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Infrared Safety

Two kinds of IR divergences: collinear and soft divergences.
According to uncertainty principle, soft↔ long distance;
Takes a long time to separate two collinear particles.

For a suitable defined inclusive observable (e.g., σe+e−→hadrons), there is a
cancellation between the soft and collinear singularities occurring in the real and
virtual contributions. Kinoshita-Lee-Nauenberg theorem

Any new observables must have a definition which does not distinguish between

parton↔ parton + soft gluon
parton↔ two collinear partons

Observables that respect the above constraint are called infrared safe observables.
Infrared safety is a requirement that the observable is calculable in pQCD.

Other infrared safe observables, for example, Thrust: T = max
∑

i |pi·n|∑
i |pi| ...
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e+e− annihilation

p1

p2

p3

q̄

q

g
γ∗ γ∗

p2

q̄

p3

p1

q

Phase space for real emission

Because of momentum con-
servation, q, q̄ and g lie in a
plane.

q

g
_

=

q

Useful variables are the en-
ergy fractions and invariant
masses x1

x2

singularities

xi =
2Ei√

s
, x1 + x2 + x3 = 2

yij =
2pi.pj√

s
= 1 − xk

Jets in e+e− Annihilation – p.6

Born diagram ( ) gives σ0 = αem
√

sNc
∑

q e2
q

(
4πµ2

s

)ε
Γ[2−ε]
Γ[2−2ε]

NLO: real contribution (3 body final state). xi ≡ 2Ei
Q with Q =

√
s

dσ3

dx1dx2
= CF

αs

2π
σ0

x2
1 + x2

2
(1− x1)(1− x2)
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e+e− annihilation

NLO: real contribution (3 body final state). xi ≡ 2Ei
Q with Q =

√
s

dσ3

dx1dx2
= CF

αs

2π
σ0

x2
1 + x2

2
(1− x1)(1− x2)

with
1

(1− x1)(1− x2)
=

1
x3

[
1

(1− x1)
+

1
(1− x2)

]

Energy conservation⇒ x1 + x2 + x3 = 2.
(p1 + p3)2 = 2p1 · p3 = (Q− p2)2 = Q2(1− x2)
x2 → 1⇒ ~p3 || ~p1 ⇒ Collinear Divergence (Similarly x1 → 1)
x3 → 0⇒ Soft Divergence.
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Dimensional Regularization

Dimensional regularization:
Analytically continue in the number of dimensions from d = 4 to d = 4− 2ε.
Convert the soft and collinear divergence into poles in ε.
To keep gs dimensionless, substitue gs → gsµ

ε with renormalization scale µ.
At the end of the day, one finds

σr = σ0
αs(µ)

2π
CF

(
Q2

4πµ2

)−ε
Γ[1− ε]
Γ[1− 2ε]

[
2
ε2 +

3
ε

+
19
2
− 2π2

3

]

σv = σ0
αs(µ)

2π
CF

(
Q2

4πµ2

)−ε
Γ[1− ε]
Γ[1− 2ε]

[
− 2
ε2 −

3
ε
− 8 +

2π2

3

]

and the sum limε→0 σ = σ0

(
1 + 3

4 CF
αs(µ)
π +O(α2

s )
)

.
(Almost) Complete Cancellation between real and virtual.
For more exclusive observables, the cancellation is not always complete.
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Thrust

Global observable reflecting the structure of the hadronic events in e+e−:

T = max~n

∑
i |pi · n|∑

i |pi|

Event shape variables

global observable characterising structure of hadronic event

e.g. Thrust in e+e−

T = max!n

∑n
i=1 |!pi · !n|∑n

i=1 |!pi|

limiting values:
back-to-back (two-jet)
limit: T = 1

spherical limit: T = 1/2
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T = 1

Event shape variables

global observable characterising structure of hadronic event

e.g. Thrust in e+e−

T = max!n

∑n
i=1 |!pi · !n|∑n

i=1 |!pi|

limiting values:
back-to-back (two-jet)
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Thrust

For 3-particle events, in terms of x1 and x2, the cross section is

dσ3

σ0dx1dx2
=

CFαs

2π
x2

1 + x2
2

(1− x1)(1− x2)

For 3-particle events, T = max[x1, x2, x3]

By symmetrizing xi, and requiring x1 > x2 > x3, we get T = x1 > 2/3 and

dσ3

σ0dT
=

2CFαs

2π

∫ T

1−2T
dx2

[
x2

1 + x2
2

(1− x1)(1− x2)
+ (x1 → x3) + (x2 → x3)

]

=
CFαs

2π

[
2(3T2 − 3T + 2)

T(1− T)
ln

2T − 1
1− T

− 3(3T − 2)(2− T)

1− T

]
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Thrust

dσ3

σ0dT
=

CFαs

2π

[
2(3T2 − 3T + 2)

T(1− T)
ln

2T − 1
1− T

+
3(2− 3T)(2− T)

1− T

]
O(αs) Thrust distribution

0.6 0.7 0.8 0.9 1
T

10-2

10-1

100

101

102

1/
σ o

 d
σ/

dT

OPAL
O(αs) with αs = 0.2434

deficiency at small T due to kinematic bound
shape good 0.75 < T < 0.95

Jets in e+e− Annihilation – p.11

Spin of the gluon

If the gluon is a scalar, it
would be evident in the event
shape.

Lint ∼ ḡsΨ̄iT
a
ijΦ

aΨj

leads to

1

σ0
qq̄

d2σ

dx1dx2
∼ x2

3

2(1 − x1)(1 − x2)

1

σ0
qq̄

dσ

dT
=

ᾱsCF

2π

1

2

[
2 log

(
2T − 1

1 − T

)
+

(3T − 2)(4 − 3T )

1 − T

]

Jets in e+e− Annihilation – p.12
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Thrust

Deficiency at low T due to kinematics. T > 2/3 at this order.

Miss the data when T → 1 due to divergence. Sudakov factor!

dσ
σ0dT

|T→1 ∼
4CFαs

2π
4

(1− T)
ln

1
1− T

exp

[
−αsCF

π
ln2(1− T)

]

Indication of gluon being a vector boson instead of a scalar.

11 / 90



QFT Basics and Theory Backgrounds
Introduction to Saturation Physics

EIC Physics

Infrared Safe Observables
Collinear and TMD Factorization

Outline

1 QFT Basics and Theory Backgrounds
Infrared Safe Observables
Collinear and TMD Factorization

2 Introduction to Saturation Physics
Weizsäcker-Williams Methods
McLerran-Venugopalan Model
Small-x evolution equations (BFKL + BK)

3 EIC Physics
Overview
Observables at EIC

12 / 90



QFT Basics and Theory Backgrounds
Introduction to Saturation Physics

EIC Physics

Infrared Safe Observables
Collinear and TMD Factorization

Light Cone coordinates and gauge

For a relativistic hadron moving in the +z direction

Motivation

Dipole picture for DIS

Non–linear evolution: BK
!Bremsstrahlung
!BFKL Evolution
! Light Cone
!Dipole splitting
!Dipole evolution
!Balitsky equation
!BK equation

SCHOOL ON QCD, LOW X PHYSICS, SATURATION AND DIFFRACTION: Copanello (Calabria, Italy), July 1 - 14 2007 Non–linear evolution & Gluon saturation in QCD at high energy (I) – p. 25

Light Cone notations & Kinematics
" The hadron moves in the positive z direction, with v ! c = 1

" Longitudinal momentum P " M =⇒ P µ = (E ≈ P, 0, 0, P )

P+ ≡ 1√
2
(E + P ) !

√
2P , P − ≡ 1√

2
(E − P ) ! 0

" Even for the quantum system, the wavefunction is strongly
localized near x− = 0 (“pancake”)

∆x− ∼ 1

P+
∼ 1

γM
) 1

M

In this frame, the momenta are defined

P+ =
1√
2

(P0 + P3) and P− =
1√
2

(P0 − P3)→ 0; P2 = 2P+P− − P2
⊥

Light cone gauge for a gluon with kµ = (k+, k−, k⊥), polarization vector

kµεµ = 0⇒ ε = (ε+ = 0, ε− =
ε⊥ · k⊥

k+
, ε±⊥) with ε±⊥ =

1√
2

(1,±i)
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Deep inelastic scattering (DIS)

Kinematics of Lepton-Nucleon Scattering

k

k′

θ

q

P W

dσ
dE′dΩ

=
αem2

Q4
E′

E
LµνWµν

with Lµν the leptonic tensor and Wµν defined as

Wµν =

(
−gµν +

qµqν
q2

)
W1

+
1

m2
p

(
Pµ − P · q

q2 qµ
)(

Pν − P · q
q2 qν

)
W2

Introduce the dimensionless structure function:

F1 ≡ W1 and F2 ≡
Q2

2mpx
W2

⇒ dσ
dxdy

=
α4πsem2

Q4

[
(1− y)F2 + xy2F1

]
with y =

P · q
P · k .
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Callan-Gross relation

Quark Parton Model: Callan-Gross relation

F2(x) = 2xF1(x) =
∑

q

e2
qx [fq(x) + fq̄(x)] .

The above relation (F2 = 2xF1) follows
from the fact that a spin- 1

2 quark cannot
absorb a longitudinally polarized vector
boson.

In contrast, spin-0 quark cannot absorb
transverse bosons, and thus it would give
F1 = 0.
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Parton Density

The probabilistic interpretation of the parton density.

⇒ fq(x) =

∫
dζ−

4π
eixP+ζ−〈P

∣∣ψ̄(0)γ+ψ(0, ζ−)
∣∣P〉

Comments:
Gauge link L is necessary to make the parton density gauge invariant.

L(0, ζ−) = P exp

(∫ ζ−

0
dsµAµ

)

Choose light cone gauge A+ = 0 and B.C., one can eliminate the gauge link.
Now we can interpret fq(x) as parton density in the light cone frame.
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Drell-Yan process

For lepton pair productions in hadron-hadron collisions:

g

q
γ∗

l̄

l

the cross section is

dσ
dM2dY

=
∑

q

x1fq(x1)x2fq̄(x2)
1
3

e2
q

4πα2

3M4 with Y =
1
2

ln
x1

x2
.

Collinear factorization: fq(x) involved in DIS and Drell-Yan process are the same.
At low-x and high energy, the dominant channel is qg→ qγ∗(l+l−).
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Fragmentation function

Factorization of single inclusive hadron production in e+e−:

1
σ0

dσ(e+e− → h + X)

dx
=
∑

i

∫ 1

x
Ci
(
z, αs(µ

2), s/µ2)Dh/i(x/z, µ2) +O(1/s)

Dh/i(x/z, µ2) encodes the probability that the parton i fragments into a hadron h
carrying a fraction z of the parton’s momentum.

Energy conservation⇒
∑

h

∫ 1

0
dzzDh

i (z, µ2) = 1

Heavy quark fragmentation function: Peterson fragmentation function
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Evolution of parton density: Change of resolution

13J.Pawlowski / U. Uwer

Advanced Particle Physics: VII. Quantum Chromodynamics

QCD explains observed scaling violation

Large x: valence quarks Small x: Gluons, sea quarks

Q2 F2 for fixed x Q2 F2 for fixed x

Scaling violation is one of the clearest manifestation of 
radiative effect predicted by QCD.

Quantitative description of scaling violation 

)()()()( 2
1

0

2
2 xqexdxqexxF i

i
i

i
ii

P

Quark Parton Model

QCD

P

x
/xz

)log()(P
2

~

)(P
2

~

2
0

2

qq

2

2

qq

2

2
0

Q
z

k
dkz

s

Q

T

Ts

Tkk,

2
0

21

0

22
2 log)(P

2
)1()(),(

Qxx
q

d
exQxF qq

s

i
ii

Pqq probability of a quark 
to emit gluon and 
becoming a quark with 
momentum reduced by 
fraction z.

0 cutoff parameter 

M
Qx

2

2

)(
1

)( x
a

ax

x

x x
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DGLAP Splitting function

ξ = z = x
y

P0
qq(ξ) =

1 + ξ2

(1− ξ)+
+

3
2
δ(1− ξ); P0

gq(ξ) =
1
ξ

[
1 + (1− ξ)2] ; P0

qg(ξ) =
[
(1− ξ)2 + ξ2

]
;

P0
gg(ξ) = 2

[
ξ

(1− ξ)+

+
1− ξ
ξ

+ ξ(1− ξ)
]

+

(
11
6
− 2Nf TR

3Nc

)
δ(1− ξ).

∫ 1
0

dξf (ξ)
(1−ξ)+

=
∫ 1

0
dξ[f (ξ)−f (1)]

1−ξ ⇒
∫ 1

0
dξ

(1−ξ)+
= 0
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Derivation of P0
qq(ξ)

The real contribution:

1

2

3

k1 = (P+, 0, 0⊥) ; k2 = (ξP+,
k2
⊥

ξP+
, k⊥)

k3 = ((1− ξ)P+,
k2
⊥

(1− ξ)P+
,−k⊥) ε3 = (0,− 2k⊥ · ε(3)

⊥
(1− ξ)P+

, ε
(3)
⊥ )

|Vq→qg|2 =
1
2

Tr (/k2γµ/k1γν)
∑

ε∗µ3 εν3 =
2k2
⊥

ξ(1− ξ)
1 + ξ2

1− ξ

⇒ Pqq(ξ) =
1 + ξ2

1− ξ (ξ < 1)
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Derivation of P0
qq(ξ)

Including the virtual graph , use
∫ 1

a
dξg(ξ)
(1−ξ)+

=
∫ 1

a
dξg(ξ)

1−ξ − g(1)
∫ 1

0
dξ

1−ξ

αsCF

2π

[∫ 1

x

dξ
ξ

q(x/ξ)
1 + ξ2

1− ξ − q(x)

∫ 1

0
dξ

1 + ξ2

1− ξ

]

=
αsCF

2π

[∫ 1

x

dξ
ξ

q(x/ξ)
1 + ξ2

(1− ξ)+
− q(x)

∫ 1

0
dξ

1 + ξ2

(1− ξ)+

]

︸ ︷︷ ︸
=− 3

2

.

Common practice in calculating the virtual graphs. (Also see HW.)
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Derivation of P0
qq(ξ)

Regularize 1
1−ξ to 1

(1−ξ)+
by including the divergence from the virtual graph.

Probability conservation:

Pqq + dPqq = δ(1− ξ) +
αsCF

2π
P0

qq(ξ)dt and
∫ 1

0
dξPqq(ξ) = 0,

⇒ Pqq(ξ) =
1 + ξ2

(1− ξ)+
+

3
2
δ(1− ξ) =

(
1 + ξ2

1− ξ

)

+

.

23 / 90



QFT Basics and Theory Backgrounds
Introduction to Saturation Physics

EIC Physics

Infrared Safe Observables
Collinear and TMD Factorization

Derivation of P0
gg(ξ)

1

2

3

k1 = (P+
, 0, 0⊥) ε1 = (0, 0, ε(1)

⊥ ) with ε
±
⊥ =

1
√

2
(1,±i)

k2 = (ξP+
,

k2
⊥
ξP+

, k⊥) ε2 = (0,
2k⊥ · ε

(2)
⊥

ξP+
, ε

(2)
⊥ )

k3 = ((1− ξ)P+
,

k2
⊥

(1− ξ)P+
,−k⊥) ε3 = (0,−

2k⊥ · ε
(3)
⊥

(1− ξ)P+
, ε

(3)
⊥ )

Vg→gg = (k1 + k3) · ε2ε1 · ε3 + (k2 − k3) · ε1ε2 · ε3 − (k1 + k2) · ε3ε1 · ε2

⇒ |Vg→gg|2 = |V+++|2 + |V+−+|2 + |V++−|2 = 4k2
⊥

[1− ξ(1− ξ)]2
ξ2(1− ξ)2

⇒ Pgg(ξ) = 2
[

1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]

(ξ < 1)
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Derivation of P0
gg(ξ)

Vg→gg = (k1 + k3) · ε2ε1 · ε3 + (k2 − k3) · ε1ε2 · ε3 − (k1 + k2) · ε3ε1 · ε2

⇒ |Vg→gg|2 = |V+++|2 + |V+−+|2 + |V++−|2 = 4k2
⊥

[1− ξ(1− ξ)]2
ξ2(1− ξ)2

⇒ Pgg(ξ) = 2
[

1− ξ
ξ

+
ξ

1− ξ + ξ(1− ξ)
]

(ξ < 1)

Regularize 1
1−ξ to 1

(1−ξ)+

Momentum conservation:
∫ 1

0
dξ ξ [Pqq(ξ) + Pgq(ξ)] = 0

∫ 1

0
dξ ξ [2Pqg(ξ) + Pgg(ξ)] = 0,

⇒ the terms which is proportional to δ(1− ξ).
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DGLAP equation

In the leading logarithmic approximation with t = lnµ2, the parton distribution and
fragmentation functions follow the DGLAP[Dokshitzer, Gribov, Lipatov, Altarelli, Parisi,
1972-1977] evolution equation as follows:

d
dt

[
q (x, µ)
g (x, µ)

]
=
α (µ)

2π

∫ 1

x

dξ
ξ

[
CFPqq (ξ) TRPqg (ξ)
CFPgq (ξ) NcPgg (ξ)

] [
q (x/ξ, µ)
g (x/ξ, µ)

]
,

and

d
dt

[
Dh/q (z, µ)

Dh/g (z, µ)

]
=
α (µ)

2π

∫ 1

z

dξ
ξ

[
CFPqq (ξ) CFPgq (ξ)
TRPqg (ξ) NcPgg (ξ)

] [
Dh/q (z/ξ, µ)

Dh/g (z/ξ, µ)

]
,
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Collinear Factorization at NLO

MS scheme ( 1
ε̂ = 1

ε + ln 4π − γE), DGLAP equation reads

[
q (x, µ)
g (x, µ)

]
=

[
q(0) (x)
g(0) (x)

]
− 1
ε̂

α (µ)

2π

∫ 1

x

dξ
ξ

[
CFPqq (ξ) TRPqg (ξ)
CFPgq (ξ) NcPgg (ξ)

] [
q (x/ξ)
g (x/ξ)

]
,

[
Dh/q (z, µ)
Dh/g (z, µ)

]
=

[
D(0)

h/q (z)

D(0)
h/g (z)

]
− 1
ε̂

α (µ)

2π

∫ 1

z

dξ
ξ

[
CFPqq (ξ) CFPgq (ξ)
TRPqg (ξ) NcPgg (ξ)

] [
Dh/q (z/ξ)
Dh/g (z/ξ)

]
.
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Factorization

One-loop factorization:

PDF PDF

FF FF

P P

h

For gluon with momentum k

Soft (k) divergence cancels between real and virtual diagrams;

k is collinear to initial quark⇒ parton distribution function;

k is collinear to the final state quark⇒ fragmentation function.

KLN theorem does not apply to PDFs and FFs.

Other kinematical region⇒ the NLO (O(αs) correction) hard factor.
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Collinear Factorization vs k⊥ Factorization

Collinear Factorization (Treat partons given by the integrated PDFs as having k⊥ = 0)

xp+, k⊥ = 0 xp+, k⊥ = 0

k⊥ Factorization(Spin physics and saturation physics)

The incoming partons carry no k⊥ in the Collinear Factorization. (Approximation)

In general, there is intrinsic k⊥, which is sometimes not negligible.

k⊥ Factorization: High energy evolution with k⊥ fixed.
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DGLAP evolution

H1 and ZEUS

x = 0.00005, i=21
x = 0.00008, i=20

x = 0.00013, i=19
x = 0.00020, i=18

x = 0.00032, i=17
x = 0.0005, i=16

x = 0.0008, i=15
x = 0.0013, i=14

x = 0.0020, i=13
x = 0.0032, i=12

x = 0.005, i=11
x = 0.008, i=10

x = 0.013, i=9
x = 0.02, i=8

x = 0.032, i=7
x = 0.05, i=6

x = 0.08, i=5
x = 0.13, i=4

x = 0.18, i=3

x = 0.25, i=2

x = 0.40, i=1

x = 0.65, i=0

Q2/ GeV2

r,
N

C
(x

,Q
2 ) x

 2
i

+

HERA I NC e+p
Fixed Target
HERAPDF1.0

10
-3

10
-2

10
-1

1

10

10 2

10 3

10 4

10 5

10 6

10 7

1 10 10 2 10 3 10 4 10 5

NLO DGLAP fit yields negative gluon distribution at low Q2 and low x.
Does this mean there is no gluons in that region? No
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Phase diagram in QCD

Low Q2 and low x region⇒ saturation region. (Use BFKL and BK equations instead)
BK equation is the non-linear equation which describes the saturation physics.
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kt dependent parton distributions

The unintegrated quark distribution

fq(x, k⊥) =

∫
dξ−d2ξ⊥
4π(2π)2 eixP+ξ−+iξ⊥·k⊥〈P

∣∣∣ψ̄(0)L†(0)γ+L(ξ−, ξ⊥)ψ(ξ⊥, ξ
−)
∣∣∣P〉

cf. the itegrated PDF fq(x) =

∫
dξ−

4π
eixP+ξ−〈P

∣∣ψ̄(0)γ+L(ξ−)ψ(0, ξ−)
∣∣P〉

Gauge invariant def: The dependence of ξ⊥ in the definition.
Light-cone gauge + proper boundary condition⇒ parton density interpretation.
The gauge links come from the resummation of multiple gluon interactions.
Gauge links may vary among different processes.
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Overview
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Weizsäcker-Williams Method of virtual quanta

Following Fermi[24], Weizsäcker [34] and Williams [35] discovered that the EM fields of a
fast moving charged particle are almost transverse. (Equivalent Photon Approximation)

A charged particle carries a cloud of quasi-real photons ready to be radiated if perturbed.

Application in QCD: WW gluon distribution. [McLerran, Venugopalan, 94; Kovchegov, 96;
Jalilian-Marian, Kovner, McLerran and Weigert, 97]

Application in Gravitational Wave. [Aichelburg and Sexl, 71; Dray and ’t Hooft, 85]
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EPA and Weizsäcker-Williams Photon Distribution

Boost static potential to infinite momentum frame [Jackiw, Kabat and Ortiz, 92] and HW

β = 0 β = 1

Acceleration

b⊥

Static E fields ⇒ Electro-Magnetic Wave
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EPA and Weizsäcker-Williams Photon Distribution

Boost static potential to infinite momentum frame [Jackiw, Kabat and Ortiz, 92] and HW

Static E fields ⇒ Electro-Magnetic Wave
⇒ EM pulses are equivalent to a lot of photons

A+
Cov = − q

π
ln(λb⊥)δ(t − z),

~E =
q

2π

~b⊥
b2
⊥
δ(t − z),

~B =
q

2π
v̂×~b⊥

b2
⊥

δ(t − z),

~ALC
⊥ = − q

2π
[~∇⊥ ln(λb⊥)]θ(t − z).

The gauge potentials Aµ in Covariant gauge and LC gauge are related by a gauge
transformation. λ is an irrelevant parameter setting the scale.

Classical EM: transverse EM fields⇔ QM: Co-moving Quasi-real photons.
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EPA and Weizsäcker-Williams Photon Distribution

Classical EM: transverse EM fields⇔ QM: Co-moving Quasi-real photons.

CoV gauge At
Cov = Az

Cov = − q
2π

ln(λb⊥)δ(t − z),

LC gauge ~ALC
⊥ = − q

2π
[~∇⊥ ln(λb⊥)]θ(t − z).

The photon distribution in the transverse momentum space of a point particle

xfγ(x,~k⊥) =

∫
dξ−d2ξ⊥

(2π)3 e−ixP+ξ−−ik⊥·ξ⊥
〈

A
∣∣∣∣F+i

(
ξ

2

)
F+i

(
−ξ

2

)∣∣∣∣A
〉

=
Z2α

π2
1

k2
⊥

with q = Ze.
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Transverse Momentum Dependent (TMD) Photon Distribution

The photon distribution (flux) for nuclei

xfγ(x, k⊥) =
Z2α

π2
k2
⊥(

k2
⊥ + x2M2

)2 FA(k2)FA(k2)

Zep+

k+ = xp+, k⊥

Ultra-peripheral collisions

6

historically called
“ultra-peripheral 
collisions” (UPC)

When b>2R, no 
nuclear overlap

Ions can still 
interact via 

electromagnetic
processes

4

FIG. 2. Impact parameter dependent photon flux as normal-
ized to the flux at b? = RA for a typical kinematics at the
LHC with x = 10�3 and RA = 7fm (upper plot) and at RHIC
with x = 10�2 (lower plot), respectively.

which is the well-known result in classical electrodynam-
ics. The above formula has been applied to understand
the dilepton production in non-UPC events in heavy-ion
collisions [34], where the contributions from small impact
parameter (b? < RA) played an important role.

There are two important features in this impact-
parameter dependent photon flux. First, at large b? �
RA, it reduced to the well-known Jackson result. This is
because large b? leads to k ! 0 and thence to FA ! 1.
This can be seen from Fig. 2, where we plot the pho-
ton flux as a function of b? for the typical kinematics at
the LHC and RHIC. For the form factor, we follow the
STARLIGHT [32],

FA(k2) =
4⇡⇢0

k3 A

1

a2k2 + 1
⇥ [sin(kRA) � kRA cos(kRA)] , (9)

where RA = 7 fm for Pb, and a = 0.7 fm.
Second, as shown in Fig. 2, at small-b?, it is propor-

tional to b3
?. Here, the photon flux inside the nucleus

is generated by the e↵ective total charge of the nucleons
inside the area denoted by b?.

B. Transverse Momentum Dependence in the
Photon Fluxes

Except for Ref. [29], most previous studies ignored the
inter-dependence between the impact parameter b? and
the photon’s transverse momentum. A recent attempt
to address this issue was Ref. [30], which extended the

derivation of the total cross section for the two-photon
process in Ref. [38] to the di↵erential cross section rele-
vant to the STAR and ATLAS dilepton measurements.
In the revised version of Ref. [30] and a recent paper
by Li et al. [39, 40], the so-called QED approach [29]
has been applied to compute the dilepton production in
two-photon processes with full dependence on the impact
parameter and the pair pT .

Here, we investigate this from a di↵erent point of view,
following the factorization argument and studying the in-
dividual photon flux. This result may also be relevant
when considering the photon pT contribution to the fi-
nal state pT in photoproduction, especially imaging stud-
ies [41]. When we integrate out the impact parameter,
the transverse momentum distribution can be evaluated
as [42]

xfA
� (x, kT ) =

Z2↵

⇡2

k2
T�

k2
T + x2m2

p

�2 F 2
A(k2) , (10)

where again k2 =
�
k2

T + x2m2
p

�
and FA is the nuclear

charge form factor. This has been widely employed to
estimate the transverse momentum dependence in two-
photon processes in UPCs, see, e.g., the STARLIGHT
simulation [32].

It is non-trivial to derive the impact-parameter and
transverse momentum dependent photon flux. The main
di�culty is that the impact parameter b? is a Fourier
conjugate variable associated with the photon’s trans-
verse momentum kT . There will be model dependence
to compute the combined distribution from the classic
EM fields. In the following, we will estimate the aver-
age transverse momentum squared, and comment on the
di�culty to calculate the combined distribution directly.

Before we get to the details of the models, we would
like to emphasize some important features on the trans-
verse momentum distribution for the incoming photons
in the nucleus. First, for b? ⌧ RA, e↵ective charge con-
tribution is limited to protons inside b? region, and the
average transverse momentum squared is proportional
to 1/b2

?. This is an important feature which should be
satisfied by all model calculations. Similarly, at large
b? � RA, because of the uncertainty principle, the av-
erage squared transverse momentum squared is also of
order 1/b2

?. Around b? ⇠ RA, on the other hand, the
average transverse momentum may di↵er from the above
parametric estimates. However, with the constraints
from these generic features (b? ⌧ RA and b? � RA), the
model calculations of the average transverse momentum
squared are very much determined.

In Eq. (7) the integral variable kT is the photon’s trans-
verse momentum. We may compute the average trans-
verse momentum squared by multiplying the integrand
by the products of kT ,

hk2
T i =

4Z2↵

xf�(x; b?)

Z
d2kT

(2⇡)2
d2k0

T

(2⇡)2
ei(kT �k0

T )·b?

⇥ (kT · k0
T )2

k2k02 FA(k2)FA(k02) , (11)

FA(k2) is the charge form factor with k2 = k2
⊥ + x2M2. FA = 1 for point charge.

Wood-Saxon or Gaussian models for realistic nuclei. (Pb is very bright!)

Typical transverse momentum of the photon is 1/RA, which is 30MeV for Pb.
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Linearly Polarized Photon

~b⊥ ~ǫ ∝ ~b⊥ ~b⊥

RA

~B

~E ~E

~B

RA

E is linearly polarized along the
impact parameter b⊥ direction;
~B ⊥ ~E;

The LC gauge potential
A⊥ ∝ ~b⊥;

Polarization vector ~ε⊥ = ~b⊥/b⊥.

Similar case in momentum space.
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Linearly Polarized Photon

WW photon distribution is maximumly polarized, since xfγ = xhγ .

xf ij
γ (x; b⊥) =

∫
d2∆⊥
(2π)2 ei∆⊥·b⊥〈A,−∆⊥

2
|F+iF+j|A, ∆⊥

2
〉 ,

xf ij
γ (x; b⊥) =

δij

2
xfγ(x; b⊥) +

(
bi
⊥bj
⊥

b2
⊥
− δij

2

)
xhγ(x; b⊥) =

bi
⊥bj
⊥

b2
⊥

xfγ ,

xhγ(x, b⊥) = xfγ(x, b⊥) = 4Z2α

∣∣∣∣∣

∫
d2k⊥
(2π)2 eik⊥·b⊥

~k⊥
k2 FA(k2)

∣∣∣∣∣

2
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Wigner distribution

Wigner distributions [Ji, 03; Belitsky, Ji, Yuan, 2004] encode all quantum information

Figure 2.2: Connections between di↵erent quantities describing the distribution of partons
inside the proton. The functions given here are for unpolarized partons in an unpolarized proton;
analogous relations hold for polarized quantities.

tum, and specific TMDs and GPDs quan-
tify the orbital angular momentum carried
by partons in di↵erent ways.

The theoretical framework we have
sketched is valid over a wide range of mo-
mentum fractions x, connecting in particular
the region of valence quarks with the one of
gluons and the quark sea. While the present
chapter is focused on the nucleon, the con-
cept of parton distributions is well adapted
to study the dynamics of partons in nuclei, as
we will see in Sec. 3.3. For the regime of small
x, which is probed in collisions at the highest
energies, a di↵erent theoretical description is
at our disposal. Rather than parton distribu-
tions, a basic quantity in this approach is the
amplitude for the scattering of a color dipole
on a proton or a nucleus. The joint distri-
bution of gluons in x and in kT or bT can
be derived from this dipole amplitude. This
high-energy approach is essential for address-
ing the physics of high parton densities and
of parton saturation, as discussed in Sec. 3.2.
On the other hand, in a regime of moder-
ate x, around 10�3 for the proton and higher

for heavy nuclei, the theoretical descriptions
based on either parton distributions or color
dipoles are both applicable and can be re-
lated to each other. This will provide us with
valuable flexibility for interpreting data in a
wide kinematic regime.

The following sections highlight the
physics opportunities in measuring PDFs,
TMDs and GPDs to map out the quark-
gluon structure of the proton at the EIC.
An essential feature throughout will be the
broad reach of the EIC in the kinematic
plane of the Bjorken variable x (see the Side-
bar on page 18) and the invariant momentum
transfer Q2 to the electron. While x deter-
mines the momentum fraction of the partons
probed, Q2 specifies the scale at which the
partons are resolved. Wide coverage in x
is hence essential for going from the valence
quark regime deep into the region of gluons
and sea quarks, whereas a large lever arm in
Q2 is the key for unraveling the information
contained in the scale evolution of parton dis-
tributions.

17

bT

kT
xp

Quasi-probability distribution; Not positive definite.
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Photon Wigner Distribution and Generalized TMD

Def. of Wigner distribution:

xfγ(x,~k⊥;~b⊥) =

∫
dξ−d2ξ⊥
(2π)3P+

∫
d2∆⊥
(2π)2 e−ixP+ξ−−ik⊥·ξ⊥

×
〈

A,+
∆⊥
2

∣∣∣∣F+i
(
~b⊥ +

ξ

2

)
F+i

(
~b⊥ −

ξ

2

)∣∣∣∣A,−
∆⊥
2

〉
,

Def. of GTMD
xfγ(x, k⊥,∆⊥) ≡

∫
d2b⊥e−i∆·b⊥xfγ(x,~k⊥;~b⊥).
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Photon Wigner Distribution and Generalized TMD

For a heavy nucleus with charge Ze, the GTMD reads

xfγ(x, k⊥; ∆⊥) = xhγ(x, k⊥; ∆⊥)

=
4Z2α

(2π)2
q⊥ · q′⊥
q2q′2

FA(q2)FA(q′2) ,

q⊥ = k⊥ −
∆⊥
2
, and q′⊥ = k⊥ +

∆⊥
2

GTMD
−∆⊥/2 ∆⊥/2

q⊥ q′
⊥

∫
d2b⊥xfγ(x, k⊥, b⊥)⇒ TMD;

∫
d2k⊥xfγ(x, k⊥, b⊥)⇒ b⊥ distribution.

WW EPA→ Generalized WW EPA with Wigner Photon.
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Wilson Lines in Color Glass Condensate Formalism

Wilson line⇒ multiple scatterings between fast moving quark and target dense gluons.
x⊥

AA A A

· · ·U(x⊥)=P exp
(
−ig

∫
dz+A−(x⊥,z+)

) · · · · · ·

The Wilson loop (color dipole) in McLerran-Venugopalan (MV) model
x⊥

y⊥
· · ·1

Nc

〈
TrU(x⊥)U†(y⊥)

〉
=e−

Q2
s (x⊥−y⊥)2

4 · · · · · ·

Dipole amplitude S(2) then produces the quark kT spectrum via Fourier transform

F(k⊥) ≡ dN
d2k⊥

=

∫
d2x⊥d2y⊥

(2π)2 e−ik⊥·(x⊥−y⊥) 1
Nc

〈
TrU(x⊥)U†(y⊥)

〉
.
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A Tale of Two Gluon Distributions1

Two gluon distributions are widely used at small-x:[Kharzeev, Kovchegov, Tuchin; 03] I.
Weizsäcker Williams gluon distribution([Kovchegov, Mueller, 98] and MV model):

xGWW(x, k⊥) =
S⊥
π2αs

N2
c − 1
Nc

∫
d2r⊥
(2π)2

e−ik⊥·r⊥

r2
⊥

[
1− e−

r2
⊥Q2

sg
4

]

II. Color Dipole gluon distributions: (known for many years)

xGDP(x, k⊥) =
S⊥Nc

2π2αs
k2
⊥

∫
d2r⊥
(2π)2 e−ik⊥·r⊥e−

r2
⊥Q2

sq
4 ⇐ 1

Nc
Tr
[
U(r⊥)U†(0⊥)

]

1As far as I know, the title is due to Y. Kovchegov and C. Dickens.
46 / 90



QFT Basics and Theory Backgrounds
Introduction to Saturation Physics

EIC Physics

Weizsäcker-Williams Methods
McLerran-Venugopalan Model
Small-x evolution equations (BFKL + BK)

A Tale of Two Gluon Distributions

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

k?/Qs(x)

x
G

(x
,k

?
)

WW gluon

Dipole gluon

p
s = 13 TeV

pT1 > 2 TeV

pT2 > 1 TeV

|y| < 0.5

2.6 2.7 2.8 2.9 3 3.1

10�1

100

101

102

��

1 N
d
N

d
�
�

NLO, (nlojet++)

Sudakov

p
s = 13 TeV

pT1 > 200 GeV

pT2 > 100 GeV

|y| < 0.5

2.6 2.7 2.8 2.9 3 3.1

100

101

102

��

1 N
d
N

d
�
�

NLO, (nlojet++), w/ missing jet

Sudakov

1

In McLerran-Venugopalan model, these two gluon
distributions exhibit different k⊥ behavior at small k⊥.

Same tail when k⊥ � Qs. “A Tale of Two Gluon
Distributions”⇒ “A Tail of Two Gluon Distributions” [B.
Zajc]

Which distribution is measured in a given process?

Why are there exactly two gluon distributions?
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A Tale of Two Gluon Distributions

In terms of operators (TMD def. [Bomhof, Mulders and Pijlman, 06]), two gauge invariant
gluon definitions: [Dominguez, Marquet, Xiao and Yuan, 11]
I. Weizsäcker Williams gluon distribution:

xGWW(x, k⊥) = 2
∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥Tr〈P|F+i(ξ−, ξ⊥)U [+]†F+i(0)U [+]|P〉.

II. Color Dipole gluon distributions:

xGDP(x, k⊥) = 2
∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥Tr〈P|F+i(ξ−, ξ⊥)U [−]†F+i(0)U [+]|P〉.

ξ
−

ξT

ξ
−

ξT

U [−] U [+]
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A Tale of Two Gluon Distributions

I. Weizsäcker Williams gluon distribution:

xGWW(x, k⊥) = 2
∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥Tr〈P|F+i(ξ−, ξ⊥)U [+]†F+i(0)U [+]|P〉.

II. Color Dipole gluon distributions:

xGDP(x, k⊥) = 2
∫

dξ−dξ⊥
(2π)3P+

eixP+ξ−−ik⊥·ξ⊥Tr〈P|F+i(ξ−, ξ⊥)U [−]†F+i(0)U [+]|P〉.

The WW gluon distribution is the conventional gluon distributions.

The dipole gluon distribution has no such interpretation.

Two topologically different gauge invariant definitions.

Same after integrating over k⊥;
49 / 90



QFT Basics and Theory Backgrounds
Introduction to Saturation Physics

EIC Physics

Weizsäcker-Williams Methods
McLerran-Venugopalan Model
Small-x evolution equations (BFKL + BK)

A Tale of Two Gluon Distributions

I. Weizsäcker Williams gluon distribution

xGWW(x, k⊥) =
2Nc

αS

∫
d2R⊥
(2π)2

d2R′⊥
(2π)2 eiq⊥·(R⊥−R′⊥)

× 1
Nc

〈
Tr [i∂iU(R⊥)] U†(R′⊥)

[
i∂iU(R′⊥)

]
U†(R⊥)

〉
x
.

II. Color Dipole gluon distribution:

xGDP(x, k⊥) =
2Nc

αs

∫
d2R⊥d2R′⊥

(2π)4 eiq⊥·(R⊥−R′⊥)

(
∇R⊥ · ∇R′⊥

) 1
Nc

〈
Tr
[
U (R⊥) U†

(
R′⊥
)]〉

x
,

Quadrupole⇒Weizsäcker Williams gluon distribution;
Dipole⇒ Color Dipole gluon distribution;
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A Tale of Two Gluon Distributions

Measuring the gluon distributions in various processes
I. Weizsäcker Williams gluon distribution; II. Color Dipole gluon distributions.

Modified Universality for Gluon Distributions:
Inclusive Single Inc DIS dijet γ +jet dijet in pA

xGWW × × √ × √

xGDP
√ √ × √ √

×⇒ Do Not Appear.
√⇒ Apppear.

Measurements in pA collisions and at the EIC
are tightly connected with complementary physics missions.

At higher order, Sudakov resummation needs to be implemented,
but the conclusion remains true. Soft gluon factorizes. [Mueller, Xiao, Yuan, 13]
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Deep into low-x region of Protons

Gluon splitting functions (P0
qq(ξ) and P0

gg(ξ)) have 1/(1− ξ) singularities.

Partons in the low-x region is dominated by gluons.

Resummation of the αs ln 1
x .
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Dual Descriptions of Deep Inelastic Scattering

[A. Mueller, 01; Parton Saturation-An Overview]

Bjorken frame Dipole frame

...

Bjorken frame
F2(x,Q2) =

∑

q

e2
qx
[
fq(x,Q2) + fq̄(x,Q2)

]
.

Bjorken: partonic picture of a hadron is manifest. Saturation shows up
as a limit on the occupation number of quarks and gluons.
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Dual Descriptions of Deep Inelastic Scattering

Bjorken frame Dipole frame

...

Dipole frame

F2(x,Q2) =
∑

f

e2
f

Q2

4π2αem

∫ 1

0
dz
∫

d2x⊥d2y⊥
[
|ψT (z, r⊥,Q)|2 + |ψL (z, r⊥,Q)|2

]

× [1− S (r⊥)] , with r⊥ = x⊥ − y⊥.

Dipole: partonic picture is no longer manifest. Saturation appears as the unitarity
limit for scattering. Easy to resum the multiple gluon interactions.
Interesting property: Geometric scaling if S(r⊥) = S(Qsr⊥).
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BFKL evolution

[Balitsky, Fadin, Kuraev, Lipatov;74] Bremsstrahlung favors of small-x gluon emissions.

p

x << 1

kz = xp

kz1 = x1p

kz = xp

x << x1

p p

x << xn

xn << xn−1

x2 << x1

x1 << 1

Cf. DGLAP which resums
αsC ln Q2

µ2
0
.

Probability of emission:

dp ∼ αsNc
dkz

kz
= αsNc

dx
x

In small-x limit and Leading log approximation:

p ∼
∞∑

n=0

αn
s Nn

c

∫ 1

x

dxn

xn
· · ·
∫ 1

x2

dx1

x1
∼ exp

(
αsNc ln

1
x

)

Exponential growth of the amplitude as function of
rapidity;
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Derivation of BFKL evolution

[Mueller, 94] Dipole model: Consider the emission of soft gluon zg � 1,

P+ (1 − ξ)P+, −k⊥

ξP+, k⊥

T a
ij

and use LC gauge ε = (ε+ = 0, ε− = ε⊥·k⊥
k+ , ε±⊥)

M(k⊥) = −2igTa ε⊥ · k⊥
k2
⊥

q→ qg vertex and Energy denominator.
Similar to the derivation of Pqq(ξ).
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The dipole splitting kernel

The Bremsstrahlung amplitude in the coordinate space

x⊥

z⊥

M(x⊥ − z⊥) =

∫
d2k⊥eik⊥·(x⊥−z⊥)M(k⊥)

Use
∫

d2k⊥
ε⊥ · k⊥

k2
⊥

eik⊥·b⊥ = 2πi
ε⊥ · b⊥

b2
⊥

,

⇒ M(x⊥ − z⊥) = 4πgTa ε⊥ · (x⊥ − z⊥)

(x⊥ − z⊥)2
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The dipole splitting kernel

Consider soft gluon emission from a color dipole in the coordinate space (x⊥, y⊥)

x⊥

z⊥

taij ji

i

y⊥

x⊥

z⊥

y⊥

M(x⊥, z⊥, y⊥) = 4πgTa
[
ε⊥ · (x⊥ − z⊥)

(x⊥ − z⊥)2 − ε⊥ · (y⊥ − z⊥)

(y⊥ − z⊥)2

]
⇒

x⊥
z⊥
y⊥

= αsNc

2π2

(x⊥−y⊥)
2

(x⊥−z⊥)
2
(y⊥−z⊥)

2=
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The dipole splitting kernel

x⊥
z⊥
y⊥

= αsNc

2π2

(x⊥−y⊥)
2

(x⊥−z⊥)
2
(y⊥−z⊥)

2=

The probability of dipole splitting at large Nc limit

dPsplitting =
αsNc

2π2
(x⊥ − y⊥)2

(x⊥ − z⊥)2(x⊥ − z⊥)2 d2z⊥dY with dY =
dk+

g

k+
g

Gluon splitting⇔ Dipole splitting.
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BFKL evolution in Mueller’s dipole model

[Mueller; 94] In large Nc limit, BFKL evolution can be viewed as dipole branching in a
fast moving qq̄ dipole in coordinate space:

Y0 Y1 YY2<<<< <<

n(r,Y) dipoles of size r. BFKL Pomeron

The T matrix (T ≡ 1− S with S being the scattering matrix) basically just counts the
number of dipoles of a given size,

T(r,Y) ∼ α2
s n(r,Y)

The probability of emission is ᾱs
(x−y)2

(x−z)2(z−y)2 ;
Assume independent emissions with large separation in rapidity.
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BFKL equation

Consider a slight change in rapidity and the Bremsstrahlung emission of soft gluon (dipole
splitting)

∂Y =

x

y

z

∂YT(x, y; Y) =
ᾱs

2π

∫
d2z

(x− y)2

(x− z)2(z− y)2 [T(x, z; Y) + T(z, y; Y)− T(x, y; Y)]
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Kovchegov equation

[Kovchegov; 99] [Mueller; 01] Including non-linear effects: (T ≡ 1− S)

∂S
∂Y =

x

y

z

x

z

y

∂YS(x− y; Y) =
αNc

2π2

∫
d2z

(x− y)2

(x− z)2(z− y)2 [S(x− z; Y)S(z− y; Y)− S(x− y; Y)]

Linear BFKL evolution results in fast energy evolution.

Allowing multiple scattering⇒ Non-linear term
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Kovchegov equation

[Kovchegov; 99] [Mueller; 01] Including non-linear effects: (T ≡ 1− S)

∂YS(x− y; Y) =
αNc

2π2

∫
d2z

(x− y)2

(x− z)2(z− y)2 [S(x− z; Y)S(z− y; Y)− S(x− y; Y)]

∂YT(x− y; Y) =
αNc

2π2

∫
d2z

(x− y)2

(x− z)2(z− y)2

×


T(x− z; Y) + T(z− y; Y)− T(x− y; Y)− T(x− z; Y)T(z− y; Y)︸ ︷︷ ︸

saturation




Linear BFKL evolution results in fast energy evolution⇒ saturation region

Non-linear term⇒ fixed point (T = 1) and unitarization, and thus describes the saturation
physics.
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Balitsky-Kovchegov equation vs F-KPP equation

[Munier, Peschanski, 03] Consider the case with fixed impact parameter, namely, Txy is
only function of r = x− y. Then, transforming the B-K equation into momentum space:

BK equation: ∂YT = ᾱχBFKL(−∂ρ)T − ᾱT2 with ᾱ =
αNc

π
Diffusion approximation⇒
F-KPP equation: ∂tu(x, t) = ∂2

x u(x, t) + u(x, t)− u2(x, t)

u⇒ T , ᾱY ⇒ t, % = log(k2/k2
0)⇒ x, with k0 being the reference scale;

B-K equation lies in the same universality class as the F-KPP
[Fisher-Kolmogrov-Petrovsky-Piscounov; 1937] equation.

F-KPP eq admits traveling wave solution u = u (x− vt) with minimum velocity

The non-linear term saturates the solution in the infrared.
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HERA (Hadron Elektron Ring Anlage)

e±p collisions at
√

s = 318 GeV (1992-2007);
Partons in the low-x region is dominated by rapid growing gluons.
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Geometrical Scaling in DIS

[Golec-Biernat, Stasto, Kwiecinski; 01, Munier, Peschanski, 03]

Use Q2
s (x) = (x0/x)λGeV2 with x0 = 3.04× 10−3 and λ = 0.288. All data of σγ

∗p
tot with

x ≤ 0.01 and Q2 ≤ 450GeV2 plotting as function of a single variable τ = Q2/Q2
s .

This scaling can be naturally explained in small-x formalism. 68 / 90
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Ultimate Questions and Challenges in QCD

How does the spin of proton arise? (Spin puzzle)

What are the emergent properties of dense gluon system?

How does proton mass arise? Mass gap: million dollar question.

How does gluon bind quarks and gluons inside proton?

Can we map the quark and gluon inside the proton in 3D?

EICs: keys to unlocking these mysteries! Many opportunities will be in front of us!
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Embedding small-x gluon in 3D Tomography

Wigner distributions [Belitsky, Ji, Yuan, 04]
ingeniously encode all quantum information
of how partons are distributed inside hadrons.

Figure 2.2: Connections between di↵erent quantities describing the distribution of partons
inside the proton. The functions given here are for unpolarized partons in an unpolarized proton;
analogous relations hold for polarized quantities.

tum, and specific TMDs and GPDs quan-
tify the orbital angular momentum carried
by partons in di↵erent ways.

The theoretical framework we have
sketched is valid over a wide range of mo-
mentum fractions x, connecting in particular
the region of valence quarks with the one of
gluons and the quark sea. While the present
chapter is focused on the nucleon, the con-
cept of parton distributions is well adapted
to study the dynamics of partons in nuclei, as
we will see in Sec. 3.3. For the regime of small
x, which is probed in collisions at the highest
energies, a di↵erent theoretical description is
at our disposal. Rather than parton distribu-
tions, a basic quantity in this approach is the
amplitude for the scattering of a color dipole
on a proton or a nucleus. The joint distri-
bution of gluons in x and in kT or bT can
be derived from this dipole amplitude. This
high-energy approach is essential for address-
ing the physics of high parton densities and
of parton saturation, as discussed in Sec. 3.2.
On the other hand, in a regime of moder-
ate x, around 10�3 for the proton and higher

for heavy nuclei, the theoretical descriptions
based on either parton distributions or color
dipoles are both applicable and can be re-
lated to each other. This will provide us with
valuable flexibility for interpreting data in a
wide kinematic regime.

The following sections highlight the
physics opportunities in measuring PDFs,
TMDs and GPDs to map out the quark-
gluon structure of the proton at the EIC.
An essential feature throughout will be the
broad reach of the EIC in the kinematic
plane of the Bjorken variable x (see the Side-
bar on page 18) and the invariant momentum
transfer Q2 to the electron. While x deter-
mines the momentum fraction of the partons
probed, Q2 specifies the scale at which the
partons are resolved. Wide coverage in x
is hence essential for going from the valence
quark regime deep into the region of gluons
and sea quarks, whereas a large lever arm in
Q2 is the key for unraveling the information
contained in the scale evolution of parton dis-
tributions.

17
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List of observables at EIC

CGC is elusive.

Hunt it down via a
set of observables

List it from Inclusive
→ Exclusive.

1 Inclusive cross-section: Geometrical scaling in eA and QsA

2 Single-inclusive γ + p/A→ h(Jet) + X: Quark TMD
3 Inclusive dijet or dihadron: WW gluon TMD.
4 Long range correlation: Origin of collectivity
5 Diffractive vector meson production: gluon GPD.
6 Diffractive dijet production: gluon Wigner distribution.
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Inclusive Obserables

Geometrical Scaling in DIS:
All data of σγ

∗p
tot with x ≤ 0.01

and Q2 ≤ 450GeV2 plotting
as function of a single variable
τ = Q2/Q2

s falls on a curve.

What about eA collisions at
EIC? Q2

sA(x)

[Golec-Biernat, Stasto, Kwiecinski,01]: Q2
s (x) = (x0/x)λGeV2 with

x0 = 3.04× 10−3 and λ = 0.288.
[Munier, Peschanski, 03]: explained by traveling wave in small-x framework.
[Kovchegov, Pitonyak, Sievert, 16, 17] Link Polarized case:
g1 structure function at small-x and ∆Σ.
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SIDIS and new progress

EICUG and YR
Summary of Temple Workshop (Physics WG)

Semi-Inclusive Working Group

Felix Ringer [Liu, Ringer, Vogelsang, Yuan, Phys.Rev.Lett. 122 (2019) no.19,
192003; arXiv:1812.08077]

TMD Measurements with Jets
F. Ringer Friday AM

2

• Jet Correlations
• Direct probe of Sivers effect via electron-jet correlations
• Proton-jet correlations (Reduction of hadronization effects and Non-Global logs)

• Jet Substructures (probe different TMD in-jet distributions)
• Standard jet axis
• Recoil free jet axis (Winner-take-all)
• Groomed jet axis

Electron-jet corretions

13 / 21

[Mueller, 99; Marquet, Xiao, Yuan, 09] SIDIS in Breit frame: ⇒ quark kT TMD.
[Liu, Ringer, Vogelsang, Yuan,19] Link Lepton + jet

New hard probe in the Lab frame: l + p/A→ l′ + Jet + X

Direct probe of quark TMDs. ∆φ = φJ − φl − π
Sivers: distortion due to proton’s transverse spin ST !
Also sensitive to cold nuclear medium PT broadening!
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Leton-jet correlations at EIC

[Hatta, Xiao, Yuan, Zhou, 21] 2106.05307 [hep-ph]

e(k) + q(p1)→ e′(k`) + jet(kJ) + X

g2
∫

d3kg

(2π)32Ekg

δ(2)(q⊥ + kg⊥)CFSg(kJ, p1)

=
αsCF

2π2q2
⊥

[
ln

Q2

q2
⊥

+ ln
Q2

k2
`⊥

+c0 + 2c1 cos(φ) + 2c2 cos(2φ) + · · ·
]
,

Asymmetric emission of gluons outside jet cone.
Eikonal factors Sg(kJ, p1) = 2kJ ·p1

kJ ·kgp1·kg
; Sg(k1, k2) = 2k1·k2

k1·kgk2·kg
. QCD Master Class 2021
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DIS dijet

Unique golden channel for the Weizsäcker Williams distribution.
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FIG. 2: The average azimuthal anisotropy v2 = hcos 2�i versus the dijet transverse momentum scale PT or the dijet transverse
momentum imbalance qT , respectively. The assumed �⇤A center of mass energy is

p
s = 100 GeV. Since Q2 = 4P 2

? and z = 1/2
these curves apply to either longitudinal or transverse photon polarization. Solid (dashed) lines correspond to fixed (running)
coupling evolution.

We obtain the Wilson lines U numerically from B-
JIMWLK evolution in Y = ln(x0/x), starting from
an initial condition at x0 = 10�2 using the the MV
model. The initial condition on the lattice is constructed
as described in detail in Ref. [37]. The B-JIMWLK
equation can be solved on the lattice with a Langevin
method [38, 39]. We use here the “left-right” symmet-
ric [40] numerical method introduced in Ref. [41], using
either fixed coupling or a running coupling with the al-
gorithm of Ref. [41]. As in e.g. Ref. [42], we determine
the saturation scale Qs numerically from the two-point
(dipole) function of the Wilson lines. The renormaliza-
tion group evolution increases Qs roughly as Q2

s ⇠ x�0.3.
For the calculation of the light cone gauge field one needs
Fourier transforms of derivatives of Wilson lines. Some
care must be exercised to obtain the proper momen-
tum space distribution: we have used two di↵erent cen-
tered di↵erence methods (discretizing over one or two
lattice spacings) and found that the results are equiva-
lent. For the fixed coupling evolution we take ↵s = 0.15
to provide an evolution speed roughly in line with in-
clusive HERA data. For running coupling we use in
this preliminary study the slightly overestimated value
Qs(x0)/⇤QCD = 11, which also slows down the evolution
closer to experimentally observed values.

For our numerical estimates below we take Q2 = 4P 2
?.

Hence, for z = 1/2, vL
2 and vT

2 have equal magnitude
but there is a relative phase shift of ⇡/2. The physi-
cal momentum scale is set by the saturation momentum
at x0. To obtain the numerical values in the plots we
take Qs(x0) = 1 GeV (for a qq̄ dipole). The saturation
momentum corresponds to the scale where the forward

scattering amplitude is of order 1.

We now turn to describe our results. We first show the
solution for the unintegrated gluon distributions before
discussing the azimuthal asymmetry w.r.t. the direction
of ~q? of the �⇤A cross section.

Figure 1 shows the dependence of G(1) and h
(1)
? at dif-

ferent evolution rapidities Y on transverse momentum.
We refrain from showing curves for running coupling evo-
lution since they look very similar. Either one of the
TMDs drops rapidly as a power of q? at high transverse
momentum q? � Qs and so they are best measured at
q? of order a few times the saturation scale. For a heavy-
ion target the saturation scale is boosted (on average over
impact parameters) by a factor of ⇠ A1/3 [43] which fa-
cilitates such measurements in a regime of semi-hard q?.

The degree of gluon linear polarization is maximal at

high transverse momentum, h
(1)
? /G(1) ! 1; the satura-

tion of the positivity bound of the cross section has also
been observed in perturbative twist-2 calculations of the
small-x field of a fast quark [4, 6]. On the other hand

h
(1)
? /G(1) ⌧ 1 at low q? which conforms to the expected

power suppression. At fixed q?/Qs(x) the ratio of these
functions decreases rather slowly with rapidity, at least
after an initial evolution away from the MV model to-
wards the B-JIMWLK fixed point. This means that, be-

cause of the growth of Qs, the ratio h
(1)
? /G(1) at fixed

transverse momentum q? decreases with rapidity. Thus
the emission of additional small-x gluons reduces the de-
gree of polarization. Our results show that this e↵ect
can quite well be parametrized by geometric scaling as a
universal function of q?/Qs.

In Fig. 2 we show the elliptic asymmetry as a func-

Back-to-back correlation C(∆φ): [Dominguez, Marquet, Xiao and Yuan, 11] [Zheng,
Aschenauer, Lee and BX, 14] Link

Due to soft gluon radiations, Sudakov resummation needs to be implemented.
[Mueller, Xiao, Yuan, 13] Link

Due to linearly polarized gluon[Metz, Zhou, 11] Link : analog of elliptic flow v2 in
DIS. [Dumitru, Lappi, Skokov, 15] Link
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Perturbative expansions in dijet productions
 

Shu-yi Wei (CCNU)              DiJET - 2016 @ Huzhou  6

Our approach Establish baselines without free parameters

Perturbative Expansion

(a) 2 → 2 (b) 2 → 3 (c) 2 → 4

Correlations:
2 → 2: 0th order
2 → 3: leading order
2 → 4: next-to-leading order

Normalization
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D0 collaboration: PRL 94, 221801 (2005)
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CMS [110, 140]GeV

LO (2 ! 3)

NLO (2 ! 4)

Resummed
pQCD can describe data at small xJ , but fails to converge at
large xJ . Reason: large logarithmic terms appearing at �� ≈ ⇡.

Sudakov resummation can sum large logs to cancel alternating
divergence.

choose �m to switch between pQCD and Sudakov.

choice of �m is not sensitive to result, not free parameter.

Chen Lin (IoPP, CCNU) Dijet Asymmetry Santa Fe 2017 8 / 11

2.2 2.4 2.6 2.8 3

10−1

100

101

∆φ

1 σ
d
σ

d
∆
φ

CMS [110, 140]GeV

LO (2 → 3)

NLO (2 → 4)

Resummed

Appearance of large logarithms L ∼ ln2 P2
⊥

q2
⊥

(pQCD expansion breaks down)

Imbalance ~q⊥ ≡ ~p1⊥ +~p2⊥, jet P⊥ ∼ p1⊥ ∼ p2⊥.
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Sudakov formalism

Dijet productions in the Sudakov formalism (starting from collinear factorization)

dσdijet

dy1dy2d2p1⊥d2p2⊥
=

∑

ab

σ0

∫
d2b⊥
(2π)2 e−iq⊥·b⊥W(Q, b⊥),

with W(Q, b⊥) = x1fa(x1, µb)x2fb(x2, µb)e−S(Q,b⊥),

S(Q, b⊥) = Spert(Q, b∗) + SNP(Q, b⊥)

Spert(Q, b∗) =

∫ Q2

µ2
b=c2

0/b2
∗

dµ2

µ2

[
A ln

Q2

µ2 + B + (D1 + D2) ln
1

R2

]
.
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Sudakov formalism

Soft gluon emissions factorize from the born cross section σ0.

Resummation is performed in the b⊥ space. Use δ(2)(k⊥− q⊥) =
∫ d2b⊥

(2π)2 ei(k⊥−q⊥)·b⊥

dσ
d2q⊥

= σ0

∑

n

(−1)n

n!

∫
d2k1⊥ · · · d2kn⊥S(k1⊥) · · · S(kn⊥)δ(2)(k1⊥ + · · · kn⊥ − q⊥)

= σ0

∫
d2b⊥
(2π)2 e−iq⊥·b⊥e−S(b⊥)

Use b∗ = b/
√

1 + b2/b2
max prescription to separate perturbative and NP regions.

All the A,B,C,D coefficients can be computed perturbatively.
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QCD Sudakov (CSS) Resummation for Boson Productions

[J.w. Qiu and X. Zhang, 02] DY and W [Landry, Brok, Nadolsky, C. Yuan, 03] Z boson

CSS Resummation describes DY, W and Z for both small and large QT .
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Collectivity at EIC?

p+p
√sNN = 13 TeV

p+Pb
√sNN = 5.02 TeV

Pb+Pb
√sNN = 5.02 TeV

p+p
√sNN = 13 TeV

p+Pb
√sNN = 5.02 TeV

Pb+Pb
√sNN = 5.02 TeV
p+p
√sNN = 13 TeV

p+Pb
√sNN = 5.02 TeV

Pb+Pb
√sNN = 5.02 TeV

Figure 2

Two-particle correlation results in (a) Pb+Pb, (b) p+Pb, and (c) p + p collisions at the LHC (55). In
Pb+Pb collisions there is a large cos(2��) correlation with peaks at �� = 0,⇡ that extend long-range

in pseudorapidity �⌘ (magenta curve). A similar feature is observed in p+Pb and p + p collisions,

thought it does not dominate the overall correlations to the same degree.

ATLAS (57), and CMS (58)]. Here the experimental signatures were much stronger than in

p + p collisions, and the race was on to repeat as many of the A + A measurements related to

collectivity as possible to determine whether the signals persisted in p+Pb. Experimenters at

RHIC immediately reexamined d+Au collision data at
p

sNN = 200 GeV from 2008 and found

similar patterns, though with a smaller flow signal relative to the non-flow backgrounds (59). To

date, nearly all observations in A + A collisions that provided strong evidence for the heavy ion

standard model “quark–gluon plasma as near-perfect fluid” have now been measured in p+Pb

and d+Au collisions (see Reference (60) for an excellent review). The notable exception to this

Jet quenching: The

suppression of high

transverse
momentum particle

and/or jet

production relative
to yields expected

from the number of

hard scatters in a
collision. statement is jet quenching, which is discussed in Section 5.1.

4.2. Instructive Measurements

In this section we discuss four particularly instructive measurements in small systems, each of

which tests a key aspect of extending the heavy ion standard model to such systems. These

measurements involve (a) multiparticle cumulants demonstrating that correlations exist among

the majority of emitted particles as opposed to a small subset, (b) manipulation of the col-

liding small nuclei to see whether the correlations scale as expected with initial geometry, (c)

particle-identified flow patterns to see whether they reflect a common velocity field of a fluid at

hadronization, and (d) higher moments of the flow patterns, including triangular and quadran-

gular flow.

4.2.1. Multiparticle cumulants. In a collision creating N particles, one can ask whether a given

two-particle correlation is indicative of correlations involving only a small subset of particles

M ⌧ N (as in the dijet case), or from M ⇡ N , that is, a feature of the bulk. Most non-

10

Heavy flavour Correlations

Prompt and nonprompt D0 v2 in pPb
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9

Charm v2 in pPb

Open charm: (prompt D0)
Similar to hidden charm: prompt J/ 

Beauty (nonprompt D0) v2 in pPb
First measurement: consistent with 0
Smaller than prompt D0 at low pT

Heavy quark collectivity puzzle in small systems

E. Chapon (CERN) CMS highlights QM 2019 14 / 24

[500] A. Baty Tue 08:40
CMS-PAS-HIN-19-009

Collectivity is everywhere in systems small and large!

Final state vs Initial state interpretation. Not clear yet!

Anisotropy of heavy mesons favors IS effect.
[Zhang, Marquet, Qin, Wei, Xiao, 19] Link

New results from UPC in PbPb collisions at LHC. (Mini-EIC)

What about the collectivity at the EIC on the horizon?
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v2 Predictions in γA collisions from CGC

vinte2 ' [0.035, 0.04]

Q2
s = 5 GeV2

Bp = 25 GeV−2

0.0 0.5 1.0 1.5 2.0 2.5
0.00

0.05

0.10

p⊥ (GeV)

v 2

UPC, ATLAS

CGC, pmax
⊥ = 5 GeV

CGC, pmax
⊥ = 4 GeV

∆2 = 0.25 GeV2

EIC: eA, 18 GeV on 110 GeV

UPC →

pPb →

0.1 0.2 0.3 0.4 0.5
0.00
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0.10

0.15

Q/Qs

v 2

CGC, Bp = 1/Q2

CGC, Bp = 4/Q2

[Shi, Wang, Wei, Xiao, Zheng, 21] Link

Photons can have a rich QCD structure due to fluctuation.

Similarity between γ∗A and pA collisions at high energy as far as high multiplicity
events are concerned.
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Explicit expressions for gluon GPDs

Small-x GPDs[Hatta, Xiao, Yuan, 17] Link F = F0 + 2 cos 2∆φFε

that from the helicity-flip gluon GPD in the collinear
framework. Meanwhile, for the azimuthally symmetric
cross section, the dipole formalism leads to divergence
in the collinear limit. This can be interpreted as the OðαsÞ
contribution to the quark GPD in the collinear framework,
according to the relation between the quark GPD and the
gluon GPD at small x. These results establish a complete
consistency between the dipole formalism and the collinear
factorization framework.
The rest of the paper is organized as follows. In Sec. II,

we establish the connection between the gluon GPDs at
small x and the gluon Wigner distributions. In particular,
the so-called elliptic gluon Wigner distribution will con-
tribute to the helicity-flip gluon GPD. In Sec. III, we
calculate the DVCS amplitude in the dipole framework in
coordinate space and derive the cos 2ϕ correlation. In
Sec. IV, we perform the calculations in momentum space
and demonstrate the consistency with the coordinate space
derivations in Sec. III. The comparisons to the collinear
factorization results will be made in Secs. III and IVand the
Appendix. In Sec. V, we compute the contribution from the
longitudinally polarized virtual photon and find the cosϕ
correlation. Finally, we summarize our paper in Sec. VI.

II. DIPOLE S-MATRIX AND THE GLUON GPD

In this section, we introduce the basic ingredient to
calculate the DVCS amplitude at small x, namely, the
dipole S-matrix. We shall clarify the relation between the
gluon GPDs and the dipole S-matrix and show that the latter
provides an efficient description of the DVCS amplitude
which is free of collinear divergences.
In the dipole framework, the DVCS amplitude is

represented by the diagram in Fig. 2 in coordinate space
(left) and in momentum space (right). We work in a frame
in which the virtual photon and the proton are collinear,
with the proton moving fast in the positive z-direction.
In coordinate space, we fix the transverse coordinates of
the quark and antiquark to be x1⊥ ¼ b⊥ þ ð1 − zÞr⊥ and
x2⊥ ¼ b⊥ − zr⊥, respectively, with z defined as the longi-
tudinal momentum fraction of the quark with respect to the
incoming virtual photon. The “center of mass” of the qq̄
system coincides with the virtual photon coordinate
zx1⊥ þ ð1 − zÞx2⊥ ¼ b⊥. The size of the qq̄ system is

r⊥ ¼ x1⊥ − x2⊥. In this setup, the forward S-matrix for the
qq̄ pair scattering off the target reads

Sxðb⊥ þ ð1 − zÞr⊥; b⊥ − zr⊥Þ

≡
!

1

Nc
Tr½Uðb⊥ þ ð1 − zÞr⊥ÞU†ðb⊥ − zr⊥Þ&

"

x
; ð3Þ

where x is the relevant momentum fraction of gluons in
the target. In DVCS and in the small-x limit, it is related
to the Bjorken variable xBj as x ≈

xBj
2 , which is also the same

as the skewness parameter ξ (defined below). U is the
Wilson line

Uðx⊥Þ ¼ P exp
#
−ig

Z
∞

−∞
dx−Aþðx−; x⊥Þ

$
; ð4Þ

which represents the eikonal propagation of the quark. The
brackets h…i denote the off-forward proton matrix element
hp0j…jpi
hpjpi with p0 ¼ pþ Δ. In momentum space, we define

F xð ~q⊥;Δ⊥;zÞ

≡
Z

d2r⊥d2b⊥
ð2πÞ4

eiΔ⊥·b⊥þi ~q⊥·r⊥Sxðb⊥þð1−zÞr⊥;b⊥−zr⊥Þ

¼
Z

d2r⊥d2b0⊥
ð2πÞ4

eiΔ⊥·b0⊥þi ~q⊥·r⊥e−iδ⊥·r⊥Sx

#
b0⊥þ

r⊥
2
;b0⊥−

r⊥
2

$

¼Fxðq⊥≡ ~q⊥−δ⊥;Δ⊥Þ; ð5Þ

where δ⊥ ≡ 1−2z
2 Δ⊥ and

Fxðq⊥;Δ⊥Þ ¼
Z

d2r⊥d2b⊥
ð2πÞ4

eib⊥·Δ⊥þir⊥·q⊥

× Sx

#
b⊥ þ r⊥

2
; b⊥ −

r⊥
2

$
: ð6Þ

In momentum space, we can also write F x ¼
1

ð2πÞ4
R
d2x1⊥d2x2⊥eik1⊥·x1⊥−ik2⊥·x2⊥Sxðx1⊥; x2⊥Þ with k1⊥ ≡

~q⊥ þ zΔ⊥ and k2⊥ ≡ ~q⊥ − ð1 − zÞΔ⊥ conjugate to x1⊥ and
x2⊥, respectively. The directions of the transverse momenta
flow of exchanged gluons are labeled in Fig. 2. Following
Ref. [16], we decompose F into the angular independent
and “elliptic” parts

FIG. 2. Left diagram: DVCS amplitude in transverse coordinate space; Right diagram: DVCS amplitude in momentum space.

YOSHITAKA HATTA, BO-WEN XIAO, and FENG YUAN PHYSICAL REVIEW D 95, 114026 (2017)

114026-2

1
P+

∫
dζ−

2π
eixP+ζ−〈p′|F+i(−ζ/2)F+j(ζ/2)|p〉

=
δij

2
xHg(x,∆⊥) +

xETg(x,∆⊥)

2M2

(
∆i
⊥∆j
⊥ −

δij∆2
⊥

2

)
+ · · · ,

Helicity conserved: xHg(x,∆⊥) =
2Nc

αs

∫
d2q⊥q2

⊥F0

Helicity flipping: xETg(x,∆⊥) =
4NcM2

αs∆2
⊥

∫
d2q⊥q2

⊥Fε
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Gluon GPDs and DVMP V = J/Ψ, φ · · ·

γ∗(q) + p/A(p)→ V(q−∆) + p/A(p + ∆)

The latter diagram is dominant at small-x (high energy) limit.

Widely studied[Brodsky, Frankfurt, Gunion, Mueller, Strikman, 94; Kowalski, Teaney, 03;
Kowalski, Motyka, Watt, 06; Kowalski, Caldwell, 10; Berger, Stasto, 13; Rezaeian, Schmidt,
13]...

Incoherent diffractive production for nucleon/nuclear targets [T. Lappi, H. Mantysaari, 11;
Toll, Ullrich, 12; Lappi, Mantysaari, R. Venugopalan, 15; Lappi, Mantysaari, Schenke, 16]...;

NLO[Boussarie, Grabovsky, Ivanov, Szymanowski, Wallon, 16] Link
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Probing gluon GPD at small-x

DVCS and DVMP [Mantysaari, Roy, Salazar, Schenke, 20] Link

γ∗ γ

P P ′

z

1 − z

∆

x

y

z

p/A

∆φ∆l

Lepton Plane

Hadron Plane

γ

p/A

dσTT

dxBdQ2d2∆⊥
=

α3
em

πxBjQ2

{(
1− y +

y2

2

)
(A2

0 +A2
2) + (1− y)2A0A2 cos(2φ∆l)

}

A0: helicity conserved amplitude; A2: helicity-flip amplitude

Use lepton plane as reference, one can measure angular correlations.

cos 2φ∆l correlation is sensitive to the helicity-flip gluon GPD xETg.
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Diffractive vector meson production

ρ, φ, J/Ψ, Υ · · ·

Coherent Incoherent

ρ, φ, J/Ψ, Υ · · ·

X

Sensitive to proton fluctuating shape. (Variance) [Mantysaari, Schenke, 16;
Mantysaari, Roy, Salazar, Schenke, 20]

Good-Walker: measure of fluct. dσincoh
d̂t ∼ 〈|A|2〉 − |〈A〉|2
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Can we measure Wigner distributions?

Can we measure Wigner distribution/GTMD? Yes, we can!
Diffractive back-to-back dijets in ep/eA collisions.
[Hatta, Xiao, Yuan, 16] Link

Further predictions of asymmetries due to correlations.

xWT
g (x,~q⊥;~b⊥) = xWT

g Symmetric part

+ 2 cos(2φ)xWε
g + · · · Anisotropies

bT

kT
xp

−q⊥ − ∆⊥
2q⊥ − ∆⊥

2

p p′

k1

k2

Study of the elliptic anisotropy.[Mäntysaari, Mueller, Salazar and Schenke, 20] Link
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CMS: Dijet photoproduction in UPC (PbPb)

γ + Pb→ Jet + Jet + Pb

φ

�k1⊥�k2⊥

−�q⊥ = �ksg⊥

π − φ

1 Preliminary analysis Link [CMS-PAS-HIN-18-011]

2 Large asymmetries observed!

3 Indicate additional sources ?

Asymmtries due to final state gluon radiations are important.
[Hatta, Xiao, Yuan, Zhou, 21] Link
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Contributions from final state gluon radiations

x

y

Consider soft gluon radiations near jet cone in γA/p→ qq̄ + A/p

g2
∫

d3kg

(2π)32Ekg

δ(2)(q⊥ + kg⊥)CF
2k1 · k2

k1 · kgk2 · kg

=
CFαs

π2q2
⊥

[
cdiff

0 + 2 cos(2φ) cdiff
2 + ...

]
.

cdiff
0 = ln

a0

R2 , cdiff
2 = ln

a2

R2 .

Observed asymmetry should includes initial and final state contributions!
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Summary of the Lectures

Lecture 1 - Introduction to QCD and Jet
Infrared Safe Observable
Collinear Factorization and DGLAP equation

Lecture 2 - Saturation Physics (Color Glass Condensate)
McLerran-Venugopalan Model
BFKL equation
Non-linear small-x evolution equations

Lecture 3 - EIC observables
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