are 2-d vectors, thus we can cast the equation into
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Suppose one can define
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with 10 the initial dipole size, show that the BFKL equation can be converted into dTγ/dY = ᾱsχ(γ)Tγ,

where the BFKL characteristic function χ(γ) = 2ψ(1) − ψ(1 − γ) − ψ(γ) with ψ() the digamma function.

Hint: First show that
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and use the integral identity
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and the identity regarding the digamma function
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with γE ' 0.577 the Euler constant.

(b) In the momentum space, the BFKL equation reads
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where G(⊥, ′⊥;Y) is known as the BFKL propagator. In the Mellin space, show that the solution Gγ(Y)
has the same BFKL characteristic function, i.e., Gγ(Y) = Gγ(0)exp [ᾱsχ(γ)Y].

Hint: Use the dimensional regularization (MS scheme with S−1
ε
= (4πe−γE)−ε) and the following identity

(see the appendix A in [rX : 1607.04726])
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