

高能自旋物理基础 Basics for High Energy Spin Physics

梁作堂 (Liang Zuo-tang) 山东大学(Shandong University) 2022年8月14-15日

内容安排

- 第一部分: 自旋状态的描写和高能反应过程的极化测量 Description of Spin States and Polarization Measurements in High Energy Reactions
- 第二部分:部分子分布函数和碎裂函数
- Parton Distribution Functions (PDFs) and Fragmentation Functions (FFs)
- 第三部分: QCD高能自旋物理前沿专题简介
- An Introduction to Selected Topics in the Frontier of QCD High Energy Spin Physics

声明:没有追求系统、完整、深入; 注重选择、基础、个人喜好

高能自旋物理基础 Basics for High Energy Spin Physics

第一部分:自旋状态的描写和高能反应过程的极化测量 Description of Spin States and Polarization Measurements in High Energy Reaction

> 梁作堂 (Liang Zuo-tang) 山东大学(Shandong University) 2022年8月14日

Contents

I. Introduction: The concept of spin

II. Description of the spin state in high energy reactions

- > Spin 1/2 particles
 - Spin in non-relativistic quantum mechanics
 - Dirac equation and spin in relativistic QM
 - Helicity and chirality
 - Spin density matrix and polarization
- > Spin-1 particles

III. Polarization measurements in high energy reactions

- Hyperon polarization
- Vector meson spin alignment

Contents

I. Introduction: The concept of spin

II. Description of the spin state in high energy reactions

- > Spin 1/2 particles
 - Spin in non-relativistic quantum mechanics
 - Dirac equation and spin in relativistic QM
 - Helicity and chirality
 - Spin density matrix and polarization
- Spin-1 particles

III. Polarization measurements in high energy reactions

- > Hyperon polarization
- Vector meson spin alignment

原子光谱学与量子物理理论发展

Introduction: The concept of electron spin

电子自旋的发现

Die Naturwissenschaften 13, 953–954 (1925)

Heft 47. 20. II, 1925 Zuschriften und vorläufige Mitteilungen. 953

Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons.

in Übereinstimmung zu kommen, muß man also diesem Modell die folgenden Forderungen stellen:

a) Das Verhältnis des magnetischen Momentes des Elektrons zum mechanischen muß für die Eigenrotation doppelt so groß sein als für die Umlaufsbewegung²).

b) Die verschiedenen Orientierungen vom R zur Bahnebene (oder K) des Elektrons muß, vielleicht in Zusammenhang mit einer HEISENBERG-WENTZELschen Mittelungsvorschrift⁹), die Erklärung des Relativitätsdoubletts hiefern können.

G. E. UHLENBECK und S. GOUDSMIT. Leiden, den 17. Oktober 1925.

Instituut voor Theoretische Natuurkunde.

Es ist mir ein Bedürfnis, festzustellen, daß Prof. W. J. DE HAAS mir schon vor einigen Monaten die Apparatur für ein sehr interessantes Experiment zeigte, das sich ebenfalls mit dem Problem der inneren Rotation des Elektrons beschäftigt. Obwohl *mir* die betreffenden Ideen von Prof. DE HAAS seit längerer Zeit bekannt waren, hatten die Herren UHLENBECK und GOUDSMIT, als sie mir kürzlich die obigen Überlegungen mitteilten, davon keinerlei Kenntnis.

P. Ehrenfest.

NATURE

[February 20, 1926

Letters to the Editor.

[The Editor does not hold himself responsible for opinions expressed by his correspondents. Neither can he undertake to return, nor to correspond with the writers of, rejected manuscripts intended for this or any other part of NATURE. No notice is taken of anonymous communications.]

this moment of momentum is given by $Kh/2\pi$, where $K = \frac{1}{2}, \frac{2}{3}, \frac{2}{3}$. The total angular momentum of the atom is $Jh/2\pi$, where J = I, 2, 3. The symbols K and J correspond to those used by Landé in his classification of the Zeeman effects of the optical multiplets. The letters S, P, D also relate to the analogy with the structure of optical spectra which we consider below. The dotted lines represent the position of the energy levels to be expected in the absence of the spin of the electron. As the arrows in-

Spinning Electrons and the Structure of Spectra.

electron.

264

In conclusion, we wish to acknowledge our indebtedness to Prof. Niels Bohr for an enlightening discussion, and for criticisms which helped us distinguish between the essential points and the more technical details of the new interpretation. <u>G. E. UHLENBECK.</u>

S. Goudsmit.

Instituut voor Theoretische Natuurkunde, Leyden, December 1925.

HAVING had the opportunity of reading this inter-

the correspondence between classical mechanics and the quantum theory. N. BOHR. Copenhagen, January 1926.

Introduction: The concept of electron spin

GEORGE UHLENBECK AND THE DISCOVERY OF ELECTRON SPIN

How two young Dutchmen, one with only a master's degree, the other a graduate student, made a most important finding in theoretical atomic physics. The owl depicted on the signet ring George Uhlenbeck used to wear—"Uhlenbeck" in German means "owl's brook"—derives from his family's coat of arms. The shield reads, in the language of heraldry: Azure, on a tree trunk proper rising from water argent, an owl contourné, head affronty. In plain language, it depicts an owl with its head affronty. In plain language, it depicts an owl with its head affronty is up out of a silvery brook. (I owe the transcription of the Dutch blazon into English heraldry to Michael Maclagan, the Richmond Herald in the College of Arms. in London)

Abraham Pais

假设

电子具有(绕自身转 动的)额外的自由度 s = 1/2

自旋磁矩 郎德因子 $g_s = 2$ 自旋轨道耦合 $V_{ls}(r) = -\frac{1}{2m^2} \frac{dV}{rdr} \hat{\vec{l}} \cdot \hat{\vec{s}}$ 问题

表面速度 远大于光速?

因子2的差别?

电子磁矩与自身运动

产生的磁场相互作用?

Abraham Pais is Detlev Bronk Professor Emeritus at Rockefeller University, in New York. He based this article on his presentation at APS's Uhlenbeck Memorial Symposium, held in Baltimore on 3 May 1989.

34 PHYSICS TODAY DECEM

DECEMBER 1989

解答

量子效应

相对运动,外场

相对论运动学效应 托马斯进动 Thomas precession

Introduction: The concept of electron spin

Dirac equation for free particle:
$$i\frac{\partial}{\partial t}\psi = \hat{H}\psi$$

 $\hat{H} = \vec{\alpha}\cdot\hat{\vec{p}} + \beta m$
(1) Dirac粒子是自旋1/2的费米子
 $\left[\hat{H},\hat{L}\right] = -i\vec{\alpha}\times\hat{\vec{p}}$ $\left[\hat{H},\vec{\Sigma}\right] = 2i\vec{\alpha}\times\hat{\vec{p}}$ $\left[\hat{H},\hat{\vec{f}}\right] = 0$
 $\hat{\vec{f}} = \hat{\vec{L}} + \frac{\vec{\Sigma}}{2}$ $\vec{\Sigma} = \begin{pmatrix}\vec{\sigma} & 0\\0 & \vec{\sigma}\end{pmatrix}$
(2) Dirac粒子的磁矩 $g_s = 2$ $\hat{\vec{M}} = \frac{1}{2}q\vec{r}\times\hat{\vec{v}} = \frac{1}{2}q\vec{r}\times\vec{\alpha} = \frac{q}{2}\begin{pmatrix}0 & \vec{r}\times\vec{\sigma}\\\vec{r}\times\vec{\sigma} & 0\end{pmatrix}$
考查自由的Dirac粒子 $\psi = \begin{pmatrix}\xi\\\eta\end{pmatrix}$ $\hat{H}\psi = E\psi - \begin{pmatrix}(E-m)\xi = \vec{\sigma}\cdot\hat{\vec{p}}\eta\\(E+m)\eta = \vec{\sigma}\cdot\hat{\vec{p}}\xi$ $\eta = \frac{\vec{\sigma}\cdot\hat{\vec{p}}}{E+m}\xi$
 $\langle\psi|\hat{\vec{M}}|\psi\rangle = \frac{q}{E+m}\int d^3r\,\xi^+(\hat{\vec{L}}+\vec{\sigma})\xi$ Non-relativistic limit: $E\sim m \gg |\vec{p}|\sim V(r)$

(3) Dirac粒子的spin-orbit coupling
考查中心力场中运动的Dirac粒子
$$\hat{H} = \vec{\alpha} \cdot \hat{\vec{p}} + \beta m + V(r)$$
 $\hat{H}_{eff}\xi = E\xi$
 $\hat{H}_{eff} = m + \frac{\hat{\vec{p}}^2}{E+m-V} + V + \frac{dV}{rdr}\frac{\vec{\sigma} \cdot \hat{\vec{L}}}{(E+m-V)^2} - i\frac{dV}{rdr}\frac{\vec{r} \cdot \hat{\vec{p}}}{(E+m-V)^2}$

but this is NOT the non-relativistic equation! ξ is not normalized, \hat{H}_{eff} is not Hermitian The correct form is obtained by using the Foldy-Wouthuysen transformation.

Fudan2022

Spin-orbit coupling in systems under strong interaction

At the hadron level

Nuclear shell model

Nobel price 1963

M.G. Mayer, J.H.D. Jensen (1948)

LS-coupling \Rightarrow "magic numbers"

M.G. Mayer and J.H.D. Jensen, "Elementary Theory of Nuclear Shell Structure", Wiley, New York and Chapman Hall, London, 1955.

Three characteristics of spin

量子 相对论 自旋轨道耦合

空间量子化示意图

By the way

g = 2, point-like; g-2 experiments, test of QED, new physics.

Anomalous magnetic moment:

 $g \neq 2$ significantly different from 2, composite nature of particles; e.g. $\mu_p = 2.97 \mu_N$, $\mu_n = -1.91 \mu_N$ the first signature of structure of nucleon.

Contents

I. Introduction: The concept of spin

II. Description of the spin state in high energy reactions

- > Spin 1/2 particles
 - Spin in non-relativistic quantum mechanics
 - Dirac equation and spin in relativistic QM
 - Helicity and chirality
 - Spin density matrix and polarization
- > Spin-1 particles

III. Polarization measurements in high energy reactions

- > Hyperon polarization
- Vector meson spin alignment

单粒子状态 非相对论情形

$$\hat{\vec{s}} = \frac{1}{2}\vec{\sigma} \qquad \sigma_x = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \qquad \sigma_y = \begin{pmatrix} 0 & -i\\ i & 0 \end{pmatrix} \qquad \sigma_z = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$
$$\sigma_z \xi_z(m) = m\xi_z(m) \qquad \xi_z(+) = \begin{pmatrix} 1\\ 0 \end{pmatrix} \qquad \xi_z(-) = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

For any
$$\vec{n} = \sin \theta \cos \varphi \vec{e}_x + \sin \theta \sin \varphi \vec{e}_y + \cos \theta \vec{e}_z$$
, we have
 $\sigma_n = \vec{\sigma} \cdot \vec{n}$ $\sigma_n \xi_n(m) = m \xi_n(m)$ $\xi_n(+) = \begin{pmatrix} \cos \frac{\theta}{2} \\ \sin \frac{\theta}{2} e^{i\varphi} \end{pmatrix}$

For any
$$\xi = \begin{pmatrix} a \\ b \end{pmatrix}$$
, we have $\sigma_n \xi = \xi$ $\tan \frac{\theta}{2} = \frac{|b|}{|a|}$ $e^{i\varphi} = \frac{|a|b}{|b|a}$
For any \widehat{O} , we have $\widehat{O} = \widehat{O}_s I + \widehat{\overrightarrow{O}}_V \cdot \overrightarrow{\sigma}$ $\widehat{O}_s = \frac{1}{2} \operatorname{Tr} \widehat{O}$ $\widehat{\overrightarrow{O}}_V = \frac{1}{2} \operatorname{Tr} (\overrightarrow{\sigma} \widehat{O})$

単粒子状态
相対论情形

$$\psi_{pS}(x) = u(p,s)e^{ipx}$$

 $u(p,s) = N\begin{pmatrix} \xi_z(m) \\ \vec{\sigma} \cdot \vec{p} \\ E+m} \xi_z(m) \end{pmatrix}$
 $\sigma_z \xi_z(m) = m\xi_z(m)$
 $\Sigma_z u(p,S) \neq mu(p,S)$
Helicity (螺旋度) $\hat{h} = \frac{\vec{\Sigma} \cdot \vec{p}}{|\vec{p}|}$
 $\hat{h}u(p,\lambda) = \lambda u(p,\lambda)$
 $u(p,\lambda) = N\begin{pmatrix} \xi_h(\lambda) \\ \lambda \sqrt{\frac{E-m}{E+m}} \xi_h(\lambda) \end{pmatrix}$
 $\vec{\sigma} \cdot \vec{p} \\ |\vec{p}| \\ \xi_h(\lambda) = \lambda \xi_h(\lambda)$
 $\xi_h(+) = \begin{pmatrix} \cos \frac{\theta}{2} \\ \sin \frac{\theta}{2} e^{-i\varphi} \end{pmatrix}$
 $\xi_h(-) = \begin{pmatrix} \sin \frac{\theta}{2} \\ -\cos \frac{\theta}{2} e^{-i\varphi} \end{pmatrix}$
 $\vec{m} = 0$, $u(p,\lambda) = \begin{pmatrix} \xi_h(\lambda) \\ \lambda \xi_h(\lambda) \end{pmatrix}$

Helicity(螺旋度)
$$\hat{h} \equiv \frac{\vec{\Sigma} \cdot \vec{p}}{|\vec{p}|}$$

ANNALS OF PHYSICS: 7, 404-428 (1959)

On the General Theory of Collisions for Particles with Spin^{*}

M. JACOB[†] AND G. C. WICK

Brookhaven National Laboratory, Upton, New York

周光召

This has been done by Stapp (6) for collisions between spin- $\frac{1}{2}$ particles and by Chao and Shirokov (7)¹ for particles of arbitrary spin. In either case, the authors

7. CHOU KUANG-CHAO AND M. I. SHIROKOV, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 1230 (1958); translation: Soviet Phys. JETP 7, 851 (1958).

* Note added in proof. We have recently received a copy of a paper by Chou Kuang-Chao [J. Expil. Theoret. Phys. (U.S.S.R.) **36**, 909 (1959)] in which a treatment is given which applies when one of the incident particles has zero mass.

(1) Only for particles with given \vec{p} (2) Neither additive nor multiplicative

- (3) Lorentz invariant for m = 0, helicity=chirality
- ④ Helicity conservation: scattering: $h_{in} = h_{final}$

pair creation/annihilation: $h_{particle} = -h_{anti-particle}$

Chirality and helicity

(1) Chirality (手征性) 定义与性质

$$\begin{split} \gamma_{5} &= i\gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3} \quad \gamma_{5}^{\dagger} = \gamma_{5} \quad \{\gamma_{5}, \gamma_{\mu}\} = 0 \qquad \gamma_{5}^{2} = 1 \qquad \gamma_{5} = \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix} \\ \gamma_{5}\psi &= \lambda\psi \qquad \lambda = \pm 1 \iff \psi_{L/R} = \frac{1}{2}(1\pm\gamma_{5})\psi \qquad \psi = \psi_{L} + \psi_{R} \\ \psi^{\dagger}\psi &= \psi_{L}^{\dagger}\psi_{L} + \psi_{R}^{\dagger}\psi_{R} \qquad \psi_{L}^{\dagger}\psi_{R} = \psi_{R}^{\dagger}\psi_{L} = 0 \\ \bar{\psi}\psi &= \bar{\psi}_{L}\psi_{R} + \bar{\psi}_{R}\psi_{L} \qquad \bar{\psi}_{L}\psi_{L} = \bar{\psi}_{R}\psi_{R} = 0 \\ \bar{\psi}\gamma^{\mu}\psi &= \bar{\psi}_{L}\gamma^{\mu}\psi_{L} + \bar{\psi}_{R}\gamma^{\mu}\psi_{R} \qquad \bar{\psi}_{L}\gamma^{\mu}\psi_{R} = \bar{\psi}_{R}\gamma^{\mu}\psi_{L} = 0 \end{split}$$

(2) 当m = 0时, chirality=helicity

$$u(p,\lambda) = \begin{pmatrix} \xi(\lambda) \\ \lambda\xi(\lambda) \end{pmatrix} \qquad \gamma_5 u(p,\lambda) = \begin{pmatrix} \lambda\xi(\lambda) \\ \xi(\lambda) \end{pmatrix}$$
$$u(p,R) = \begin{pmatrix} \xi(+) \\ \xi(+) \end{pmatrix} = u(p,+) \qquad u(p,L) = \begin{pmatrix} \xi(-) \\ \xi(-) \end{pmatrix} = u(p,-)$$

Dirac spinor的bilinear covariants(双线性协变量)

(1) The independent Γ -matrices

In the 2x2 case: $(I, \sigma_x, \sigma_y, \sigma_z)$ $\{\sigma_i, \sigma_i\} = 2\delta_{ij}$ $\text{Tr}\sigma_i = 0$ $\text{Tr}(\sigma_i\sigma_j) = 2\delta_{ij}$ $\widehat{O} = \widehat{O}_s I + \widehat{\overrightarrow{O}}_V \cdot \overrightarrow{\sigma} \qquad \widehat{O}_s = \frac{1}{2} \operatorname{Tr}(\widehat{O}) \qquad \widehat{\overrightarrow{O}}_V = \frac{1}{2} \operatorname{Tr}(\widehat{O} \overrightarrow{\sigma})$ For a given \widehat{O} : In the 4x4 case: $\Gamma_n = \{I, \gamma_5, \gamma_\mu, \gamma_5 \gamma_\mu, \sigma_{\mu\nu}\}$ 16 independent Γ -matrices $\operatorname{Tr}\Gamma_n = 0$ besides $\Gamma_1 = I$. $\Gamma_n^2 = \pm I$ $\operatorname{Tr}\{\Gamma_n\Gamma_h\} = \pm 4\delta_{ah}$ $\gamma_5^{\dagger} = \gamma_5, \ \gamma_{\mu}^{\dagger} = \gamma_0 \gamma_{\mu} \gamma_0, \ (\gamma_5 \gamma_{\mu})^{\dagger} = \gamma_0 (\gamma_5 \gamma_{\mu}) \gamma_0, \ \sigma_{\mu\nu}^{\dagger} = \gamma_0 \sigma_{\mu\nu} \gamma_0$ For a given \widehat{O} : $\widehat{O} = \widehat{O}_{s}I + \widehat{O}_{P}\gamma_{5} + \widehat{O}_{V\mu}\gamma^{\mu} + \widehat{O}_{A\mu}\gamma_{5}\gamma^{\mu} + \widehat{O}_{T\mu\nu}\sigma^{\mu\nu}$ $\widehat{\boldsymbol{\theta}}_n = \pm \frac{1}{4} \operatorname{Tr}(\widehat{\boldsymbol{\theta}} \Gamma_n)$

Dirac spinor的bilinear covariants(双线性协变量)

(2) The bilinear covariants $\overline{\psi}\Gamma_n\psi$

$\overline{\psi}\psi$	scalar	$\widehat{oldsymbol{P}}\overline{oldsymbol{\psi}}oldsymbol{\psi}=\overline{oldsymbol{\psi}}oldsymbol{\psi}$
$\overline{\psi} \gamma_5 \psi$	pseudo-scalar	$\widehat{P}\overline{\psi}\gamma_5\psi=\overline{\psi}\gamma_5\psi$
$\overline{\psi}\gamma_{\mu}\psi$	vector	$\widehat{P}\overline{\psi}\gamma_{\mu}\psi=\overline{\psi}\gamma^{\mu}\psi$
$\overline{\psi} \gamma_5 \gamma_\mu \psi$	axial vector	$\widehat{P}\overline{\psi}\gamma_5\gamma_\mu\psi=-\overline{\psi}\gamma_5\gamma^\mu\psi$
$\overline{\psi}\sigma_{\mu u}\psi$	tensor	$\widehat{P}\overline{\psi}\sigma_{\mu u}\psi=\overline{\psi}\sigma^{\mu u}\psi$

Polarization vector of a spin-1/2 particle system

The spin density matrix $\hat{\mu}$

$$\widehat{
ho} = \sum_{lpha} g_{lpha} \left| lpha
ight
angle \left< lpha
ight|$$

normalization $\mathrm{Tr}\widehat{\rho} = \sum_{\alpha} g_{\alpha} = 1$

Average value of $\widehat{oldsymbol{O}}$: $\langle \widehat{oldsymbol{O}}
angle = {
m Tr} \, \widehat{oldsymbol{
ho}} \widehat{oldsymbol{O}}$

Probability in the state $|\psi
angle$: $P_{\psi}=\langle\psi|\widehat{
ho}|\psi
angle$

We choose a basis, e.g., the helicity basis $|\lambda\rangle$, where $\lambda = \pm 1$,

$$oldsymbol{
ho}_{\lambda\lambda'} = \langle \lambda | \widehat{
ho} | \lambda'
angle = \sum_{lpha} g_{lpha} \langle \lambda | lpha
angle \langle lpha | \lambda'
angle$$
 $\widehat{
ho} = \begin{pmatrix}
ho_{++} &
ho_{+-} \
ho_{-+} &
ho_{--} \end{pmatrix}$ is a 2x2 Hermitian matrix.

We decompose it as $\widehat{\rho} = \frac{1}{2}(1 + \overrightarrow{P} \cdot \overrightarrow{\sigma})$

 $\vec{P} = \text{Tr}(\hat{\rho}\vec{\sigma}) = \langle \vec{\sigma} \rangle$ is the polarization vector of the system.

Polarization vector of a spin-1/2 particle system in a pure state $|p, n\rangle$

Non-relativistic, the spin state is given by the Pauli spinor $\xi(n)$

$$\vec{\sigma} \cdot \vec{n} \xi(n) = \xi(n)$$
 $\xi(n) = \begin{pmatrix} \cos \frac{\theta}{2} \\ \sin \frac{\theta}{2} e^{i\varphi} \end{pmatrix}$

The helicity state is given by $\xi(\lambda)$ where

$$\frac{\vec{\sigma}\cdot\vec{p}}{|\vec{p}|}\xi_h(\lambda)=\lambda\xi_h(\lambda)$$

$$\widehat{
ho} = |n\rangle\langle n| \qquad
ho_{\lambda\lambda'} = \langle\lambda|\widehat{
ho}|\lambda'
angle = \langle\lambda|n
angle\langle n|\lambda'
angle \qquad \langle\lambda|n
angle = \xi_h^{\dagger}(\lambda)\xi(n)$$

take $\vec{p} = |\vec{p}|\vec{e}_z$ as an example where we have $\xi_h(+) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \xi_h(-) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

$$\begin{aligned} \xi_h^{\dagger}(+)\xi(n) &= \cos\frac{\theta}{2} \\ \xi_h^{\dagger}(-)\xi(n) &= \sin\frac{\theta}{2}e^{i\varphi} \end{aligned} \qquad \widehat{\rho} = \begin{pmatrix} \cos^2\frac{\theta}{2} & \frac{1}{2}\sin\theta e^{i\varphi} \\ \frac{1}{2}\sin\theta e^{i\varphi} & \sin^2\frac{\theta}{2} \end{pmatrix} \qquad \overrightarrow{P} = \operatorname{Tr}(\widehat{\rho}\overrightarrow{\sigma}) = \overrightarrow{n} \end{aligned}$$

Polarization vector of a spin-1/2 particle system in a pure state |p,n
angle

Relativistic, the spin state is given by the Dirac spinor |p,n
angle

$$|p,n
angle = N egin{pmatrix} \xi(n) \ ec{p} \cdot ec{\sigma} \ ec{E} + m \ \xi(n) \end{pmatrix}$$
 where $ec{\sigma} \cdot ec{n}\xi(n) = \xi(n)$ $\xi(n) = egin{pmatrix} \cos heta \ \sin heta \ \sin heta \ \sin heta \ e^{i\varphi} \end{pmatrix}$

The helicity state
$$|p, \lambda\rangle \quad |p, \lambda\rangle = N \begin{pmatrix} \xi_h(\lambda) \\ \lambda |\vec{p}| \\ \overline{E+m} \xi_h(\lambda) \end{pmatrix}$$
 where $\frac{\vec{\sigma} \cdot \vec{p}}{|\vec{p}|} \xi_h(\lambda) = \lambda \xi_h(\lambda)$

$$\langle \lambda | n \rangle = \langle p, \lambda | p, n \rangle = N^2 \left[\xi_h^{\dagger}(\lambda) \xi(n) + \xi_h^{\dagger}(\lambda) \frac{\lambda |\vec{p}|}{E+m} \frac{\vec{\sigma} \cdot \vec{p}}{E+m} \xi(n) \right] = \xi_h^{\dagger}(\lambda) \xi(n)$$

Four dimensional polarization vector and spin projection operator of a spin-1/2 particle

In the rest frame

$$s = (\mathbf{0}, \vec{s}) \qquad p \cdot s = \mathbf{0}$$
$$s = \left(\frac{\vec{p} \cdot \vec{s}}{m}, \vec{s} + \frac{(\vec{p} \cdot \vec{s})\vec{p}}{m(E+m)}\right)$$

In the moving frame

Longitudinal polarization
$$\vec{s} \parallel \vec{p}$$
: $s_{\parallel} = \lambda \frac{1}{m} \left(|\vec{p}|, E \frac{\vec{p}}{|\vec{p}|} \right) = \lambda \nu \frac{p}{m} + \lambda \frac{m}{E} \left(0, \frac{\vec{p}}{|\vec{p}|} \right) \rightarrow \lambda \frac{p}{m}$

Transverse polarization $\vec{s} \perp \vec{p}$: $s_{\perp} = (0, \vec{s}_{\perp}, 0)$

$$s = s_{||} + s_{\perp} = \lambda v \frac{p}{m} + \lambda \frac{m}{E} \left(0, \frac{\overrightarrow{p}}{|\overrightarrow{p}|} \right) + s_{\perp}$$

Space reflection:

$$p^{\mu} = (p_0, \vec{p}) \rightarrow \vec{p}^{\mu} = p_{\mu} = (p_0, -\vec{p})$$
$$s^{\mu} = (s_0, \vec{s}) \rightarrow -\vec{s}^{\mu} = -s_{\mu} = (-s_0, \vec{s})$$

The spin projection operator

$$u(p,s)\overline{u}(p,s) = (p+m)\frac{1}{2}(1+\gamma_5s)$$

$$u(p,s) = N\left(\frac{\vec{p}\cdot\vec{\sigma}}{\vec{E}+m}\xi(s)\right)$$

 $\langle \mathbf{z}(-) \rangle$

where
$$\vec{\sigma} \cdot \vec{s} \xi(s) = \xi(s)$$
 $\xi(s)\xi^{\dagger}(s) = \frac{1}{2}(1 + \vec{\sigma} \cdot \vec{s})$

$$\begin{split} u(p,s)\overline{u}(p,s) &= \begin{pmatrix} \xi(s)\xi^{\dagger}(s) & -\xi(s)\xi^{\dagger}(s)\frac{\overrightarrow{p}\cdot\overrightarrow{\sigma}}{E+m} \\ \frac{\overrightarrow{p}\cdot\overrightarrow{\sigma}}{E+m}\xi(s)\xi^{\dagger}(s) & -\frac{\overrightarrow{p}\cdot\overrightarrow{\sigma}}{E+m}\xi(s)\xi^{\dagger}(s)\frac{\overrightarrow{p}\cdot\overrightarrow{\sigma}}{E+m} \end{pmatrix} \\ &= \begin{pmatrix} \frac{1}{2}(1+\overrightarrow{\sigma}\cdot\overrightarrow{s}) & -\frac{\overrightarrow{p}\cdot\overrightarrow{\sigma}}{E+m}\frac{1}{2}[1-\overrightarrow{\sigma}\cdot\overrightarrow{s}+\frac{2}{\overrightarrow{p}^{2}}(\overrightarrow{p}\cdot\overrightarrow{\sigma})(\overrightarrow{s}\cdot\overrightarrow{\sigma})] \\ \frac{\overrightarrow{p}\cdot\overrightarrow{\sigma}}{E+m}\frac{1}{2}(1+\overrightarrow{\sigma}\cdot\overrightarrow{s}) & -\frac{E-m}{E+m}\frac{1}{2}[1-\overrightarrow{\sigma}\cdot\overrightarrow{s}+\frac{2}{\overrightarrow{p}^{2}}(\overrightarrow{p}\cdot\overrightarrow{\sigma})(\overrightarrow{s}\cdot\overrightarrow{\sigma})] \end{pmatrix} \\ &= \begin{pmatrix} 1 & -\frac{\overrightarrow{p}\cdot\overrightarrow{\sigma}}{E+m} \\ \frac{\overrightarrow{p}\cdot\overrightarrow{\sigma}}{E+m} & -\frac{E-m}{E+m} \end{pmatrix} \begin{pmatrix} \frac{1}{2}(1+\overrightarrow{\sigma}\cdot\overrightarrow{s}) & 0 \\ 0 & \frac{1}{2}[1-\overrightarrow{\sigma}\cdot\overrightarrow{s}+\frac{2}{\overrightarrow{p}^{2}}(\overrightarrow{p}\cdot\overrightarrow{\sigma})(\overrightarrow{s}\cdot\overrightarrow{\sigma})] \end{pmatrix} \end{split}$$

The spin projection operator

$$u(p,s)\overline{u}(p,s) = (p+m)\frac{1}{2}(1+\gamma_5s)$$

$$N^{2}\begin{pmatrix}1 & -\frac{\vec{p}\cdot\vec{\sigma}}{E+m}\\\frac{\vec{p}\cdot\vec{\sigma}}{E+m} & -\frac{E-m}{E+m}\end{pmatrix} = \frac{N^{2}}{E+m}\begin{pmatrix}E+m & -\vec{p}\cdot\vec{\sigma}\\\vec{p}\cdot\vec{\sigma} & -E+m\end{pmatrix} = \frac{N^{2}}{E+m}(\gamma\cdot p+m)$$

$$\gamma_5 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \gamma_5 \gamma_0 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \qquad \gamma_5 \vec{\gamma} = \begin{pmatrix} -\vec{\sigma} & 0 \\ 0 & \vec{\sigma} \end{pmatrix} \qquad s = (\frac{\vec{p} \cdot \vec{s}}{m}, \vec{s} + \frac{(\vec{p} \cdot \vec{s})\vec{p}}{m(E+m)})$$

$$\gamma_5 \gamma \cdot s = \begin{pmatrix} \vec{\sigma} \cdot \vec{s} + \frac{(\vec{p} \cdot \vec{s})(\vec{p} \cdot \vec{\sigma})}{m(E+m)} & -\frac{\vec{p} \cdot \vec{s}}{m} \\ \frac{\vec{p} \cdot \vec{s}}{m} & -\vec{\sigma} \cdot \vec{s} - \frac{(\vec{p} \cdot \vec{s})(\vec{p} \cdot \vec{\sigma})}{m(E+m)} \end{pmatrix}$$

$$\begin{pmatrix} 1+\vec{\sigma}\cdot\vec{s} & 0\\ 0 & 1-\vec{\sigma}\cdot\vec{s}+\frac{2}{\vec{p}^2}(\vec{p}\cdot\vec{\sigma})(\vec{s}\cdot\vec{\sigma}) \end{pmatrix} = 1+\gamma_5\gamma\cdot s + \begin{pmatrix} -\frac{(\vec{p}\cdot\vec{s})(\vec{p}\cdot\vec{\sigma})}{m(E+m)} & \frac{\vec{p}\cdot\vec{s}}{m}\\ -\frac{\vec{p}\cdot\vec{s}}{m} & \frac{(\vec{p}\cdot\vec{s})(\vec{p}\cdot\vec{\sigma})}{m(E-m)} \end{pmatrix}$$
$$\begin{pmatrix} -\frac{(\vec{p}\cdot\vec{s})(\vec{p}\cdot\vec{\sigma})}{m(E-m)} & \frac{\vec{p}\cdot\vec{s}}{m} \end{pmatrix}$$

$$(\gamma \cdot p + m) \begin{pmatrix} -\overline{m(E+m)} & \overline{m} \\ -\frac{\overrightarrow{p} \cdot \overrightarrow{s}}{m} & \frac{(\overrightarrow{p} \cdot \overrightarrow{s})(\overrightarrow{p} \cdot \overrightarrow{\sigma})}{m(E-m)} \end{pmatrix} = \mathbf{0}$$

Spin operator

$$\hat{\vec{s}} = \frac{1}{2}\vec{\Sigma} \qquad \Sigma_x = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \Sigma_x = \frac{i}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \qquad \Sigma_z = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Spin density matrix

$$\widehat{\rho} = \begin{pmatrix} \rho_{11} & \rho_{10} & \rho_{1-1} \\ \rho_{01} & \rho_{00} & \rho_{0-1} \\ \rho_{-11} & \rho_{-10} & \rho_{-1-1} \end{pmatrix}$$

Decomposition $\hat{\rho} = \frac{1}{3} \left[1 + \frac{3}{2} S^i \Sigma^i + 3 T^{ij} \right]$

$$\Sigma^{ij}$$
 $\Sigma^{ij} = \frac{1}{2} \left(\Sigma^i \Sigma^j + \Sigma^j \Sigma^i \right) - \frac{2}{3} I \delta_{ij}$

$$T = \frac{1}{2} \begin{pmatrix} -\frac{2}{3}S_{LL} + S_{TT}^{xx} & S_{TT}^{xx} & S_{LT}^{x} \\ S_{TT}^{xy} & -\frac{2}{3}S_{LL} - S_{TT}^{xx} & S_{LT}^{y} \\ S_{LT}^{x} & S_{LT}^{y} & \frac{4}{3}S_{LL} \end{pmatrix}$$

Spin density matrix

See e.g. A. Bacchetta, & P.J. Mulders, PRD62, 114004 (2000).

Fudan2022

Contents

I. Introduction: The concept of spin

II. Description of the spin state in high energy reactions

- > Spin 1/2 particles
 - Spin in non-relativistic quantum mechanics
 - Dirac equation and spin in relativistic QM
 - Helicity and chirality
 - Spin density matrix and polarization
- Spin-1 particles

III. Polarization measurements in high energy reactions

- > Hyperon polarization
- > Vector meson spin alignment

Polarization measurements: hyperon polarization

Two body decay $A \rightarrow 1 + 2$ In the rest frame of A

 $p_A = (M_A, 0, 0, 0)$ $p_1 = (E_1^*, \vec{p}_1^*)$ $p_2 = (E_2^*, \vec{p}_2^*)$ $\vec{p}_1^* = -\vec{p}_2^* = \vec{p}^*$

$$p_A = p_1 + p_2$$
 $E_1^* = (M_A^2 + m_1^2 - m_2^2)/2M_A$

For unpolarized (or spinless) *A*, the decay product is isotropic.

$$\frac{d^3N}{d^3p_1} = \frac{1}{4\pi \, \vec{p}^{*2}} \,\delta(|\vec{p}_1| - |\vec{p}^*|) \qquad \qquad \frac{dN}{d\Omega} = \frac{1}{4\pi}$$

For parity conserved decays of A, the decay product is isotropic.

For parity violating decay of the hyperon,

$$\frac{dN}{d\Omega} = \frac{1}{4\pi} \left(1 + \alpha \vec{P} \cdot \frac{\vec{p}_1^*}{|\vec{p}_1^*|} \right) = \frac{1}{4\pi} \left(1 + \alpha P \cos \theta^* \right)$$

Spin self analyzing parity violating weak decay of the hyperon A.

α : the decay polarization parameter,

measured experimentally and can be found in PDG.

Consider $A \rightarrow 1 + 2$ in the rest frame of A

Suppose A is in the spin state $|S_A, M_A\rangle$, the final state particles have helicities λ_1 and λ_2 .

The decay amplitude is $A_m(\vec{p}; \lambda_1, \lambda_2) = \langle \vec{p}; \lambda_1, \lambda_2 | \hat{U} | S_A, M_A \rangle$

Applying total angular momentum conservation

 $A_m(\vec{p};\lambda_1,\lambda_2) = \langle \vec{p};\lambda_1,\lambda_2 | E, S_A, M_A;\lambda_1,\lambda_2 \rangle \langle E, J = S_A, M = M_A;\lambda_1,\lambda_2 | \widehat{U} | S_A, M_A \rangle$

Space rotation invariance demands

$$\langle S_A, M_A; \lambda_1, \lambda_2 | \widehat{\mathbf{U}} | S_A, M_A \rangle = \langle S_A; \lambda_1, \lambda_2 | \widehat{\mathbf{U}} | S_A \rangle = H_{S_A}(\lambda_1, \lambda_2)$$

Helicity amplitude, independent of M_A , independent of angles (θ, φ) .

Hence $A_m(\vec{p}; \lambda_1, \lambda_2) = \langle \vec{p}; \lambda_1, \lambda_2 | S_A, M_A; \lambda_1, \lambda_2 \rangle H_{S_A}(\lambda_1, \lambda_2)$

The angular dependence is determined by the calculable state projection

 $\langle \vec{p}; \lambda_1, \lambda_2 | S_A, M_A; \lambda_1, \lambda_2 \rangle$

Polarization measurements: vector meson

Any rotation can be described by three Euler angles (α, β, γ)

 $|p,\theta,\varphi;\lambda_1,\lambda_2\rangle = \widehat{R}(\varphi,\theta,-\varphi)|p,0,0;\lambda_1,\lambda_2\rangle$

Polarization measurements: vector meson

The Wigner rotation matrix $\langle jm' | \hat{R}(\alpha, \beta, \gamma) | jm \rangle$

$$\begin{split} \widehat{R}(\alpha,\beta,\gamma)|jm\rangle &= \sum_{m'} |jm'\rangle \langle jm'|\widehat{R}(\alpha,\beta,\gamma)|jm\rangle = \sum_{m'} D_{mm'}^{j}(\alpha,\beta,\gamma) |jm'\rangle \\ D_{mm'}^{j}(\alpha,\beta,\gamma) &= \langle jm'|\widehat{R}(\alpha,\beta,\gamma)|jm\rangle = e^{-im'\alpha} e^{-im\gamma} \left\langle jm' \left| e^{-i\beta\hat{J}_{y}} \right| jm \right\rangle = e^{-im'\alpha - im\gamma} d_{mm'}^{j}(\beta) \\ d_{mm'}^{j}(\beta) &= \langle jm' \left| e^{-i\beta\hat{J}_{y}} \right| jm \rangle \\ &= [(j+m)! (j-m)! (j+m')! (j-m')!]^{1/2} \\ &\times \sum_{k=max\{m-m',0\}}^{\min\{j+m,j-m'\}} \frac{\left(\cos\frac{\beta}{2}\right)^{2j} \left(\tan\frac{\beta}{2}\right)^{2k-m+m'}}{(j+m-k)! (j-m'-k)! k! (k-m'+m)!} \\ d^{1/2}(\beta) &= \begin{pmatrix} \cos\frac{\beta}{2} & -\sin\frac{\beta}{2} \\ \sin\frac{\beta}{2} & \cos\frac{\beta}{2} \end{pmatrix} \qquad d^{1}(\beta) = \begin{pmatrix} \frac{1+\cos\beta}{2} & -\frac{\sin\beta}{\sqrt{2}} & \frac{1-\cos\beta}{\sqrt{2}} \\ \frac{\sin\beta}{\sqrt{2}} & \cos\beta & -\frac{\sin\beta}{\sqrt{2}} \\ \frac{1-\cos\beta}{2} & \frac{\sin\beta}{\sqrt{2}} & \frac{1+\cos\beta}{2} \end{pmatrix} \end{split}$$

The inner product

$$\begin{split} \langle \vec{p}; \lambda_{1}, \lambda_{2} | S_{A}, M_{A}; \lambda_{1}, \lambda_{2} \rangle \\ &= \langle p, 0, 0; \lambda_{1}, \lambda_{2} | R^{\dagger}(\varphi, \theta, -\varphi) | S_{A}, M_{A}; \lambda_{1}, \lambda_{2} \rangle \\ &= \sum_{M_{A}'} \langle p, 0, 0; \lambda_{1}, \lambda_{2} | S_{A}, M_{A}'; \lambda_{1}, \lambda_{2} \rangle \langle S_{A}, M_{A}'; \lambda_{1}, \lambda_{2} | R^{\dagger}(\varphi, \theta, -\varphi) | S_{A}, M_{A}; \lambda_{1}, \lambda_{2} \rangle \\ &= \langle p, 0, 0; \lambda_{1}, \lambda_{2} | S_{A}, \lambda; \lambda_{1}, \lambda_{2} \rangle \langle S_{A}, \lambda; \lambda_{1}, \lambda_{2} | R^{\dagger}(\varphi, \theta, -\varphi) | S_{A}, M_{A}; \lambda_{1}, \lambda_{2} \rangle \\ &= \left(\frac{2J+1}{4\pi} \right)^{\frac{1}{2}} D_{M_{A}\lambda}^{S_{A}*}(\varphi, \theta, -\varphi) \end{split}$$

The decay amplitude

$$A_{m}(\vec{p};\lambda_{1},\lambda_{2}) = \langle \vec{p};\lambda_{1},\lambda_{2} | \widehat{U} | S_{A}, M_{A} \rangle$$

= $\langle \vec{p};\lambda_{1},\lambda_{2} | S_{A}, M_{A};\lambda_{1},\lambda_{2} \rangle H_{S_{A}}(\lambda_{1},\lambda_{2})$
= $\left(\frac{2J+1}{4\pi}\right)^{\frac{1}{2}} D_{M_{A}\lambda}^{S_{A}*}(\varphi,\theta,-\varphi) H_{A}(\lambda_{1},\lambda_{2})$

Polarization measurements: vector meson

Suppose the spin density matrix of A is
$$\hat{\rho}_A = \sum_{M_A} g_{M_A} |S_A, M_A\rangle \langle S_A, M_A|$$

The spin density matrix of the system (1,2) is $\hat{\rho}_{12} = \sum_{M_A} g_{M_A} \hat{U} |S_A, M_A\rangle \langle S_A, M_A| \hat{U}^{\dagger} = \hat{U} \hat{\rho}_A \hat{U}^{\dagger}$

The angular distribution

$$\begin{split} W(\theta,\varphi) &= N \sum_{\lambda_{1},\lambda_{2}} \langle \vec{p};\lambda_{1}\lambda_{2} | \, \hat{\rho}_{12} | \, \vec{p};\lambda_{1}\lambda_{2} \rangle \\ &= N \sum_{\lambda_{1},\lambda_{2}} \langle \vec{p};\lambda_{1}\lambda_{2} | \, \widehat{\mathbf{U}} | \, S_{A}, M_{A} \rangle \langle S_{A}, M_{A} | \, \widehat{\boldsymbol{\rho}}_{A} | \, \mathbf{S}_{A}, M_{A}' \rangle \langle S_{A}, M_{A}' | \, \widehat{\mathbf{U}}^{\dagger} | \, \vec{p};\lambda_{1}\lambda_{2} \rangle \\ &= N \sum_{\lambda_{1},\lambda_{2};M_{A},M_{A}'} \langle \vec{p};\lambda_{1}\lambda_{2} | \, \widehat{\mathbf{U}} | \, S_{A}, M_{A} \rangle \langle S_{A}, M_{A} | \, \widehat{\boldsymbol{\rho}}_{A} | \, S_{A}, M_{A}' \rangle \langle S_{A}, M_{A}' | \, \widehat{\mathbf{U}}^{\dagger} | \, \vec{p};\lambda_{1}\lambda_{2} \rangle \\ &= N \sum_{\lambda_{1},\lambda_{2};M_{A},M_{A}'} A_{M_{A}}(\vec{p};\lambda_{1}\lambda_{2}) \, A_{M_{A}'}^{*}(\vec{p};\lambda_{1}\lambda_{2}) \, \langle S_{A}, M_{A} | \, \widehat{\boldsymbol{\rho}}_{A} | \, S_{A}, M_{A}' \rangle \\ &= N' \sum_{\lambda_{1},\lambda_{2};M_{A},M_{A}'} | \, H_{A}(\lambda_{1},\lambda_{2}) |^{2} \, D_{M_{A}\lambda}^{S_{A}*}(\varphi,\theta,-\varphi) D_{M_{A}'\lambda}^{S_{A}}(\varphi,\theta,-\varphi) \langle M_{A} | \, \widehat{\boldsymbol{\rho}}_{A} | \, M_{A}' \rangle \end{split}$$

Polarization measurements: vector meson

For $V \to 1+2$, where 1 and 2 are two pseudoscalar mesons, we have $S_A = 1$, $\lambda_1 = \lambda_2 = 0$ e.g., $\rho \to \pi\pi$

$$W(\theta, \varphi) = N \sum_{M_A, M_A'} |H_A|^2 D_{M_A 0}^{1*}(\varphi, \theta, -\varphi) D_{M_A'}^{1}(\varphi, \theta, -\varphi) \langle M_A | \hat{\rho}_A | M_A' \rangle$$

= $\frac{3}{4\pi} \{ \frac{1}{2} (\rho_{11} + \rho_{-1-1}) \sin^2 \theta + \rho_{00} \cos^2 \theta$
 $- \frac{1}{\sqrt{2}} \sin 2\theta [\cos \varphi (\operatorname{Re} \rho_{10} - \operatorname{Re} \rho_{-10}) - \sin \varphi (\operatorname{Im} \rho_{10} + \operatorname{Im} \rho_{-10})]$
 $- \sin^2 \theta (\cos 2\varphi \operatorname{Re} \rho_{1-1} - \sin 2\varphi \operatorname{Im} \rho_{1-1}) \}$

$$\int_0^{2\pi} d\varphi \, W(\theta, \varphi) = \frac{3}{4} \left[(1 - \rho_{00}) + (3\rho_{00} - 1) \cos^2 \theta \right]$$

For
$$V
ightarrow {f 1}+2$$
, where 1 and 2 are two spin-1/2 Fermions, i.e., $S_A={f 1}, \lambda_1=\pm rac{1}{2}, \ \lambda_2=\pm rac{1}{2}$

consider the case: (1) Helicity conservation: $\lambda_1 = -\lambda_2$, $\lambda = \pm 1$ (2) Space reflection invariance: $H_A(\lambda_1, \lambda_2) = H_A(-\lambda_1, -\lambda_2)$

only one independent helicity amplitude

e.g.,
$$J/\psi
ightarrow e^+e^-$$

$$W(\theta, \varphi) = \frac{3}{8\pi(1+\rho_{00})} [1 + \lambda_{\theta} \cos^2 \theta + \lambda_{\varphi} \sin^2 \theta \cos 2\varphi + \lambda_{\theta\varphi} \sin 2\theta \cos \varphi + \lambda_{\varphi}^{\perp} \sin^2 \theta \sin 2\varphi + \lambda_{\theta\varphi}^{\perp} \sin 2\theta \sin \varphi]$$

$$\begin{split} \lambda_{\theta} &= \frac{1 - 3\rho_{00}}{1 + \rho_{00}} \qquad \lambda_{\varphi} = \frac{4\text{Re}\rho_{1-1}}{1 + \rho_{00}} \qquad \lambda_{\theta\varphi} = \frac{\sqrt{2}\text{Re}(\rho_{10} - \rho_{-10})}{1 + \rho_{00}} \\ \lambda_{\varphi}^{\perp} &= \frac{4\text{Im}\rho_{1-1}}{1 + \rho_{00}} \qquad \lambda_{\theta\varphi}^{\perp} = \frac{\sqrt{2}\text{Im}(\rho_{10} - \rho_{-10})}{1 + \rho_{00}} \end{split}$$

Polarization measurements: Hyperon decay

For
$$H \rightarrow N\pi$$
, $S_A = \frac{1}{2}$, $\lambda_1 = \pm \frac{1}{2}$, $\lambda_2 = 0$

 $W(\theta, \varphi) = \frac{1}{4\pi} (1 + \alpha P \cos \theta + \alpha \sin \theta \cos \varphi \operatorname{Re} \rho_{+-} + \alpha \sin \theta \sin \varphi \operatorname{Im} \rho_{+-})$

$$\alpha = \frac{\left|H_A\left(\frac{1}{2}\right)\right|^2 - \left|H_A\left(-\frac{1}{2}\right)\right|^2}{\left|H_A\left(\frac{1}{2}\right)\right|^2 + \left|H_A\left(-\frac{1}{2}\right)\right|^2}$$

$$P = \rho_{++} - \rho_{--}$$

If space reflection invariance

$$H_A\left(\frac{1}{2}\right) = H_A\left(-\frac{1}{2}\right) \qquad \alpha = 0$$

Two books

ELEMENTARY THEORY OF ANGULAR MOMENTUM

M. E. ROSE

Chief Physicist Oak Ridge National Laboratory

New York · JOHN WILEY & SONS, Inc. London · CHAPMAN & HALL, Ltd. 1957

Spin in Particle Physics

ELLIOT LEADER

CAMBRIDGE MONOGRAPHS ON PARTICLE PHYSICS, NUCLEAR PHYSICS AND COSMOLOGY

15