
From Kadanoff-Baym to Spin Boltzmann Equation

Qun Wang

Department of Modern Physics, University of Science and Technology of China

Fudan Summer School, August 16-17, 2022

Qun Wang (MP/USTC) From KBE to SBE August 2022 1 / 91



References

1 Sheng, Weickgenannt, Speranza, Rischke, Wang, PRD104,
016029(2021) [arXiv:2206.05868];

2 Sheng, Oliva, Liang, Wang, Wang, arXiv: 2206.05868;
3 Weickgenannt, Sheng, Speranza, Wang, Rischke, PRD100,

056018(2019) [arXiv:1902.06513];
4 Hidaka, Pu, Wang, Yang, (review article) to appear in

Prog.Part.Nucl.Phys.(2022) [arXiv: 2201.07644]
5 Works by other groups: S.Lin, D.F.Hou, D.L.Yang (S.Pu), P.F.Zhuang

(Z.Y.Wang, X.Y.Guo), etc..

Qun Wang (MP/USTC) From KBE to SBE August 2022 2 / 91



Outline

Lecture 1: CTP formalism and KB equation
Lecture 2: Wigner function and MVSD for fermions
Lecture 3: SBE in terms of MVSD

Qun Wang (MP/USTC) From KBE to SBE August 2022 3 / 91



Lecture 1: CTP formalism and KB equation

Introduction to Closed-Time-Path (CTP) or Schwinger-Keldysh (SK)
formalism. For comparison we give a derivation of the correlation function
in vacuum. Then we give a derivation of the correlation function in
non-equilibrium in the CTP formalism.
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In vacuum

Green functions in vacuum
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Two-point Green function in vacuum

We define the two-point Green function in a full theory as

G (x , y) = 〈Ω|Tφ(x)φ(y) |Ω〉 (1)

where |Ω〉 is the ground state of the full Hamiltonian H and φ(x) is the
scalar field operator in the Heisenberg picture. In Schroedinger picture, the
full Hamitonian H is a sum of a free one and an interaction one,

H = H0 + Hint (2)
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Heisenberg and Schroedinger picture

At the initial time t0, φ(S)(x) is a field in Schroedinger picture and can be
expanded as

φ(S)(x) =

∫
d3p

(2π)3
1√
2Ep

(
ape ip·x + a†pe

−ip·x
)

(3)

We can obtain φ(x) = φ(H)(t, x) in the Heisenberg picture from φ(S)(x) by

φ(x) = e iH(t−t0)φ(S)(x)e−iH(t−t0) (4)

We see H(H) = H(S) = H.
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Interaction picture

We can define the field operator in the interaction picture

φ(I )(x) = e iH0(t−t0)φ(S)(x)e−iH0(t−t0)

=

∫
d3p

(2π)3
1√
2Ep

(
ape−ip·x + a†pe

ip·x
)

(5)

where we have used t0 = 0 and

ap(I ) = e iH0tape−iH0t = ape−iEpt

a†p(I ) = e iH0ta†pe
−iH0t = a†pe

iEpt (6)

We note that ap and a†p in Eq. (5) are in Schroedinger picture and
independent of time. We have used H0 ≡ H(I )

0 = H(S)
0 .
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Evolution operator

Now we can express the Heisenberg picture field φ(x) in terms of φ(I )(t, x)

φ(x) = e iH(t−t0)φ(S)(x)e−iH(t−t0)

= e iH(t−t0)e−iH0(t−t0)φ(I )(x)e iH0(t−t0)e−iH(t−t0)

= U†(t, t0)φ(I )(x)U(t, t0) (7)

where U(t, t0) is the unitary operator connecting the interaction and
Heisenberg picture,

U(t, t0) = e iH0(t−t0)e−iH(t−t0)

U(t0, t) = U†(t, t0) = e iH(t−t0)e−iH0(t−t0) (8)
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Field in Heisenberg picture

The field in Heisenberg picture is then

φ(x) =

∫
d3p

(2π)3
1√
2Ep

[
ap(t)e−ip·x + a†p(t)e ip·x

]
where ap(t) and a†p(t) are operators in Heisenberg picture

ap(t) = U†(t, t0)apU(t, t0)

a†p(t) = U†(t, t0)a†pU(t, t0) (9)
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Evolution operator

The evolution operator U(t, t0) satisfies the Schroedinger equation

i
d
dt

U(t, t0) = HIU(t, t0) (10)

where HI ≡ H(I )
int is the interaction Hamiltonian in the interaction

picture,
HI = e iH0(t−t0)H(S)

int e−iH0(t−t0) (11)

The derivation of (10) is

i
d
dt

U(t, t0) = U(t, t0)H − H0U(t, t0)

= e iH0(t−t0)H(S)
int e−iH(t−t0)

= e iH0(t−t0)H(S)
int e−iH0(t−t0)e iH0(t−t0)e−iH(t−t0)

= HIU(t, t0) (12)
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Evolution operator

The solution to U(t, t0) is

U(t, t0) = T
[
exp
(
−i
∫ t

t0
dt ′HI (t ′)

)]
(13)

Note that U(t, t0) is a unitary operator which connects the interaction
with Heisenberg picture.
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Evolution operator for arbitary time

We can define an evolution operator in the interaction picture from t1 to t2

U(t2, t1) = U(t2, t0)U†(t1, t0)

= e iH0(t2−t0)e−iH(t2−t1)e−iH0(t1−t0) (14)

We can prove that all elements of U(t2, t1) consititute a U(1) group: (1)
The inverse of U(t2, t1) is U(t1, t2): U(t2, t1)U(t1, t2) = 1. (2) Unitary
condition U†(t2, t1) = U(t1, t2). (3) The result of two continuous evolution
is still an evolution: U(t3, t2)U(t2, t1) = U(t3, t1). One can verify U(t, t1)
satisfies the same Schroedinger equation as in Eq. (10). So its solution is
similar to (13),

U(t, t1) = T
[
exp
(
−i
∫ t

t1
dt ′HI (t ′)

)]
(15)
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Vacuum states of H0 and H

To deal with Eq. (1), we express the ground state of H0 in terms of
eigenstates of H,

|0〉 =
∑
n

|n,H〉 〈n,H|0〉

〈0| =
∑
n

〈0|n,H〉 〈n,H| (16)

where |n,H〉 denote energy eigenstates of H with |0,H〉 = |Ω〉. We let |0〉
evolve in time with H

e−iH(t∞+t0) |0〉 =
∑
n

e−iEn(t∞+t0) |n,H〉 〈n,H|0〉

〈0| e−iH(t∞−t0) =
∑
n

e−iEn(t∞−t0) 〈0|n,H〉 〈n,H| (17)

where En denotes the energy of the state |n,H〉 with En > En−1.
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Vacuum states of H0 and H

In order to single out |Ω〉 out of other states, we introduce a small
imaginary part into t∞ as t∞ → t∞(1− iε), then we have

e−iH[t∞(1−iε)+t0] |0〉 = e−E0ε
{(

e−iE0(t∞+t0) 〈Ω|0〉
)
|Ω〉

+
∑
n 6=0

e−iEn(t∞+t0)e−(En−E0)t∞ε |n,H〉 〈n,H|0〉


〈0| e−iH[t∞(1−iε)−t0] = e−E0ε

{(
e−iE0(t∞−t0) 〈0|Ω〉

)
〈Ω|

+
∑
n 6=0

e−iEn(t∞−t0)e−(En−E0)t∞ε 〈0|n,H〉 〈n,H|

 (18)
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Vacuum states of H0 and H

Since all higher states are suppressed relative to the ground state by a
factor e−(En−E0)t∞ε, so we have

e−iH(t∞+t0) |0〉 ≈
(
e−iE0(t∞+t0) 〈Ω|0〉

)
|Ω〉

〈0| e−iH(t∞−t0) ≈
(
e−iE0(t∞−t0) 〈0|Ω〉

)
〈Ω| (19)
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Vacuum states of H0 and H

We can approximate

|Ω〉 ≈ lim
t∞→∞(1−iε)

(
e iE0(t∞+t0) 〈Ω|0〉−1

)
e−iH(t∞+t0) |0〉

= lim
t∞→∞(1−iε)

(
e iE0(t∞+t0) 〈Ω|0〉−1

)
U(t0,−t∞) |0〉

〈Ω| ≈ lim
t∞→∞(1−iε)

(
e iE0(t∞−t0) 〈0|Ω〉−1

)
〈0| e−iH(t∞+t0)

≈ lim
t∞→∞(1−iε)

(
e iE0(t∞−t0) 〈0|Ω〉−1

)
〈0|U(t∞, t0) (20)

where we have used Eq. (8) and H0 |0〉 = 0.
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Normalization

The normalization condition for the ground state reads

1 = 〈Ω|Ω〉

= lim
t∞→∞(1−iε)

(
e2iE0t∞ | 〈Ω|0〉 |−2

)
〈0|U(t∞, t0)U(t0,−t∞) |0〉 (21)

which determines the normalization constant

e2iE0t∞ | 〈Ω|0〉 |−2 = lim
t∞→∞(1−iε)

1
〈0|U(t∞,−t∞) |0〉

(22)
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Gell-Mann-Low theorem

Using Eqs. (7,20), Eq. (1) can be written as

G (x , y) = 〈Ω|Tφ(x)φ(y) |Ω〉

= lim
t∞→∞(1−iε)

1
〈0|U(t∞,−t∞) |0〉

× 〈0|U(t∞, t0)TU†(x0, t0)φI (x)U(x0, t0)

×U†(y0, t0)φI (y)U(y0, t0)U(t0,−t∞) |0〉

= lim
t∞→∞(1−iε)

〈0|T [φI (x)φI (y)U(t∞,−t∞)] |0〉
〈0|U(t∞,−t∞) |0〉

(23)
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Non-equilibrium

Green functions in non-equilibrium
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Two-point Green function in non-equilibrium

In non-equilibrium, the two point correlation function is defined through
the density operator at the initial time

G (x , y) = 〈Tφ(x)φ(y)〉 ≡ 1
Trρ(t0)

Tr[ρ(t0)Tφ(x)φ(y)] (24)

where the trace is taken over initial states which can be expanded in
eigenstates of free Hamiltonian H0.
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Two-point function on CTP

The interaction HI is is switched on in later time. Using Eq. (7), we can
write Eq. (24) as

G (x , y) =
1

Trρ(t0)
Tr[ρ(t0)Tφ(x)φ(y)]

=
1

Trρ(t0)
Tr[ρ(t0)TU†(x0, t0)φI (x)U(x0, t0)

×U†(y0, t0)φI (y)U(y0, t0)]

=
1

Trρ(t0)
Tr[ρ(t0)TU†(x0, t0)φI (x)U(x0, y0)φI (y)U(y0, t0)]

≡ 1
Trρ(t0)

Tr[ρ(t0)TPφI (x)φI (y)UCTP(t0)] (25)

Qun Wang (MP/USTC) From KBE to SBE August 2022 22 / 91



Evolution operator on CTP

Here UCTP(t0) is the unitary evolution operator defined on a closed-time
path (CTP) starting from t0 to +∞ and back to t0 (see Fig. 1),

UCTP(t0) ≡ TP

[
exp
(
−i
∫

CTP
dtHI (t)

)]
= TP

[
exp
(
−i
∫ ∞

t0
dt+HI (t+) + i

∫ ∞
t0

dt−HI (t−)

)]
(26)

In Eqs. (25,26), TP is the ordering operator on the CTP. From Eq. (26)
we see that the interaction terms leading to vertices in Feynman rules on
the negative time branch have got a minus sign relative to those on the
positive time branch. The difference between G (x , y) in vacuum and
non-equilibrium is that there is no evolution of an in-state to a state at t0
and a state at t0 to an out-state. Only states at t0 is involved which lead
to the CTP.
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CTP contour

Figure: The Closed Time Path.
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Difference between vacuum and non-equilbrium

The difference between G (x , y) in vacuum and non-equilibrium is that
there is no evolution of an in-state to a state at t0 and a state at t0 to an
out-state. Only states at t0 is involved which lead to the CTP.
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Two-point Green functions on CTP

There are two equivalent forms of Green functions on the CTP: (1) The
original definition:

G (x1, x2) =
〈
TPψα(x1)ψβ(x2)

〉
(27)

where x10 and x20 are on the CTP, and TP denotes the time-order operator
on the CTP. (2) Matrix form:

G =

(
G++ G+−

G−+ G−−

)
=

(
GF G<

G> GF

)
(28)

where we have used G+− = G<, G−+ = G>, G++ = GF , G−− = GF .
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Two-point Green functions on CTP

The definition of Green functions are

GF
αβ(x1, x2) =

〈
Tψα(x1)ψβ(x2)

〉
GF
αβ(x1, x2) =

〈
TAψα(x1)ψβ(x2)

〉
G<
αβ(x1, x2) = −

〈
ψβ(x2)ψα(x1)

〉
G>
αβ(x1, x2) =

〈
ψα(x1)ψβ(x2)

〉
(29)

where T and TA denote the time-order and time-antiorder operator
respectively, and α, β = 1, 2, 3, 4 denote Dirac indices.
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Equivalent form of two-point function

We can use the physical representation by the unitary transformation(
0 GA

GR GC

)
= U

(
GF G<

G> GF

)
U−1 (30)

where

U =
1√
2

(
1 −1
1 1

)
, U−1 = UT =

1√
2

(
1 1
−1 1

)
(31)

Only three of them are independent due to the identity
GF + GF = G> + G<.
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Equivalent form of two-point function

The explicit form is

GR = θ(t1 − t2)G> + θ(t2 − t1)G< − G<

= θ(t1 − t2)(G> − G<)

GA = θ(t1 − t2)G> + θ(t2 − t1)G< − G>

= θ(t2 − t1)(G< − G>)

GC = GF + GF = G> + G< (32)
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Schematical Dyson-Schwinger Equation

Schematically, the Dyson-Schwinger (DS) equations on CTP read

G−1 = G−1
0 − Σ

G =
1

G−1
0 − Σ

=
1

G−1
0 (1− G0Σ)

=
1

1− G0Σ
G0 =

∑
n=0

(G0Σ)nG0 = G0 + GΣG0

G =
1

(1− ΣG0)G−1
0

= G0
1

1− ΣG0

=
∑
n=0

G0(ΣG0)n = G0 + G0ΣG (33)

GG−1
0 = 1 + GΣ

G−1
0 G = 1 + ΣG (34)
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Dyson-Schwinger (DS) equation on CTP

The explicit form of the KB equation for two-point function on CTP is

−i(iγµ∂µx1
−m)G (x1, x2)

= δ
(4)
C (x1 − x2) +

∫
C

dx ′Σ(x1, x ′)G (x ′, x2) (35)

where x1, x2 and x ′ are space-time points on the CTP, dx ≡ d4x , and the
integral is defined on the contour. The delta function on the CTP is
expressed in terms of normal delta functions

δ
(4)
C (x1 − x2) =


δ(4)(x1 − x2), x1,2 ∈ t+
−δ(4)(x1 − x2), x1,2 ∈ t−

0, (x1, x2) ∈ (t+, t−) or (t−, t+)

(36)

Equation (35) can also be put into an equivalent matrix form in normal
coordinates.
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Kadanoff-Baym (KB) equation

The equation for G< for (x1, x2) ∈ (t+, t−),

−i(i~γµ∂µx1
−m)G<(x1, x2) = ~

∫ ∞
−∞

dx ′
[
ΣF (x1, x ′)G<(x ′, x2)

−Σ<(x1, x ′)GF (x ′, x2)
]

= ~
∫ ∞
−∞

dx ′
[
ΣR(x1, x ′)G<(x ′, x2)

+Σ<(x1, x ′)GA(x ′, x2)
]

(37)

Note that all x1, x2 and x ′ are ordinary coordinates (not on CTP).
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Proof of Eq. (37)

For (x1, x2) ∈ (t+, t−), the CTP integral in r.h.s. of Eq. (35) can be
rewritten into a normal integral

I+− =

∫
C

dx ′Σ(x1, x ′)G (x ′, x2)

=

∫ ∞
t0

dx ′
[
ΣF (x1, x ′)G<(x ′, x2)− Σ<(x1, x ′)GF (x ′, x2)

]
(38)

Then we can express ΣF and GF in terms of Σ≶ and G≶,

ΣF (x1, x ′) = θ(t1 − t ′)Σ>(x1, x ′) + θ(t ′ − t1)Σ<(x1, x ′)

GF (x ′, x2) = θ(t ′ − t2)G<(x ′, x2) + θ(t2 − t ′)G>(x ′, x2) (39)
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Proof of Eq. (37)

Then we have

I+− =

∫ ∞
t0

dx ′
{[
θ(t1 − t ′)Σ>(x1, x ′) + θ(t ′ − t1)Σ<(x1, x ′)

]
G<(x ′, x2)

− Σ<(x1, x ′)
[
θ(t ′ − t2)G<(x ′, x2) + θ(t2 − t ′)G>(x ′, x2)

]}
=

∫ t1

t0
dx ′Σ>(x1, x ′)G<(x ′, x2) +

∫ ∞
t1

dx ′Σ<(x1, x ′)G<(x ′, x2)

−
∫ ∞

t2
dx ′Σ<(x1, x ′)G<(x ′, x2)−

∫ t2

t0
dx ′Σ<(x1, x ′)G>(x ′, x2)(40)
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Proof of Eq. (37)

(Continued)

I+− =

∫ t1

t0
dx ′
[
Σ>(x1, x ′)− Σ<(x1, x ′)

]
G<(x ′, x2)

−
∫ t2

t0
dx ′Σ<(x1, x ′)

[
G>(x ′, x2)− G<(x ′, x2)

]
+

[∫ ∞
t1
−
∫ ∞

t2
+

∫ t1

t0
−
∫ t2

t0

]
Σ<(x1, x ′)G<(x ′, x2)

=

∫ t1

t0
dx ′
[
Σ>(x1, x ′)− Σ<(x1, x ′)

]
G<(x ′, x2)

−
∫ t2

t0
dx ′Σ<(x1, x ′)

[
G>(x ′, x2)− G<(x ′, x2)

]
=

∫ ∞
t0

dx ′
[
ΣR(x1, x ′)G<(x ′, x2) + Σ<(x1, x ′)GA(x ′, x2)

]
(41)
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Proof of Eq. (37)

Here we have used

ΣR(x1, x ′) = θ(t1 − t ′)
[
Σ>(x1, x ′)− Σ<(x1, x ′)

]
GA(x ′, x2) = −θ(t2 − t ′)

[
G>(x ′, x2)− G<(x ′, x2)

]
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KB equation in matrix form

Equivalently one can write Eqs. (35) in the matrix form corresponding to
DS equation G−1

0 G = 1 + ΣG ,

−i(iγµ∂µx1
−m)

(
GF G<

G> GF

)
(x1, x2)

= δ(4)(x1 − x2)

(
1 0
0 −1

)
+

∫ ∞
−∞

dx ′
(

ΣF −Σ<

Σ> −ΣF

)
(x1, x ′)

(
GF G<

G> GF

)
(x ′, x2) (42)

Note that all x1, x2 and x ′ are ordinary coordinates (not on CTP).
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KB equation in matrix form

Corresponding to GG−1
0 = 1 + GΣ, we can also derive the KB equation

with the differential operators acting on Green’s functions in the left

i
(

GF G<

G> GF

)
(x1, x2)(iγµ

←−
∂ µx2

+ m)

= δ(4)(x1 − x2)

(
1 0
0 −1

)
+

∫ ∞
−∞

dx ′
(

GF −G<

G> −GF

)
(x1, x ′)

(
ΣF Σ<

Σ> ΣF

)
(x ′, x2) (43)
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Wigner transformation (WT)

We rewrite x1 and x2 by

X =
1
2

(x1 + x2)

y = x1 − x2 (44)

and then make Fourier transformation with respect to y of Eq. (37). The
Fourier transform is defined as

Ã(p) =

∫
dxe ip·xA(x)

A(x) =

∫
[dp]e−ip·x Ã(p) (45)

where [dp] ≡ d4p/(2π)4.
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WT for Kinetic terms

We take WT for Eq. (37). The kinetic term becomes

Ikin =

∫
dye ip·y [−i(iγµ∂µx1

−m)G (x1, x2)
]

= −i
∫

dye ip·y
(

iγµ
1
2
∂µX + iγµ∂µy −m

)
G<(y ,X )

= −i
∫

dye ip·y
(

iγµ
1
2
∂µX − iγµ

←−
∂ µy −m

)
G<(y ,X )

= −i
(

iγµ
1
2
∂µX + γµpµ −m

)
G<(p,X ) (46)
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WT and gradient expansion for collision terms

We now make a gradient expansion of l.h.s. of Eq. (37). First we should
define coordinate variables

(x1, x2) → (X , y)

(x1, x ′) →
(

X +
1
2
y ′, y − y ′

)
(x ′, x2) →

(
X − 1

2
(y − y ′), y ′

)
y ′ = x ′ − x2

y − y ′ = x1 − x2 − (x ′ − x2)

= x1 − x ′ (47)
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WT and gradient expansion for collision terms

The collision term in Eq. (37) can be rewritten as Eq. (41) (~ is
suppressed). By setting t0 = −∞ we obtain at the leading order of
gradient expansion

I+−(x1, x2) =

∫ ∞
−∞

dx ′
[
ΣR(x1, x ′)G<(x ′, x2) + Σ<(x1, x ′)GA(x ′, x2)

]
=

∫ ∞
−∞

dy ′ΣR
(

y − y ′,X +
1
2
y ′
)

G<

(
y ′,X − 1

2
(y − y ′)

)
+

∫ ∞
−∞

dy ′Σ<

(
y − y ′,X +

1
2
y ′
)

GA
(

y ′,X − 1
2

(y − y ′)
)

≈ I (0)+− + I (1)+− (48)

where I (0)+− and I (1)+− are the contribution of the leading and next-to-leading
order in space-time derivatives, respectively.
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WT and gradient expansion for collision terms

They are given by

I (0)+−(y ,X ) =

∫ ∞
−∞

dy ′ΣR(y − y ′,X )G<(y ′,X )

+

∫ ∞
−∞

dy ′Σ<(y − y ′,X )GA(y ′,X )

I (1)+−(y ,X ) =
1
2

∫ ∞
−∞

dy ′y ′µ∂
µ
X ΣR(y − y ′,X )G<(y ′,X )

−1
2

∫ ∞
−∞

dy ′ΣR(y − y ′,X )(yµ − y ′µ)∂µXG<(y ′,X )

+
1
2

∫ ∞
−∞

dy ′y ′µ∂
µ
X Σ<(y − y ′,X )GA(y ′,X )

−1
2

∫ ∞
−∞

dy ′Σ<(y − y ′,X )(yµ − y ′µ)∂µXGA(y ′,X ) (49)
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WT for collision terms

The Wigner transformation of I (0)+− and I (1)+− reads

I (0)+−(p,X ) =

∫
dye ip·y/~I (0)+−(y ,X )

= ΣR(p,X )G<(p,X ) + Σ<(p,X )GA(p,X ) (50)

I (1)+−(p,X ) =

∫
dye ip·y/~I (1)+−(y ,X )

= −1
2
i~
[
∂µX ΣR(p,X )∂p

µG
<(p,X )

−∂p
µΣR(p,X )∂µXG<(p,X )

]
− 1

2
i~
[
∂µX Σ<(p,X )∂p

µG
A(p,X )

−∂p
µΣ<(p,X )∂µXGA(p,X )

]
(51)

where we have replaced y → −i~∂p.
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WT for collision terms

We can use Poisson bracket

{A,B}P.B. ≡ ∂
µ
XA∂p

µB − ∂p
µA∂

µ
XB (52)

to rewrite (51) as

I (1)+−(p,X ) =

∫
dye ip·y/~I (1)+−(y ,X )

= −1
2
i~
{

ΣR(p,X ),G<(p,X )
}

P.B.

−1
2
i~
{

Σ<(p,X ),GA(p,X )
}

P.B.
(53)
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KB equation in phase space

Then the KB equation for G< is then(
iγµ

1
2
~∂µX + γµpµ −m

)
G<(p,X )

= i~
[
ΣR(p,X )G<(p,X ) + Σ<(p,X )GA(p,X )

]
+
1
2
~2
[{

ΣR(p,X ),G<(p,X )
}

P.B.

+
{

Σ<(p,X ),GA(p,X )
}

P.B.

]
(54)

where we have recovered ~. Note that every propagator contributes ~,
every vertex contributes ~−1, so for Feynman diagram in Fig. (2) is in the
order ~. So the first term in the right-hand side is in the order ~, while the
second term is in the order ~2 due to spatial derivative.
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Feynmann diagram for selfenergy

Figure: Feynman diagrams in QED for (a,c) Σ>(p) and (b,d) Σ<(p). Solid lines
represent fermion propagators, wavy lines represent photon propagators.
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Feynmann diagram for selfenergy

Figure: Feynman diagrams in QED for (a,c) Σ>(p) and (b,d) Σ<(p). Solid lines
represent fermion propagators, wavy lines represent photon propagators.
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Retarded and Advanced Green functions

The retarded Green function is defined as

GR(y ,X ) = θ(y0)
[
G>(y ,X )− G<(y ,X )

]
(55)

We take Wigner transformation

GR(p,X ) =

∫
d4ye ip·yGR(y ,X )

=

∫
d4ye ip·yθ(y0)

[
G>(y ,X )− G<(y ,X )

]
=

∫
d4ye ip·y 1

2πi

∫ ∞
−∞

dq0
1

q0 − iε
e iq0y0

×
∫

[d4k]e−ik·y [G>(k ,X )− G<(k ,X )] (56)

where we have used

θ(y0) =
1
2πi

∫ ∞
−∞

dq0
1

q0 − iε
e iq0y0 (57)
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Retarded and Advanced Green functions

We first complete the integral over y0 and then over q0

GR(p,X ) =
1
2πi

∫
[d4k]

∫
dq0

∫
dy0d3ye−i(p−k)·ye i(p0+q0−k0)y0

× 1
q0 − iε

[G>(k ,X )− G<(k ,X )]

=
1
2πi

∫
[d4k]

∫
dq0(2π)4δ(p0 + q0 − k0)δ(3)(p− k)

× 1
q0 − iε

[G>(k ,X )− G<(k ,X )]

=
1
2πi

∫ ∞
−∞

dk0
1

k0 − p0 − iε

× [G>(k0,p,X )− G<(k0,p,X )] (58)
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Retarded and Advanced Green functions

For the advanced two-point function we can derive the similar formula

GA(p,X ) =
1
2πi

∫ ∞
−∞

1
k0 − p0 + iε

[G>(k0,p,X )− G<(k0,p,X )] (59)

Similar to Eq. (58,59), we have

ΣR(p,X ) =
1
2πi

∫
dk0

1
k0 − p0 − iε

[
Σ>(k0,p,X )− Σ<(k0,p,X )

]
ΣA(p,X ) =

1
2πi

∫
dk0

1
k0 − p0 + iε

[
Σ>(k0,p,X )− Σ<(k0,p,X )

]
(60)
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On-shell approximation

If we only consider the scattering effect which corresponds to taking the
imaginary part of (k0 − p0 ± iε)−1, then we have

1
k0 − p0 ± iε

≈ ∓iπδ(k0 − p0) (61)

So we obtain

OR(p) ≈ 1
2
[
O>(p)− O<(p)

]
OA(p) ≈ −1

2
[
O>(p)− O<(p)

]
(62)

where O = Σ,G .
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KB equation in phase space

Then the KB equation for G< becomes(
iγµ

1
2
~∂µX + γµpµ −m

)
G<(p,X )

= −i
1
2
~
[
Σ<(p,X )G>(p,X )− Σ>(p,X )G<(p,X )

]
−1
4
~2 [{Σ<(p,X ),G>(p,X )

}
P.B.

−
{

Σ>(p,X ),G<(p,X )
}

P.B.

]
(63)

Similarly one can derive the KB equation for G> from Eq. (63) by
changing G< → G> in the left-hand side. The collision term in the r.h.s. is
denoted as Icoll.
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Lecture 2: Wigner function and MVSD for fermions

Introduction to Matrix Valued Spin dependent Distribution (MVSD) for
fermions.
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Fermion fields

Quantized free Fermion fields are

ψ(x) =
∑

s

∫
d3k

(2π~)3
1

2Ek

×
[
a(s, k)u(s, k)e−ik·x/~ + b†(s, k)v(s, k)e ik·x/~

]
ψ(x) =

∑
s

∫
d3k

(2π~)3
1

2Ek

×
[
a†(s, k)u(s, k)e ik·x/~ + b(s, k)v(s, k)e−ik·x/~

]
(64)

where k0 ≡ Ek ≡ Ek =
√

k2 + m2, the index s = ±1 denotes the spin state
parallel or anti-parallel to the quantization direction n, and a(s, k), a†(s, k),
b(s, k), and b†(s, k) are creation and annihilation operators for fermions
and antifermions, respectively, and u(k, s) and v(k, s) are spinors for
fermions and antifermions, respectively.
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Fermion fields

These operators satisfy anticommutation relations{
a(r ,p, t), a†(s,q, t)

}
=
{

b(r ,p, t), b†(s,q, t)
}

= 2Ep(2π~)3δrsδ
(3)(p− q) (65)

and all other anticommutators are vanishing. We have equal time
anti-commutation relations

{ψα(t, x), ψβ(t, y)} = {ψ†α(t, x), ψ†β(t, y)}

{ψα(t, x), ψ†β(t, y)} = δαβδ(x− y) (66)
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Fermion spinors

In Dirac representation, the spinors take the explicit form

u(s,p) =
√

Ep + m
(

χs
σ·p

Ep+mχs

)
v(s,p) = −i

√
Ep + m

( σ·p
Ep+mσ2χ

∗
s

σ2χ
∗
s

)
(67)

They satisfy the relation v(s,p) = iγ2u∗(s,p), which one readily proves
using σ2σσ2 = −σ∗.
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Fermion spinors

The spin eigenstates of χs along n = (sin θ cosφ, sin θ sinφ, cos θ) are

χ+ =

(
e−iφ cos θ2

sin θ
2

)
, χ− =

(
−e−iφ sin θ

2
cos θ2

)
(68)

which satisfy

σ · n =

(
cos θ e−iφ sin θ

e iφ sin θ − cos θ

)
(σ · n)χs = sχs (69)

One can check
(σ2χ

∗
s )†σσ2χ

∗
s = −χ†sσχs (70)
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MVSD for fermions

The Wigner function can be defined from the two-point function
G<(x1, x2) in Eq. (29)

G<
αβ(x , p) =

∫
d4ye ip·y/~G<(x1, x2)

= −
∫

d4ye ip·y/~
〈
ψβ

(
x − y

2

)
ψα

(
x +

y
2

)〉
= −

∫
d4ye ip·y/~

∫
d3k

(2π~)3
d3q

(2π~)3

∑
s,r

1
2Ek

1
2Eq

×
{〈

a†(k, s)a(q, r)
〉

uβ(k, s)uα(q, r)e i(k−q)·x/~−i(k+q)·y/(2~)

+
〈
b(k, s)b†(q, r)

〉
vβ(k, s)vα(q, r)e−i(k−q)·x/~+i(k+q)·y/(2~)

}
(71)

where we have used the field quantization form of (64) and neglected〈
a†(k, s)b†(q, r)

〉
and 〈b(k, s)a(q, r)〉.
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MVSD for fermions

We can carry out integral over y and obtain

G<
αβ(x , p) = −(2π~)4

∫
d3k

(2π~)3
d3q

(2π~)3

∑
s,r

1
2Ek

1
2Eq

×
{〈

a†(k, s)a(q, r)
〉

uβ(k, s)uα(q, r)e i(k−q)·x/~

× δ(4)[p − (k + q)/2]

+
〈
b(k, s)b†(q, r)

〉
vβ(k, s)vα(q, r)

× e−i(k−q)·x/~δ(4)[p + (k + q)/2]

}
(72)

where we have used the field quantization form of (64) and neglected〈
a†(k, s)b†(q, r)

〉
and 〈b(k, s)a(q, r)〉.
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MVSD for fermions

We change integral variables from q and k to p′ and u (q0 = Ep′+u/2 and
k0 = Ep′−u/2)

p′ =
1
2

(k + q)

p′0 =
1
2

(Ep′+u/2 + Ep′−u/2)

u = q − k
u0 = Ep′+u/2 − Ep′−u/2 (73)
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MVSD for fermions

We have

G<
αβ(x , p) = −(2π~)4

∫
d3p

(2π~)3
d3u

(2π~)3

∑
s,r

1
2Ep+u/2

1
2Ep−u/2

×
{〈

a†
(

p− 1
2
u, s
)

a
(

p +
1
2
u, r
)〉

× uα

(
p +

1
2
u, r
)

uβ

(
p− 1

2
u, s
)

e−iu·x/~δ(4)(p − p′)

+
[
2Ep(2π~)3δrsδ

(3)(u)

−
〈

b†
(
−p +

1
2
u, r
)

b
(
−p− 1

2
u, s
)〉]

× vα

(
−p +

1
2
u, r
)

vβ

(
−p− 1

2
u, s
)

e iu·x/~δ(4)(p + p′)
}
(74)
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MVSD for fermions

Then complete the integral over p

G<
αβ(x , p) = −(2π~)

∫
d3u

(2π~)3

∑
s,r

1
2Ep+u/2

1
2Ep−u/2

×
{〈

a†
(

p− 1
2
u, s
)

a
(

p +
1
2
u, r
)〉

× uα

(
p +

1
2
u, r
)

uβ

(
p− 1

2
u, s
)

e−iu·x/~δ(p0 − p′0)

+
[
2Ep(2π~)3δrsδ

(3)(u)

−
〈

b†
(
−p +

1
2
u, r
)

b
(
−p− 1

2
u, s
)〉]

× vα

(
−p +

1
2
u, r
)

vβ

(
−p− 1

2
u, s
)

e iu·x/~δ(p0 + p′0)

}
(75)

Qun Wang (MP/USTC) From KBE to SBE August 2022 63 / 91



MVSD: leading order result

For the leading order resuld of MVSD, we make approximation

uα

(
p +

1
2
u, r
)

uβ

(
p− 1

2
u, s
)
≈ uα (p, r) uβ (p, s)

vα

(
−p +

1
2
u, r
)

vβ

(
−p− 1

2
u, s
)
≈ vα (−p, r) vβ (−p, s)

δ

(
p0 −

Ep+u/2 + Ep−u/2

2

)
≈ δ (p0 − Ep)

δ

(
p0 +

Ep+u/2 + Ep−u/2

2

)
≈ δ (p0 + Ep)

1
Ep+u/2Ep−u/2

≈ 1
E 2

p
(76)
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MVSD: leading order result

We define MVSD (spin density matrix) at the leading order

f (+,0)rs (x ,p) =
1

2Ep

∫
d3u

(2π~)3 e−iu·x/~
〈

a†
(

p− 1
2
u, s
)

a
(

p +
1
2
u, r
)〉

=

∫
d4u

2(2π~)3 e−iu·x/~δ(p · u)

〈
a†
(

p− 1
2
u, s
)

a
(

p +
1
2
u, r
)〉

f (−,0)sr (x ,−p) =
1

2Ep

∫
d3u

(2π~)3 e iu·x/~
〈

b†
(
−p +

1
2
u, r
)

b
(
−p− 1

2
u, s
)〉

=

∫
d4u

2(2π~)3 e−iu·x/~δ(p · u)

×
〈

b†
(
−p− 1

2
u, r
)

b
(
−p +

1
2
u, s
)〉

(77)

The MVSD f (0)sr can be written as (scalar + polarization part)

f (0) =
1
2
Tr
(
f (0)
)

+
1
2
τ · Tr

(
τ f (0)

)
(78)
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MVSD: leading order result

In Eq. (77) we used pµ = (Ep,−p), and we have flipped the sign of u in
the second equality of f (−,0)sr (x ,p) and reused u0 = E−p+u/2 − E−p−u/2, so
that the definition of uµ is the same as the fermion.
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WF in MVSD: leading order result

Then the Wigner function in terms of MVSD at the leading order reads

G<(0)
αβ (x , p) = −(2π~)θ(p0)δ

(
p2 −m2)

×
∑
s,r

uα (p, r) uβ (p, s) f (+,0)rs (x ,p)

− (2π~)θ(−p0)δ
(
p2 −m2)

×
∑
s,r

vα (−p, r) vβ (−p, s)
[
δsr − f (−,0)sr (x ,−p)

]
G>(0)
αβ (x , p) = (2π~)θ(p0)δ

(
p2 −m2)

×
∑
s,r

uα (p, r) uβ (p, s)
[
δrs − f (+,0)rs (x ,p)

]
+ (2π~)θ(−p0)δ

(
p2 −m2)

×
∑
s,r

vα (−p, r) vβ (−p, s) f (−,0)sr (x ,−p) (79)
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Components of WF

WF can be decomposed in terms of Clifford algebra basis

Γa = {1, γµ, iγ5, γ5γ
µ, σµν} (80)

with γ5 = γ5 = iγ1γ2γ3γ4 and σµν = i
2 [γµ, γν ]. Then G<(0) can be

decomposed as

G<(0) =
1
4

(
F (0) + iγ5P(0) + γµV(0)µ + γ5γ

µA(0)
µ +

1
2
σµνS(0)µν

)
(81)

The components can be extracted as

F (0) = Tr
[
G<(0)

]
, P(0) = −iTr

[
γ5G<(0)

]
Vµ(0) = Tr

[
γµG<(0)

]
, Aµ(0) = Tr

[
γµγ5G<(0)

]
Sµν(0) = Tr

[
σµνG<(0)

]
(82)
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Clifford Components of WF at 0-th order

The Clifford component are

P(0) = 0

F (0) = −(2π~)2mδ
(
p2 −m2)

×
{
θ(p0)Tr

[
f (+,0)

]
− θ(−p0)Tr

[
1− f (−,0)(−p)

]}
Vµ(0) =

pµ

m
F (0)

Aµ(0) = −(2π~)2mδ
(
p2 −m2){θ(p0)nµ(p,nj)Tr

(
τj f (+,0)

)
+θ(−p0)nµ(−p,nj)Tr

[
τj f (−,0)(−p)

]}
Sµν(0) = − 1

m
εµναβpαA(0)

β (83)
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Polarization direction

Note that pµ = (p0,p), and constraint pµAµ(0) = 0 since
θ(p0)p · n(p,nj) = 0 and θ(−p0)p · n(−p,nj) = 0. Here we have [n3 is the
spin quantization direction in the particle’s rest frame, nµ(p,nj) is the
4-vector of the direction nj in the rest frame]

nµ(p,nj) =

(
nj · p

m
,nj +

(nj · p)p
m(Ep + m)

)
,

χ†sσχr =

(
n n1 − in2

n1 + in2 −n

)
sr

= nj(τj)sr

n1 = (cosφ cos θ, sinφ cos θ,− sin θ)

n2 = (− sinφ, cosφ, 0)

n3 ≡ n = (sin θ cosφ, sin θ sinφ, cos θ) (84)
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Formulas for spinors

In deriving Eq. (83) we used following formulas with pµ = (Ep,p)

u(r ,p)u(s,p) =
1
2

(m + γµpµ) δrs +
1
2
mγ5γµnµ(p,nj)(τj)sr

−1
4
εµναβσ

µνpαnβ(p,nj)(τj)sr

v(r ,p)v(s,p) = iγ2u∗(r ,p)[iγ2u∗(s,p)]†γ0

= γ2 [u(r ,p)u(s,p)]∗ γ2

=
1
2
γ2 (m + γµ∗pµ) γ2δrs +

1
2
mγ2γ5γµ∗γ2nµ(p,nj)(τ∗j )sr

−1
4
εµναβγ

2σµν∗γ2pαnβ(p,nj)(τ∗j )sr

=
1
2

(−m + γµpµ) δrs −
1
2
mγ5γµnµ(p,nj)(τj)rs

−1
4
εµναβσ

µνpαnβ(p,nj)(τj)rs (85)
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Lecture 3: SBE in terms MVSD

Introduction to SBE in terms of MVSD.
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KBE: Clifford components

The KB equation (63) is a Dirac-type equation

(γµKµ −m) G<(x , p) = Icoll (86)

where the operator Kµ is defined as

Kµ ≡ pµ +
i~
2
∂µx (87)

Acting the operator γνK ν + m on the KB equation (86) we can obtain a
Klein-Gordon-type equation(

K 2 −m2)G<(x , p) = (γνK ν + m) Icoll (88)

where we have used the property [Kµ,Kν ] = 0.
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KBE: Clifford components

Taking the Hermitian conjugate of Eq. (86), we obtain a conjugate
equation (

K 2∗ −m2)G<(x , p) = γ0 [(γνK ν + m) Icoll]
† γ0 (89)

where we have used the Hermitian property of the Wigner function

[G<(x , p)]† = γ0G<(x , p)γ0 (90)

In Eqs. (88) and (89) we have

K 2 = p2 − ~2

4
∂2

x + i~p · ∂x

K 2∗ = p2 − ~2

4
∂2

x − i~p · ∂x (91)
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KBE: Clifford components

By taking the sum and difference of Eq. (88) and (89) we obtain the
modified on-shell condition and Boltzmann equation for the Wigner
function (

p2 − ~2

4
∂2

x −m2
)

G<(x , p) =
1
2

(γµKµ + m)Icoll

+
1
2
γ0 [(γµKµ + m)Icoll]

† γ0

~p · ∂xG<(x , p) = − i
2

(γµKµ + m)Icoll

+
i
2
γ0 [(γµKµ + m)Icoll]

† γ0 (92)
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Mass-shell conditions and Boltzmann equations

Then we obtain equations for components(
p2 − ~2

4
∂2

x −m2
)
Tr
(
ΓaG<

)
= ReTr [Γa(γ · K + m)Icoll] ,

~p · ∂xTr
(
ΓaG<

)
= ImTr [Γa(γ · K + m)Icoll] , (93)

where we have used Γ†a = γ0Γaγ0.
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Semi-classical expansion

We can solve KB equation (63) order by order in powers of ~. To this end,
we expand every quantity (functions as well as operators) as

F =
∞∑

n=0

~nF (n) (94)

and truncate this expansion at a given order n.
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Zeroth order in ~

In the following, we choose the scalar and axial-vector components F and
Aµ as independent ones. Then we can express the other components in
terms of F and Aµ. At zeroth order we have

P(0) = 0

Vµ(0) =
pµ

m
F (0)

Sµν(0) = − 1
m
εµναβpαA(0)

β (95)

Note that Aµ(0) is constrained by p · A(0) = 0.
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1st order in ~

The Boltzmann equations for F and Aµ

p · ∂xF (0) = 2m ImTr
(
I (1)coll

)
p · ∂xA(0)µ = −εµναβpν ImTr

(
σαβ I

(1)
coll

)
(96)

Other components can be obtained from F and Aµ

P(1) = − 1
2m

∂µxA(0)
µ +

1
m
ReTr

(
iγ5I (1)coll

)
V(1)µ =

1
m

pµF (1) − 1
2m

∂νxS(0)νµ −
1
m
ReTr

(
γµI

(1)
coll

)
S(1)µν = − 1

m
εµναβpαA(1)β +

1
2m

∂x[µV
(0)
ν]

− 1
m
ReTr

(
σµν I

(1)
coll

)
(97)
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2nd order in ~

The Boltzmann equations for F and Aµ

p · ∂xF (1) = 2m ImTr
(
I (2)coll

)
+ ReTr

(
γ · ∂x I

(1)
coll

)
p · ∂xA(1)µ = −2pµ ImTr

(
γ5I (2)coll

)
− 2 ImTr

(
γ · pγ5γµI (2)coll

)
− ReTr

(
γ5∂µx I (1)coll

)
(98)

At order O(~2) the collision term reads

I (2)coll ≡ ∆I (1)coll + I (0)coll,PB (99)
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2nd order in ~

Here we have defined

∆I (1)coll = − i
2

[
Σ<(1)(x , p)G>(0)(x , p)

− Σ>(1)(x , p)G<(0)(x , p)

+ Σ<(0)(x , p)G>(1)(x , p)

−Σ>(0)(x , p)G<(1)(x , p)
]

arises from an expansion to first order in ~ of the first collision term in Eq.
(63), while

I (0)coll,PB = −1
4

[{
Σ<(0)(x , p),G>(0)(x , p)

}
PB

−
{

Σ>(0)(x , p),G<(0)(x , p)
}
PB

]
(100)

is the leading-order contribution from the second collision term in Eq. (63).
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SBE in MVSD at leading order

To extract the fermion sector in the left-hand side, we take an integration
over p0 = [0,+∞] of Eq. (96) for the scalar and axial vector components
to obtain the Boltzmann equation for the scalar and polarization part of
MVSD

1
Ep

p · ∂xtr
[
f (0)(x , p)

]
= − 1

π~

∫ ∞
0

dp0ImTr
(
I (1)coll

)
(101)

1
Ep

p · ∂xtr
[
n(+)µ
j τT

j f (0)(x , p)
]

=
1

2π~m
εµναβ

∫ ∞
0

dp0pνImTr
(
σαβ I

(1)
coll

)
(102)

From the scalar and polarization part of MVSD, one can rebuild f (0)sr as

f (0) =
1
2
Tr
(
f (0)
)

+
1
2
τ · Tr

(
τ f (0)

)
. (103)
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SBE in MVSD at leading order (scalar part)

1
Ep

p · ∂xtr
[
f (0)(x , p)

]
=

∫ ∞
0

dp0

2π~
ReTr

[
Σ<(0)G>(0) − Σ>(0)G<(0)

]
=

1
2Ep

∫
d3p1

(2π~)32E1

d3p2

(2π~)32E2

d3p3

(2π~)32E3

× (2π~)4δ(4)(p + p3 − p1 − p2)

×
{

f (0)s1r1(p1)f (0)s2r2(p2)
[
1− f (0)s3r3(p3)

] [
1− f (0)sr (p)

]
−f (0)s3r3(p3)f (0)sr (p)

[
1− f (0)s1r1(p1)

] [
1− f (0)s2r2(p2)

]}
× Re

(
Mscalar

a + Mscalar
b

)
(104)
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SBE in MVSD at leading order (polarization part)

1
Ep

p · ∂xtr
[
n(+)µ
j τT

j f (0)(x , p)
]

=− 1
2m

εµναβ
∫ ∞

0

dp0

2π~
pνReTr

[
σαβ

(
Σ<(0)G>(0) − Σ>(0)G<(0)

)]
=− 1

2Ep
· 1
2m

εµναβpν
∫

d3p1

(2π~)32E1

d3p2

(2π~)32E2

d3p3

(2π~)32E3

× (2π~)4δ(4)(p + p3 − p1 − p2)

×
{

f (0)s1r1(p1)f (0)s2r2(p2)
[
1− f (0)s3r3(p3)

] [
1− f (0)sr (p)

]
−f (0)s3r3(p3)f (0)sr (p)

[
1− f (0)s1r1(p1)

] [
1− f (0)s2r2(p2)

]}
× Re

(
Mpol

a,αβ + Mpol
b,αβ

)
(105)
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Two-point functions at O(~)

At O(~), two-point Green functions have three contributions

G≶(1) = G≶(1)
qc + G≶(1)

∇ + G≶(1)
off (106)

where G≶(1)
qc is the quasi-classical part (due to corrections from MVSD),

G≶(1)
∇ is the gradient and collision part, and G≶(1)

off is the off-shell part.
Here we neglect G≶(1)

off since its contribution is of higher order in the
coupling constant. Note that G≶(0) is quasi-classical automatically. By
definition, G≶(1)

qc satisfies

P(1)
qc = 0

V(1)µqc =
pµ

m
F (1)
qc

S(1)µνqc = − 1
m
εµναβpαAqc

β(1) (107)
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Quasi-classical part of two-point functions at O(~)

Here F (1)
qc and A(1)β

qc are given by

F (1)
qc = −(2π~)2mδ

(
p2 −m2)

×
{
θ(p0)Tr

[
f (+,1)

]
+ θ(−p0)Tr

[
f (−,1)(−p)

]}
A(1)µ

qc = −(2π~)2mδ
(
p2 −m2){θ(p0)nµ(p,nj)Tr

(
τj f (+,1)

)
+θ(−p0)nµ(−p,nj)Tr

[
τj f (−,1)(−p)

]}
(108)

We see the above provide first order corrections to F (0) and A(0)β in (83)
through MVSD f (±,1).
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Gradient and collision part of two-point functions at O(~)

On the other hand, F (1)
∇ and A(1)β

∇ contain spacetime derivatives of the
zeroth-order Wigner functions and the collision term I (1)coll

P(1)
∇ = − 1

2m
∂µxA(0)

µ +
1
m
ReTr

(
iγ5I (1)coll

)
V(1)∇,µ = − 1

2m
∂νxS(0)νµ −

1
m
ReTr

(
γµI

(1)
coll

)
S(1)∇,µν =

1
2m

∂x[µV
(0)
ν] −

1
m
ReTr

(
σµν I

(1)
coll

)
(109)

Note that we have set F (1)
∇ = 0 and A(1)µ

∇ = 0. If F (1)
∇ and A(1)µ

∇ are
non-vanishing, it can be absorbed into quasi-classical contributions of WFs
by a redefinition of the first-order MVSD.
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Gradient and collision part of two-point functions at O(~)

So G≶(1)
∇ can be put into the form

G<(1)
∇ = G>(1)

∇ ≈ − 1
8m

iγ5(∂x · A(0))

− 1
8m

γν∂µx S(0)µν +
1
8m

σµν∂x ,µV(0)ν

≈ i
4m

[
γµ∂x ,µ,G<(0)

]
(110)
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SBE in MVSD at next-to-leading order

Boltzmann equations at the next-to-leading order

1
Ep

p · ∂xtr
[
f (1)(x , p)

]
= Cscalar

(
∆I (1)coll, kin

)
+ Cscalar

(
∆I (1)coll, nonkin

)
+ Cscalar

(
I (0)coll,PB

)
+ Cscalar

(
∂x I

(1)
coll

)
(111)

1
Ep

p · ∂xtr
[
n(+)µ
j τT

j f (1)(x , p)
]

= C µ
pol

(
∆I (1)coll, kin

)
+ C µ

pol

(
∆I (1)coll, nonkin

)
+ C µ

pol

(
I (0)coll,PB

)
+ C µ

pol

(
∂x I

(1)
coll

)
(112)
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Solve MVSD order by order in ~

MVSD as a series of ~

f (x , p) = f (0)(x , p) + ~f (1)(x , p) + · · ·

=
1
2
Tr (f ) +

1
2
τ · Tr (τ f ) (113)

The space-time evolution of the polarization part can given by Tr (τ f ). We
see in Eq. (112) that the polarization part depends on space-time
derivative of f (0)(x , p) which can provide shear and vorticity contribution.
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Summary and conclusion

SBE in terms of MVSD can be derived from KBE.
The MVSD can be solved order by order in ~.
A rigorous approach to spin dynamics from first principle of quantum
field theory.
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