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Infrared Safety

m Two kinds of IR divergences: collinear and soft divergences.
m According to uncertainty principle, soft <+ long distance;
m Takes a long time to separate two collinear particles.
m For a suitable defined inclusive observable (e.2., 0+ .- _shadrons)> there is a
cancellation between the soft and collinear singularities occurring in the real and
virtual contributions. Kinoshita-Lee-Nauenberg theorem

m Any new observables must have a definition which does not distinguish between

parton < parton + soft gluon
parton <> two collinear partons

m Observables that respect the above constraint are called infrared safe observables.
Infrared safety is a requirement that the observable is calculable in pQCD. 7

_ y
m Other infrared safe observables, for example, Thrust: 7 = max% ,L,.?..%_

S ==
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eTe ™ annihilation

_ . singularities
e*e” — Hadrons ! 9

€
m Born diagram (=) gives 09 = Qiem/SN, Zq 63 <4Mz) 715[22__22]}

A
m NLO: real contribution (3 body final state). x; = % with O = /s
dos Qg x% + x%
e ol
dxydx F27TUO(1—x1)(1 —x2)
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eTe ™ annihilation

m NLO: real contribution (3 body final state). x; = 2L with 0=+/s

0
dos oy X} 4 x3
g C e
dx1dxs o —x)(1 — )
1 [ 1 1
with =

I—)(—m) x|(0-x) (=mn)

m Energy conservation = x| + x + x3 = 2.

m (pr+p3)?=2p1-p3=(Q—p2)* = 0(1 —xp)

m x; — | = p3 || p1 = Collinear Divergence (Similarly x; — 1)
m x3 — 0 = Soft Divergence.
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Dimensional Regularization

Dimensional regularization:
m Analytically continue in the number of dimensions fromd =4 tod = 4 — 2e.
m Convert the soft and collinear divergence into poles in e.
m To keep g; dimensionless, substitue g; — gs1© with renormalization scale p.
At the end of the day, one finds

s () mima 525

o, = 0o =
g e e 2 3

e (@ N\CT-d[ 2 3 2
7T 0Ty Cr (477/12 I[1—2¢ | € ¢ 8+ 3

and the sum lim._,g o = oy (1 + %CF# + O(a%)).
g%
m (Almost) Complete Cancellation between real and virtual. E;E%

: . . [ s )
m For more exclusive observables, the cancellation is not always complete. SR
7/90
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Thrust

Global observable reflecting the structure of the hadronic events in e e :

Z,’ ‘171‘ : ”‘

T = maxz=%=——

2. lpil

T=1 T=1/2
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Thrust

m For 3-particle events, in terms of x; and x;, the cross section is

d0'3 . CFO[S X% +X%
oodxidx, 21 (1 —x1)(1 —x2)

m For 3-particle events, 7' = max|[x;, x2, x3]

m By symmetrizing x;, and requiring x; > x, > x3, we get T = x; > 2/3 and

dos 2Cray /T Bt 2
oodT 2r Ji_or 2 1 —x)(1 —x2) + (21 = x3) + (2 — x3)
Crag [2(3T* —=3T +2), 2T —1 33T -2)(2-T)
In — ,
2m T(1-T) 1-T 1-T 2

[ i M)

9/90
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Thrust

doy  Crpoy [23T* —3T+2), 2T—1 3(2-3T)2-T)

In
oodT ~ 2m T(1-T) -7 1-T
102 30 T I T I T I T
E ' L i
F I' Thrust distribution at LEP
+ ° OPAL P/é 10— -— Vector gluon =
ol TTTT O(as) with og = 0.2434 & o] E - Scalar =
E op’op C 7
r o ] [ b
e — —
5 | - § o
S 400} e E o B 7
o OF ,o°
L E 00 o
- I 0990 > 1= -
I ) - | - -
L 0027 C ]
o/ C |
101 E o0 i F ]
E / 3 —
+ 1
[ , L i
[ 1
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Thrust

m Deficiency at low T due to kinematics. 7 > 2/3 at this order.
m Miss the data when 7 — 1 due to divergence. Sudakov factor!

do 4Cray 4 1 o,Cr 2
4O~ 1 xp |~ S (1 - T
oodl T o o oo T, =T

m Indication of gluon being a vector boson instead of a scalar.
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Light Cone coordinates and gauge

For a relativistic hadron moving in the 4z direction

t

x” x*

z
Az =1/P

m In this frame, the momenta are defined

1 1
Pr=—P +P) and P =—(P°-P)—0; P*=2P"P —P]

V2 V2

m Light cone gauge for a gluon with k* = (k*, k™, k, ), polarization vector ng
&,
1 cHrrE
+

€ -k .
kle,=0= e= (" =0, = L J‘,ef) with

€ = —
1 \/Q 13/90
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Deep inelastic scattering (DIS)

/
do . Kap2 E

— = p
dE'dQ ~ Q* E LW

Kinematics of Lepton-Nucleon Scattering

with L, the leptonic tensor and WH" defined as
wWH = < glw 4 q,u%/> Wl
q?
1 P P.
+— (P“ - zqqﬂ> <P” - 2qu> W,
mg q q
Introduce the dimensionless structure function:
2
Fi=W; and F; = W,
2mpx
dO’ a47rsem2 2 . P-q E%?
1—y)F F th = —. Sex
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Callan-Gross relation

$ 1.5 < Q%(GeV/cP <4
0F, 4 5<Q%GeV/cy <11
F2 ¥ 12 < Q%(GeV/c)? <16

0,5

Infrared Safe Observables
Collinear and TMD Factorization

m Quark Parton Model: Callan-Gross relation

Ze x [fy(x

F>(x) = 2xF (x )+ f5(x)].

m The above relation (F, = 2xF) follows
from the fact that a spin-— quark cannot
absorb a longitudinally polarized vector
boson.

m In contrast, spin-0 quark cannot absorb
transverse bosons, and thus it would give
F,=0.

>

-

X

&-r«—é

15/90
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Parton Density

The probabilistic interpretation of the parton density.

41

P
Comments:
m Gauge link £ is necessary to make the parton density gauge invariant.

-
L£(0,{7) =Pexp (/o dsuA”>

m Choose light cone gauge AT = 0 and B.C., one can eliminate the gauge link.
m Now we can interpret f,(x) as parton density in the light cone frame.

= ho= [ 9C < (p 30y (0, ¢)| P)

1524

[ i M)

16/90
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Drell-Yan process

For lepton pair productions in hadron-hadron collisions:

the cross section is

do B
dm2dy

1 ,47ra? ) 1. x
3 9 3M* 27 xy

D xify (e )xafy (x2)

m Collinear factorization: f;(x) involved in DIS and Drell-Yan process are the same.
m At low-x and high energy, the dominant channel is gg — gv*(IT17).
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Fragmentation function

Factorization of single inclusive hadron production in e™e™:

o(ete” 1
. dthrX) - Z/x Ci (z, s (12), 8/ 18%) Duyilx/z, 1%) + O(1 /s)

a0

m Dyi(x/z, 1?) encodes the probability that the parton i fragments into a hadron &
carrying a fraction z of the parton’s momentum.

m Energy conservation =
1
Z/ dzzD(z, %) = 1
w0

. . . . e
m Heavy quark fragmentation function: Peterson fragmentation function E;E%

[ i M)

18/90



QFT Basics and Theory Backgrounds
Introduction to Saturation Physics
EIC Physics

Infrared Safe Observables
Collinear and TMD Factorization

Evolution of parton density: Change of resolution

Q3

a)

Large x: valence quarks
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DGLAP Splitting function

Pz)

‘1‘1

§=z2=73
2
Pi(E) = g+ 501 = 0 PO = £ [1+ (1= P Phte) = [(1- €7 + €7
PO(E) =2 _5 + 128 e —g)] + <E _ 2NfTR) 5(1—¢€).
(1 €)+ § 6 3N,
. fl («}&‘gl _ 1d£[f(£) f =>f0 = §$ -0 &

20/90
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TRl ien i S'““'"H:‘ Hti:jt: Collinear and TMD Factorization
. . O
Derivation of P, ()
The real contribution:
+ LK
2 k] = (P ,0,0L) 5 k2: (€P 7aﬁakl)
b= (-9P, —S ) a=
1 ‘ 3 = a(l_é.)P+7 i 63_ )
1 2 14 €2
1% 2 _ -7 KoV L
[Vg—qsl 5 r (ki) 263 € El—6) 1-¢
1+

3
2k HON
(1—-P+ =
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Derivation of P, (£)

1 dég(¢ fl d{g o fl dg

(1— £)+ a 3
osCr 1+£2
oCr [ Lat/e) / - }

a,Cr [ [1d 1+§2 s
= [ Feoa ey €)+_()/d€(1—€)+]'

m Including the virtual graph ~ “= | use 1,

[S][8)

m Common practice in calculating the virtual graphs. (Also see HW.)
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Derivation of P, (£)

m Regularize ;- £ o =gy ) by including the divergence from the virtual graph.

m Probability conservation:

aCF

1
Pag+ 0Py =31 - + SEPR @ and [ 4P =0,

_1+& 03 1+
:>7qu(§)—<1_€>++25(1—5)—<1_§>+-
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ysics

Derivation of Py, (£)

1
2 k= (T,001) ¢ =(00¢") win ef:z(l,ii)
2 %, @
_oept R _ Lo @
ky = (&P s§P+vkL) e = (0, pres ver)
2 2%, e
_ + i _ 1€ 3
k= (1 —€)PT, L —k = (0, ;
1 3=(1-9 Aot 1) e = T —opr €1’)
3

Veosge = (ki +k3) - €2e1 - €3+ (ko —k3) - €162 - €3 — (k1 + k2) - €3€1 - €2
1=¢(1= 9P
= Veogel® = Vaas P+ Vo P+ Vg P = 4ki[§2(1(_£)2)]

1 —
> Pul@ =2 -9 €<
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Derivation of Py, (£)

Voo = (ki +k3) - €261 - €3+ (ko — k3) - €162 - €3 — (k1 + k2) - €3€1 - €2

[1-¢(1-¢)
2(1-¢)?

2 2 2 2
= [Vesgel” = Vit |” + [Vt " + [V | = 4%

= Pul =2 e ren-9) €<

m Regularize ﬁ to ﬁ

m Momentum conservation:

1 1
/O A€ € [Pyg(£) + Pag(€)] = 0 /0 4E € 2Py (€) + Pegl£)] = 0,

= the terms which is proportional to 6(1 — &).
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DGLAP equation

In the leading logarithmic approximation with ¢ = In 2, the parton distribution and
fragmentation functions follow the DGLAP[Dokshitzer, Gribov, Lipatov, Altarelli, Parisi,
1972-1977] evolution equation as follows:

slien )= [ elams o [en ]

d{Dh/q (z, 1) } :a2<u> /1d£ [ CrPyy () CrPy (€) ] [Dh/q (Z/&u)]’

om 3 TRP 4 (€)  NePgg (€) Dh/g (z/& 1)
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Collinear Factorization at NLO

MS scheme ( é = é + In4m — ~g), DGLAP equation reads

[ qu,ug ] _ { qigi Exg ] _la /1 d¢ [ CrPyy (&) TrPy(€) ] [ q(x/€) }
g (x, p g0 (x .

5 CFP;,’([ (g) NCP{;Q (€>

La(p) / dg [ CrPyy (€)  CrPyy () ] [Dh/q (z/f)}

f TRP(/;’ (5) Nchy (5)
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Factorization

One-loop factorization:

For gluon with momentum k
m Soft (k) divergence cancels between real and virtual diagrams;
m k is collinear to initial quark = parton distribution function;
m k is collinear to the final state quark = fragmentation function.
m KLN theorem does not apply to PDFs and FFs.
m Other kinematical region = the NLO (O(«) correction) hard factor.
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Collinear Factorization vs k| Factorization

Collinear Factorization (Treat partons given by the integrated PDFs as having k; = 0)

k| Factorization(Spin physics and saturation physics)

k 'L’/Iqj. k

m The incoming partons carry no k in the Collinear Factorization. (Approximation)

m In general, there is intrinsic k| , which is sometimes not negligible.

m /k, Factorization: High energy evolution with k, fixed.
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DGLAP evolution

ZEUS

H1 and ZEUS 6 Q=1Gev 25Gev

— zEUSNLOQCD it

HERA INCe'p
Fixed Target
HERAPDFL0

OQVC(X.QZ) x2'
T

xf

1 10 * 10’ 10 10°

QY GeV?

m NLO DGLAP fit yields negative gluon distribution at low Q? and low x. Eg)fé'

&
o i
I rss

m Does this mean there is no gluons in that region? No
30/90
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Phase diagram in QCD

Y =In1/x

InQ%(Y)=AY

Dilute system

DGLAP @
peLA

2 2
InAgep InQ

BFKL

—

)

m Low Q7 and low x region = saturation region. (Use BFKL and BK equations instead

m BK equation is the non-linear equation which describes the saturation physics.

31/90
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k; dependent parton distributions

The unintegrated quark distribution

-2
filoks) = [ S ST P 0) L0 £l €1)w(EL €| )

cf. the itegrated PDF  f,(x) = / %elﬂ)%_ (P ‘7/_1(0)7+£(f_)¢(0,5_)} P)

m Gauge invariant def: The dependence of £ in the definition.

m Light-cone gauge + proper boundary condition = parton density interpretation.
m The gauge links come from the resummation of multiple gluon interactions.

m Gauge links may vary among different processes.

W W W
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Weizsicker-Williams Method of virtual quanta

3 Classical
|| Electrodynamics

m Following Fermi[24], Weizsicker [34] and Williams [35] discovered that the EM fields of a
fast moving charged particle are almost transverse. (Equivalent Photon Approximation)

m A charged particle carries a cloud of quasi-real photons ready to be radiated if perturbed.

m Application in QCD: WW gluon distribution. [McLerran, Venugopalan, 94; Kovchegov, 96;
Jalilian-Marian, Kovner, McLerran and Weigert, 97]

m Application in Gravitational Wave. [Aichelburg and Sexl, 71; Dray and 't Hooft, 85]
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EPA and Weizsiacker-Williams Photon Distribution

Boost static potential to infinite momentum frame [Jackiw, Kabat and Ortiz, 92] and HW

by

>

Acceleration

B=0 g=1

Static E fields = Electro-Magnetic Wave
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EPA and Weizsiacker-Williams Photon Distribution

Boost static potential to infinite momentum frame [Jackiw, Kabat and Ortiz, 92] and HW

e AY = —% In(A\b1)8(t — 2),
mi Magnetc field —
z_ g9 by
E=——>4(t—
N o> -
%&:gﬂv&?‘( = q VX bJ_ (5(t )
= — —_ Z s
Static E fields = Electro-Magnetic Wave 27 bﬁ_
= EM pulses are equivalent to a lot of photons A’Lf _ _i[ﬁL In(\b1)]6(t — z)
2 '

m The gauge potentials A,, in Covariant gauge and LC gauge are related by a gauge
transformation. A is an irrelevant parameter setting the scale. &

m Classical EM: transverse EM fields < QM: Co-moving Quasi-real photons.

36/90
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EPA and Weizsiacker-Williams Photon Distribution

m Classical EM: transverse EM fields < QM: Co-moving Quasi-real photons.
CoV gauge  Ag,, =A%, = —21 In(Ab 1 )d(t — z),
7

LC gauge ALC = V1 In(Ab )01 — 2).

_i[
27

m The photon distribution in the transverse momentum space of a point particle

Xy (ki) = /%e‘”‘"*f’—iﬁﬂ <A‘F+i <§) Fti (—%)‘A>

Z’a 1 .
= 5 with q = Ze.
T k|

2

37/90
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Transverse Momentum Dependent (TMD) Photon Distribution

The photon distribution (flux) for nuclei

72« kﬁ_

— 2 2
(k) = 2 (ki_'—szz)zFA(k JFA(R)

X(B,)Ixf(b.=Rs)
1)
08
08
04

02

m Fa(k?) is the charge form factor with k*> = k% + x>M?. F4 = 1 for point charge.
m Wood-Saxon or Gaussian models for realistic nuclei. (Pb is very bright!)

m Typical transverse momentum of the photon is 1/R4, which is 30MeV for Pb.
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Linearly Polarized Photon

Weizsicker-Williams Methods
McLerran-Venugopalan Model
Small-x evolution equations (BFKL + BK)

m F is linearly polarized along the
impact parameter b direction;

m Bl E";
m The Lg gauge potential
A 1 X b 1,
m Polarization vector €, = b /b].

m Similar case in momentum space.

=
NG
lon 6
T rEsy

39/90
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Linearly Polarized Photon

= WW photon distribution is maximumly polarized, since xf, = xh..

N
(2m)?

} §i R U by
xfé’(x; b)= Tfo(X; b))+ ( Lol ) xhy(x;b1) = LU fov»

eBLbi(A, —%\F+"F+f|A, %) ,

xfI(xby) = /

2 b7
ki g kL 2 ’
(27‘(’)2 e TFA (k )

xhy (x,by) = xf, (x,b)) = 4Z%a ‘ / k
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Wigner distribution

Wigner distributions [Ji, 03; Belitsky, Ji, Yuan,

Wx,b; k)
Wigner distributions

74 <
[, N [dk,
[ %4
Sx,kp) f(x,by)
transverse momentum impact parameter
distributions (TMDs) distributions
semi-inclusive processes
Py A
[dk; S [,
4 K
f(x)
parton densities
and i-i ive pr

m Quasi-probability distribution; Not positive definite.

Weizsicker-Williams Methods
McLerran-Venugopalan Model
Small-x evolution equations (BFKL + BK)

2004] encode all quantum information

Quasiprobability W(x,p)

P(x) P(p)
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Photon Wigner Distribution and Generalized TMD

Def. of Wigner distribution:

oL déidng_ dZAJ_ —ixPte—ik -
ki) = [ G [ e e

A - - A
e gl s)

2
xfy(x, ki, AL) = /dzbj_e_"A'befv(x,%l;EL).

Def. of GTMD
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Photon Wigner Distribution and Generalized TMD

m For a heavy nucleus with charge Ze, the GTMD reads

Xy (X k13 A L) = xhy(x, k3 A L)
iZaq,-d Ny ALj2
= WﬁFA(Qz)FA(‘]Q) ’ @

A A /
QJ_:kJ_—TL, and qﬁ_:kl—FTl o =
m [ d?byxf,(x, ki, b)) = TMD; [ d°k xfy(x,k,,b))=>b, distribution.

m WW EPA — Generalized WW EPA with Wigner Photon.
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Introduction to Saturation Physics

m McLerran-Venugopalan Model




QFT Basics and Theory Backgrounds Weizsicker-Williams Methods
Introduction to Saturation Physics McLerran-Venugopalan Model
EIC Physics Small-x evolution equations (BFKL + BK)

Wilson Lines in Color Glass Condensate Formalism

Wilson line = multiple scatterings between fast moving quark and target dense gluons.

X1 > > > > >
U(xp)=Pexp (—ig [dztA™ (x1.2T)) é .. é .. é .. é
A A A A

The Wilson loop (color dipole) in McLerran—Venugopalan (MV) model

a0 e B § § § §

m Dipole amplitude S () then produces the quark kr spectrum via Fourier transform

dN dZXJ_dZyJ_ ik 1 4
k _ o k- (xL—y1) T f )
Fky) 2k, / 2r)? Nc< tU(x, )U (y¢)>
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A Tale of Two Gluon Distributions’

Two gluon distributions are widely used at small-x:[Kharzeev, Kovchegov, Tuchin; 03] L.
Weizsacker Williams gluon distribution([Kovchegov, Mueller, 98] and MV model):

S ch —1 der ety

Gww(x, k1) [1 - igzg}
X X, K1 = e :
WX, 2 s N, (27’1’) 2 ri

II. Color Dipole gluon distributions: (known for many years)

SN, d’ry o, %
(v, ki) = Z;ZaCki/(Zﬂ)Lze et

! As far as I know, the title is due to Y. Kovchegov and C. Dickens.
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A Tale of Two Gluon Distributions

0.3 ——
] m In McLerran-Venugopalan model, these two gluon
-~ - Dipole gluon 1 distributions exhibit different k| behavior at small k| .
02} : .
B m Same tail when k; > Q;. “A Tale of Two Gluon
% ] Distributions” = “A Tail of Two Gluon Distributions” [B.
5 o0af 1 Zajc]
1 m Which distribution is measured in a given process?
oL
0 3

m Why are there exactly two gluon distributions?
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A Tale of Two Gluon Distributions

In terms of operators (TMD def. [Bomhof, Mulders and Pijlman, 06]), two gauge invariant
gluon definitions: [Dominguez, Marquet, Xiao and Yuan, 11]
I. Weizsacker Williams gluon distribution:

_ dé dgl- ixPTE —ik,y € if¢— T i
Gw(s.k) =2 [ GG ST PP e U O ).

IL. Color Dipole gluon distributions:

xGpp(x,k1) =2 / A (G (R VY1)

(2m)3p+
£ & . & +
T | . 4\\?
. S / n
ul-l z,{[ﬂ
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A Tale of Two Gluon Distributions

I. Weizsacker Williams gluon distribution:

B d§dS1 pre——_ik, ¢ ig [+t i [+]
xGww(x, k1) = 2/(27r)3P+€ FETR(PIFT(ET, EO)UTTFTH(0) U P).
IL. Color Dipole gluon distributions:

_ d€d81 ipre— i, ¢ i )t pti ¥
Cop(s k) =2 [ Gl R TP U O )

m The WW gluon distribution is the conventional gluon distributions.
m The dipole gluon distribution has no such interpretation.

m Two topologically different gauge invariant definitions.

m Same after integrating over k| ;



Weizsicker-Williams Methods
Introduction to Saturation Physics McLerran-Venugopalan Model
Small-x evolution equations (BFKL + BK)

A Tale of Two Gluon Distributions

I. Weizsacker Williams gluon distribution

R, d°R, . ,
)CGWW (x’ kL) = d L L qu'(RL —RJ_)

(27)2 (27)?
1 . .
X+ <Tr iB:UR L)) UT(R,) [idiU(R,)] UT(R,
IL. Color Dipole gluon distribution:

2 2
XGDP(X,]CJ_ = 2Ne /dRLd RJ— "JJ_ (RJ. Rl)

1
(VRL Ve, ) (Tr[U RO UT (RL)])
L/ N, x
® Quadrupole = Weizsacker Williams gluon distribution;
m Dipole = Color Dipole gluon distribution;
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A Tale of Two Gluon Distributions

Measuring the gluon distributions in various processes
I. Weizsacker Williams gluon distribution; II. Color Dipole gluon distributions.

m Modified Universality for Gluon Distributions:

Inclusive | Single Inc | DIS dijet | -y +jet | dijet in pA
xGww X X \/ X \/
xGpp Vv v X Vv Vv

x = Do Not Appear. v/ = Apppear.
m Measurements in pA collisions and at the EIC
are tightly connected with complementary physics missions.

m At higher order, Sudakov resummation needs to be implemented,
but the conclusion remains true. Soft gluon factorizes. [Mueller, Xiao, Yuan, 13]
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Outline

Introduction to Saturation Physics

m Small-x evolution equations (BFKL + BK)
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Deep into low-x region of Protons

H1 and ZEUS Combined PDF Fit

Lo 8
I @ =10 GeV? i
3

08 —— HERAPDF0.2 (prel.)

) B o uncart.
Low Energy model uncert.

N xu, s
parametrization uncert. B
- 18
Gluon H
Density H
Grows 04 g (x 0.05) H
£
£
02 £

High Energy

m Gluon splitting functions (7, (¢) and 7Y, (£)) have 1/(1 — &) singularities.
m Partons in the low-x region is dominated by gluons.

m Resummation of the oy In %
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Dual Descriptions of Deep Inelastic Scattering

[A. Mueller, 01; Parton Saturation-An Overview]|

Bjorken frame Dipole frame

Bjorken frame

Fa(x, @) =) e [fy(x, Q%) + f3(x, )] -

q

m Bjorken: partonic picture of a hadron is manifest. Saturation shows up
as a limit on the occupation number of quarks and gluons.
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Dual Descriptions of Deep Inelastic Scattering

Bjorken frame Dipole frame

Dipole frame

Z f47r aem/ dz/dzde y1 [W)T(ZJ”L,QH + |¢r (z,r1, Q)| }
[I_S(rl)]7 with rp=x; —yi.

m Dipole: partonic picture is no longer manifest. Saturation appears as the unitarity
limit for scattering. Easy to resum the multiple gluon interactions.
m Interesting property: Geometric scaling if S(r) = S(Qsr1 ).
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BFKL evolution

[Balitsky, Fadin, Kuraev, Lipatov;74] Bremsstrahlung favors of small-x gluon emissions.

» v v Probability of emission:

ko =xzp

dk d
dp ~ a;N 2% = a N2
k X

Z

k.=ap

In small-x limit and Leading log approximation:

oo 1 1
d. d. 1
p~ Z a;’Ng/ T / iy exp (aSNC In )
e . Xy o X x

2

r<<1 r<<m

m Cf. DGL2AP which resums Exponential growth of the amplitude as function of
a;Cln % rapidity;
0
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Derivation of BFKL evolution

[Mueller, 94] Dipole model: Consider the emission of soft gluon z, < 1,

Pt - (1-& P~k
EPY ko
and use LC gauge ¢ = (¢© = 0,¢ = ELk;fi , ef)
. a€L kL
1

B g — gg vertex and Energy denominator.
m Similar to the derivation of Py, (§).
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The dipole splitting kernel

The Bremsstrahlung amplitude in the coordinate space

TL

Mx, —z) = /dszeikl'(n_“)M(kl)

ko b
Use /dzkj_ = 2 Lfelker' = 27Tl'SL 2 L7
kL bl

= M(x; —z1) :47rgT“—6J'.(xJ'_Z;')
(x; —z1)




ker-Williams Methods

McLerran-Venugopalan Model
Small-x evolution equations (BFKL + BK)

QFT Basics and Theory Backgrounds
Introduction to Saturation Physics
EIC Physics

The dipole splitting kernel
Consider soft gluon emission from a color dipole in the coordinate space (x,y)

€l (x| —2 € - —7
M(XJ_,ZJ_,yJ_) = 47gT*? |: L ( L ;_) el (yJ_ ;_):| N
(L —z1) (vL—z1)
- %fo“o“‘? -Gg %fo- ( 2
; = = 2l T1—yi) .
yi éfo- % éfOTTO'% - 2% (wi—21) (yL—21)

59/90



QFT Basics and Theory Backgrounds Weizsicker-Williams Methods
Introduction to Saturation Physics McLerran-Venugopalan Model
EIC Physics Small-x evolution equations (BFKL + BK)

The dipole splitting kernel

€

_ alN,  (zi-y1)®

. QoS éro-‘(g\& %rmy;a £ - —— = S T P

m The probability of dipole splitting at large N, limit

N o 2 dikt
alNe L=V gy with dy = SF

dPspiting =
splitting 271'2 (xL — ZL)Z(XL — ZL) kg

m Gluon splitting < Dipole splitting.
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BFKL evolution in Mueller’s dipole model

[Mueller; 94] In large N, limit, BFKL evolution can be viewed as dipole branching in a
fast moving gg dipole in coordinate space:

Yo <<Y7 << Y, <<y

n(r,Y) dipoles of size r. BFKL Pomeron
The T matrix (T = 1 — § with § being the scattering matrix) basically just counts the

number of dipoles of a given size,

T(r,Y) ~ a’n(r,Y)
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BFKL equation

Consider a slight change in rapidity and the Bremsstrahlung emission of soft gluon (dipole
splitting)

Oy _

2
T (x,y;Y) / G Z)_ E [T(x,2z:Y) + T(z,;Y) = T(x,y; Y)] &
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Kovchegov equation

[Kovchegov; 99] [Mueller; 01] Including non-linear effects: (=1 — S)

,_ e T

H
\
QQOQIO

OUN X — 2
IS(x —y; Y) 27]:72 dzz(x—(z)Z(?—yy [S(x—zY)S(z—y;Y) = S(x —y; )]

m Linear BFKL evolution results in fast energy evolution.

m Allowing multiple scattering = Non-linear term
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Kovchegov equation

[Kovchegov; 99] [Mueller; 01] Including non-linear effects: (=1 — S)

. _aN. (x —y)? ; ; ;
osta—yir) = 2 dzzm [S(x =z Y)S(z = y;¥) = S(x = y; Y)]
) . aNc %
HhT(x—yY) = ) 'z (x —2)%(z—y)?

X | Tx=zY)+T(z—yY) =Tx—yY)=Tx—zY)T(z—yY)

saturation

m Linear BFKL evolution results in fast energy evolution = saturation region

m Non-linear term = fixed point (7 = 1) and unitarization, and thus describes the saturation

physics.
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Balitsky-Kovchegov equation vs F-KPP equation

[Munier, Peschanski, 03] Consider the case with fixed impact parameter, namely, T, is
only function of r = x — y. Then, transforming the B-K equation into momentum space:
aN,

(s

BK equation: | OyT = axsrkL(—0,)T — aT? |with|a =

Diffusion approximation =
F-KPP equation: | Qyu(x, 1) = &?u(x, t) + u(x, 1) — u*(x, 1)
mu=T, aY =t o= log(k /k(z)) = x, with ko being the reference scale;

m B-K equation lies in the same universality class as the F-KPP
[Fisher-Kolmogrov-Petrovsky-Piscounov; 1937] equation.

m F-KPP eq admits traveling wave solution u = u (x — v¢) with minimum velocity

m The non-linear term saturates the solution in the infrared.
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EIC Physics
m Overview
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HERA (Hadron Elektron Ring Anlage)

Xg (<0.05)

, HERA I+Linclusive, jets, charm PDF Fit

Q=10 GeV?

—— HERAPDFL (prel)

[ ] eip collisions at /s = 318 GeV (1992-2007);
m Partons in the low-x region is dominated by rapid growing gluons.
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Geometrical Scaling in DIS

[Golec-Biernat, Stasto, Kwiecinski; 01, Munier, Peschanski, 03]

— 103
H1 and ZEUS Combined PDF Fit
o 3
%
® HERAINCe'p(prel) Z
Fixed Target 5 2
W HERAPDFO2 (prel.) s
(exp.uncert.) 102 |
5 [
% O ZEUS
3 A ZEUS Low O
z v £665
]
£ & e
] L L
10 ]
C)
H 0,
10 3 >
Z
&
w0 = o
) 0 w0 w0 0 10 19 1 I I ! I
QY GeV? 1072 107" 1 10 10° 10°

m Use Q%(x) = (xo/x)*GeV? with xo = 3.04 x 103 and A = 0.288. All data of agjp with
x < 0.01 and Q* < 450GeV? plotting as function of a single variable 7 = Q?/Q?.

m This scaling can be naturally explained in small-x formalism. 68790
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Ultimate Questions and Challenges in QCD

The
Millennium «

Problems

m How does the spin of proton arise? (Spin puzzle)

m What are the emergent properties of dense gluon system?

m How does proton mass arise? Mass gap: million dollar question.

m How does gluon bind quarks and gluons inside proton?

m Can we map the quark and gluon inside the proton in 3D? g%@
EICs: keys to unlocking these mysteries! Many opportunities will be in front of us! ». .
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Embedding small-x gluon in 3D Tomography

Wigner distributions [Belitsky, Ji, Yuan, 04] Quasiprobability Wixp)
ingeniously encode all quantum information

P(x) Plp)
of how partons are distributed inside hadrons.
p
W(x,by k)
Wigner distributions
~ ¢
[db, [&k,
Fourier trf.
LY 4 b= A £=0
Flxky) fby) ¥ H&O0D 4 ]
transverse momentum impact parameter t=-A generalized parton
distributions (TMDs) distributions distributions (GPDs)
semi=inclusive processes exclusive processes
Jak; Jab, fax [ dxer
2 N - -
fx) F(t) A, () +4E A, () + e
parton densities form factors generalized form
inclusive and semi-inclusive processes elastic scattering factors

lattice calculations



Overview
Observables at EIC

EIC Physics

List of observables at EIC

m CGC is elusive.

m Hunt it down via a
set of observables

m List it from Inclusive
— Exclusive.

Inclusive cross-section: Geometrical scaling in eA and Qs4
Single-inclusive v 4+ p/A — h(Jet) + X: Quark TMD
Inclusive dijet or dihadron: WW gluon TMD.

Long range correlation: Origin of collectivity

Diffractive vector meson production: gluon GPD. %@
@ Diffractive dijet production: gluon Wigner distribution. S
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EIC Physics

m Observables at EIC &

72/90



Overview

EIC Physics Observables at EIC

Inclusive Obserables

0" (ub)

m Geometrical Scaling in DIS:
All data of o7, with x < 0.01 ol S
and Q7 < 450GeV? plotting
as function of a single variable oL <o
7 = Q%/Q? falls on a curve. T

m What about eA collisions at i o

EIC? 02, (x)

m [Golec-Biernat, Stasto, Kwiecinski,01]: Q2(x) = (xo/x)*GeV? with
xo =3.04 x 1073 and A = 0.288.

m [Munier, Peschanski, 03]: explained by traveling wave in small-x framework.

m [Kovchegov, Pitonyak, Sievert, 16, 17] Polarized case:
g1 structure function at small-x and AX.
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SIDIS and new progress

Sr-(Pxky) dN/dAG

initial proton spin 10
(anti-)aligned with k.

Lepton+Jet at EIC
Lepton Pr=10GeV

of
Electron-jet corretions

m [Mueller, 99; Marquet, Xiao, Yuan, 09] SIDIS in Breit frame: = quark k7 TMD.
m [Liu, Ringer, Vogelsang, Yuan,19] Lepton + jet

New hard probe in the Lab frame: [+ p/A — I' + Jet + X

m Direct probe of quark TMDs. A¢ = ¢y — ¢y — 7
m Sivers: distortion due to proton’s transverse spin S7!

m Also sensitive to cold nuclear medium Pr broadening!



https://inspirehep.net/files/00bda5161805f439b43d1e1cab4e4bcb
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EIC Physics
Leton-jet correlations at EIC

[Hatta, Xiao, Yuan, Zhou, 21]

e(k) +q(p1) = €' (ke) + jet(k;) + X

5P (g + kg1 )CrSq(ky,p1)

3k
¢ [ Goys

2m)32E;,

2
an—2 +1n
q7

Q2

2
kZJ_

CMSCF

C2m2g?

+co + 2¢y cos(@) + 2¢; cos(2¢) + - - -

9

B Asymmetric emission of gluons outside jet cone.

2kyp1 . Sg(klng)

= Eikonal factors Sg(ky, p1) = ¢ R

J
\G— £

_ _2kiko
= Tikeko kg
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DIS dijet

Unique golden channel for the Weizsdacker Williams distribution.

ValPr = 45 GeV, q7)

=TT L e
EI R S R B R SR TR T TR R e

Aplrac] Aolrad) . Gev

m Back-to-back correlation C(A¢): [Dominguez, Marquet, Xiao and Yuan, 11] [Zheng,
Aschenauer, Lee and BX, 14]

m Due to soft gluon radiations, Sudakov resummation needs to be implemented.
[Mueller, Xiao, Yuan, 13]|@&%®

m Due to linearly polarized gluon[Metz, Zhou, 11] @ZE: analog of elliptic flow v, in
DIS. [Dumitru, Lappi, Skokov, 15]
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https://inspirehep.net/literature/1388510
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Perturbative expansions in dijet productions

Correlations:

2 — 2: Oth order
(a)2 —2 b)2—3 ()2 —4 2 — 3: leading order

2 — 4: next-to-leading order

o0y ay (L' + C(')) ideal QCD expansion o E CM&Lgl(i;:igJ)Gc\
=0 NLO (2 - 4)
Resummed
n=1 n=1 0 o5
o) Z a'sL oo Z o/sC ! < pQCD “%‘ 100 3
=0 =0 - .-
o o e
oo all | o> alc? L
i=n i=n i
N negligible DR Y R T R T
resummation ) : R )

Ag

2
m Appearance of large logarithms L ~ In? I;Tl (pQCD expansion breaks down)
1

m Imbalance G| =p 1 +pai.jet P ~piL ~pal.
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Sudakov formalism

Dijet productions in the Sudakov formalism (starting from collinear factorization)

do gije *by .
et = ZUO/We gL bLW(Q7bJ_)7
ab

dyidy,d*py 1 d?pr ).
with W(Q7 bL) = fo(l ('xl 3 ,U*b)'XZfb (x2a ,ub)eis(beL)a
S(Q7bJ_> Spert(Q;b*) +SNP(Q7bJ_)

o du? 2 1
/ ‘;{Aanz+B+(D1+DZ)1n2].
w=c/n K p R

Spert(Qa b*)

1572
&

[ i M)
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Sudakov formalism

Soft gluon emissions factorize from the born cross section oy.

Resummation is performed in the b | space. Use §(2) (ki1—q1)= /[ &b yilki—q1)b1

(2m)?
do (=" 2 2 (2)
2q. Uozn: py /d kip - dkn Stkis) - S(kn )0 (ki + - kol —q1)
dsz —igy by ,—S(b
UO/(zﬂ)ze q1bip=S(b)

Use b, = b/+\/1 + b*/b2,,. prescription to separate perturbative and NP regions.

Allthe A, B, C, D coefficients can be computed perturbatively. )
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QCD Sudakov (CSS) Resummation for Boson Productions

do/dq; (pb/GeV)
do/dq, (pb/GeV)

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80
ar (GeV) ar (GeV)

= DOZRunl
—- LY (CTEQeM)
A CDF*0.89

dodQ, (b/GeY)
H

10
Q,(Gev)

[J.w. Qiu and X. Zhang, 02] DY and W  [Landry, Brok, Nadolsky, C. Yuan, 03] Z boso ]
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CMS Preliminary  pPb 186 nb" (8.16 TeV)
Pb+Pb p+Pb p+p o vl T Toactzmmgeran
Vs =5.02 TeV. Vo =502TeV sy = 13TeV ok e Pomio® rompt °
@A m O fomb hadrons Prompt Jiy
[ 2dy 24 from 8 mesans_|
Hromiy g 2 E
B
R S
e )
S g=
e s L Zas0
PN i L S
S B S S
p, (GeV)

m Collectivity is everywhere in systems small and large!
m Final state vs Initial state interpretation. Not clear yet!

m Anisotropy of heavy mesons favors IS effect.
[Zhang, Marquet, Qin, Wei, Xiao, 19]

m New results from UPC in PbPb collisions at LHC. (Mini-EIC)
m What about the collectivity at the EIC on the horizon?
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v, Predictions in YA collisions from CGC

it = [0.035,0.04 - 010

2 { k) JUPCER S |
=3 UPC o

Q=5 Gev? A2 2025 Gev?
B, =25 GeV P FIC: eA, 18 GeV on 110 GeV.

0.00
0.0 05 10 5 20 25 01 02

p1 (GeV) Q/Qs

03 [N 05

[Shi, Wang, Wei, Xiao, Zheng, 21]
m Photons can have a rich QCD structure due to fluctuation.
m Similarity between v*A and pA collisions at high energy as far as high multiplicity
events are concerned.
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Explicit expressions for gluon GPDs

Small-x GPDs[Hatta, Xiao, Yuan, 17]&5® F = Fy + 2cos2A¢ F,

rir=by+ (1= 2)ry 2, —ky

pr [ S WIF ¢RI

i Er(x, A N OTA]
= P (e A )+ s AL (AlAﬁ . ZAL> +oe

2 2M?

2N,
Helicity conserved: xH,(x,A ) = / d*q1q1Fo
a

s

4N.M?
Qg Ai

Helicity flipping:  xEr,(x, A} ) = /dqutie
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7 (q) +p/Alp) = V(g — A)+p/Alp+ A)
m The latter diagram is dominant at small-x (high energy) limit.

m Widely studied[Brodsky, Frankfurt, Gunion, Mueller, Strikman, 94; Kowalski, Teaney, 03;
Kowalski, Motyka, Watt, 06; Kowalski, Caldwell, 10; Berger, Stasto, 13; Rezaeian, Schmidt,
13]...

m Incoherent diffractive production for nucleon/nuclear targets [T. Lappi, H. Mantysaari, 11;
Toll, Ullrich, 12; Lappi, Mantysaari, R. Venugopalan, 15; Lappi, Mantysaari, Schenke, 16]...;

m NLO[Boussarie, Grabovsky, Ivanov, Szymanowski, Wallon, 16]
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Probing gluon GPD at small-x

DVCS and DVMP [Mantysaari, Roy, Salazar, Schenke, 20]

Hadron Plane

3

2
a, y ) )

— = 11— — A A 1 —y)2A40A s(2
dxgdQ?>d> A | mxpjQ* {( v 2 > (Ag +A2) + (1 = 324045 cos( ¢Al)}

dorr

m Ajp: helicity conserved amplitude; A,: helicity-flip amplitude

m Use lepton plane as reference, one can measure angular correlations.

m cos 2¢; correlation is sensitive to the helicity-flip gluon GPD xE7,.


https://inspirehep.net/literature/1828154
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Diffractive vector meson production

VHpollyte  — with ﬂuclualmns 1

= s 10
b eteerent E

g ©“ ® D@ .

3 + -1
E L] 0.6

3 10! 1
3 . _ 0.4

— £ 0
----------- = @ 0.2

100 Lsc -1
0.00 025 050 075 1.00 125 s e B w Y

Coherent Incoherent X 161 [GeV?] affm] affm]

m Sensitive to proton fluctuating shape. (Variance) [Mantysaari, Schenke, 16;
Mantysaari, Roy, Salazar, Schenke, 20]

m Good-Walker: measure of fluct. ‘w‘—““"h ~ (JAP) = (A
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Can we measure Wigner distributions?

m Can we measure Wigner distribution/GTMD? Yes, we can!
m Diffractive back-to-back dijets in ep/eA collisions.
[Hatta, Xiao, Yuan, 16]@E®

m Further predictions of asymmetries due to correlations.
ngT (x,§1:by) = ngT Symmetric part
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https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.202301
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.112301
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CMS: Dijet photoproduction in UPC (PbPb)

v+ Pb — Jet + Jet + Pb

PbPD 038 0t (502 TeV)

PbPb 0.38 1t (5.02 TeV)
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Preliminary analysis [CMS-PAS-HIN-18-011]

Large asymmetries observed!

Indicate additional sources ?
Asymmitries due to final state gluon radiations are important.
[Hatta, Xiao, Yuan, Zhou, 21]



https://inspirehep.net/files/32b71a96fdd30ec2fb4362f0605c7124
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.142001
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Contributions from final state gluon radiations
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Consider soft gluon radiations near jet cone in yA/p — gq + A/p
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Observed asymmetry should includes initial and final state contributions!
89/90



Overview

EIC Physics Observables at EIC

Summary of the Lectures

m Lecture 1 - Introduction to QCD and Jet

m Infrared Safe Observable
m Collinear Factorization and DGLAP equation

m Lecture 2 - Saturation Physics (Color Glass Condensate)

m McLerran-Venugopalan Model
m BFKL equation
m Non-linear small-x evolution equations

m Lecture 3 - EIC observables
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