2022 Summer School Homework:

Homework Problem 1: Read through the reading assignment and reproduce the following result for
et + e~ annihilations at NLO with dim-reg. Final results for the NLO real and virtual contributions are
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respectively. Therefore, summing over the LO and NLO contributions to the total cross section yields
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Homework Problem 2: Thrust:

(a) Considerthe 2 — 3 (et + e~ — g+ g+ g) process and derive the following thrust distribution for T < 1
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Hint: Use 2 — 3 cross section, the thrust distribution can be cast into

1 do CFO(s 1 xg
i dxi | dxo 6(T — max[x1, x2, x3]).
oo dT (1—x1)(1—x2)

(b) After including the Born and virtual as well as real contributions, the cross section becomes
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where C is a divergent constant, which can be determined by the following integral according to Eq. (1)

C do 3as 5 .
daT =1+ Cr— +0(a%), with Tpmn=2/3for 2— 3 processes. (4)
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From Eq. (2), show that the following one-loop expression for the thrust distribution satisfies Eq. (4)
do Cra 2 3(3T—2)(2-T
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dxg(x)(f(x))+ =J dxg(x)f(x)—9g(1) . adxf(x).

a

where the plus distribution is defined as j

a

Homework Problem 3: EM fields of a massless particle and Weizsacker-Williams Method

(a) Verify that the EM fields of the following shockwave solution
. ert er|
E'= = 6(t— z) and Bi=—el— 5(t—z) (6)
2n rJ_ 27 rJ_

satisfy the Maxwell equations with the source current j* = en“5(2)(rl)5(t— z)and n* =(1,0,0,1).
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(b) Show that the covariant and light-cone gauge potentials below both give rise to the above EM fields

Cov: AY =47 ——Inu2r26(t z), AL =0; (7)

Cov Cov Cov
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LC: A) =A7.=0, ALC_—ETQ(t—z)VInu re; (8)

(c) Show that these two gauge potentials are related by a gauge transformation A* LC _ACOV + aHQ.

(d) Show that the above EM fields lead to the photon distribution xfy (k1) = a/(n?k?).

Homework Problem 4: BFKL equation in the momentum and coordinate space

(a) As we mentioned in class, the BFKL equation in the dipole model can be written as

. as [, (x—=y)? . . _
GV = o= @ 2 =2z —y)? [T,z Y)+T(2,y;Y)=T(x y; V)], (9)

asNc

with as = . Let us look for angular independent solution (the dominant one) and introduce the

T
shorthand notation x10 = X1 — X0, where xg,1 are 2-d vectors, thus we can cast the equation into

= 2
as X
oyT(Xx10;Y) = Jd2X22—02[T(X12:Y)+T(Xzo:Y)—T(Xlo;Y)]- (10)
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Suppose one can define _
C+ioo dy x2 Y
c—ico 2T\ X7,

with x10 the initial dipole size, show that the BFKL equation can be converted into dT,/dY = asx(y)Ty.
where the BFKL characteristic function x(y) = 2¢(1) — ¢(1 —v) — ¢(y) with ¢(x) the digamma function.

Hint: First show that
1 X2 x2\" x2\"
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27

x3,%30 | \x3, X10
and use the integral identity
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and the identity regarding the digamma function
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with yg =~ 0.577 the Euler constant.
(b) In the momentum space, the BFKL equation reads
ds dqu / li ’
aYG(lJ_r ) m |:G(C]J_, lJ_’ Y)— EG(!J_, lJ_' Y) 0 (14)

where G([, li; Y) is known as the BFKL propagator. In the Mellin space, show that the solution G,(Y)
has the same BFKL characteristic function, i.e., Gy (Y) = Gy(0)exp[asx(y)Y].

Hint: Use the dimensional regularization (MS scheme with S_* = (4me~"€)~¢) and the following identity
(see the appendix Ain [arXiv:1607.04726])

S_l ve d?—2¢q, 1 k2 Y_ 1 (eYep2\ (e + y) M(—e)(—e— vy + 1)
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(15)
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