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Lecture 1: CTP formalism and KB equation

Introduction to Closed-Time-Path (CTP) or Schwinger-Keldysh (SK)
formalism. For comparison we give a derivation of the correlation function
in vacuum. Then we give a derivation of the correlation function in
non-equilibrium in the CTP formalism.
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In vacuum

Green functions in vacuum
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Two-point Green function in vacuum

We define the two-point Green function in a full theory as

G(x,y) = (Q To(x)o(y) 12) (1)

where |Q) is the ground state of the full Hamiltonian H and ¢(x) is the
scalar field operator in the Heisenberg picture. In Schroedinger picture, the
full Hamitonian H is a sum of a free one and an interaction one,

H= HO + Hint (2)
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Heisenberg and Schroedinger picture

At the initial time tp, ¢(s)(x) is a field in Schroedinger picture and can be
expanded as

d3 1 ipx —ip-x
¢(S)(X):/(27T;;\/E (apep —|—a;r)e P ) (3)

We can obtain ¢(x) = ¢(u)(t,x) in the Heisenberg picture from ¢(s)(x) by
3(x) = M=) g ()=l (4)

We see H(H) = H(S) =H.
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Interaction picture

We can define the field operator in the interaction picture

duy(x) = ePlT0g g (x)eotm0)
dBp 1

(2n)® \/2E, (3ve7P + afe) ®)

where we have used t; = 0 and

_ iHot —iHot _ —iEpt
ap(y = €"ape = ape P
t _ jiHot.t .—iHot _ .t AiEpt
ayy = € °ae = ajpe (6)

We note that a, and a, in Eq. (5) are in Schroedinger picture and
independent of time. We have used Hy = H( ) — H(S)
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Evolution operator

Now we can express the Heisenberg picture field ¢(x) in terms of ¢()(t,x)

¢(X) _ eiH(t_t°)¢(5)(X)e_iH(t_tO)
— eiH(t—to)e—iHo(t—to)¢(I)(X)eiHo(t—to)e—iH(t—to)

= Ul(t, to)p(n (x) U(t, to) (7)

where U(t, tp) is the unitary operator connecting the interaction and
Heisenberg picture,

U(t,to) = eiHo(t—to) g~ iH(t—to)

U(to,t) = U'(t, to) = eH(t-10) g=iHo(t=t0) (®)
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Field in Heisenberg picture

The field in Heisenberg picture is then

P(x )_/(d3) \/;? [ap(t)e*fp-x_{_a;r)(t)eip-x]

where ap(t) and a;r,(t) are operators in Heisenberg picture

ap(t) = U'(t, to)apU(t, to)
ab(t) = U'(t, to)ab U(t, to) (9)
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Evolution operator

The evolution operator U(t, tp) satisfies the Schroedinger equation

ith(t, to) = HU(t, to) (10)

where H, = Hi(IQ is the interaction Hamiltonian in the interaction
picture,

HI — eiHo(tfto)Hi(Ii) efiHo(tfto) (11)
The derivation of (10) is

ith(t,to) = U(t,to)H — HoU(t, to)
—  eiHo(t—to) H.(“gt)e_iH(t_to)
_ eiHo(t—to)H_(St)e—iHo(t—to)eiHo(t—to)e—iH(t—to)

= HU(t, to) (12)
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Evolution operator

The solution to U(t, tp) is

U(t,to) =T [exp <—i/t: dt’H,(t’)>] (13)

Note that U(t, tp) is a unitary operator which connects the interaction
with Heisenberg picture.
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Evolution operator for arbitary time

We can define an evolution operator in the interaction picture from t; to t

U(ta, t1) = U(ta, to) UT(t1, to)
— eiHo(tzfto)efiH(tzftl)efl'Ho(tlftO) (14)

We can prove that all elements of U(t2, t1) consititute a U(1) group: (1)
The inverse of U(ty, t1) is U(t1, t2): U(t2, t1)U(t1, t2) = 1. (2) Unitary
condition U'(ta, t1) = U(t1,t2). (3) The result of two continuous evolution
is still an evolution: U(ts, t2)U(t2, t1) = U(t3, t1). One can verify U(t, t;1)
satisfies the same Schroedinger equation as in Eq. (10). So its solution is
similar to (13),

Ult,t)) =T [exp (—i/t: dt'H/(t'))] (15)
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Vacuum states of Hy and H

To deal with Eq. (1), we express the ground state of Hp in terms of
eigenstates of H,

0) = > In.H) (n, H0)

n

(0] = (0ln, H) {n, H] (16)

n

where |n, H) denote energy eigenstates of H with |0, H) = |Q2). We let |0)
evolve in time with H

e~ Mlttt0) |0) =} ™ g~ Enltott0) |n 1) (n, H|O)

(0] e~ Mlt=t0) = N™ g ialt=t0) (0|, H) (n, H| (17)

where E,, denotes the energy of the state |n, H) with E, > E,_1.
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Vacuum states of Hy and H

In order to single out |Q2) out of other states, we introduce a small
imaginary part into tu as too — too(1 — 7€), then we have

e—iH[too(l_if)+t0] |0> — e—EOE { (e—iEO(too+t0) <Q’O>> ‘Q>
+ 3 e iEnlttto) g (En—Eo)tect | 1) (n, H|O)
n#0
(0| e—iHItoo (1—ie)—to] _ e—Eoe{<e—iEo(too—to) <0|Q>> Q|
+ Z e_"En(too_tO)e—(En—EO)tOOE <O‘n7 H> <n, H‘ (18)

n#0
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Vacuum states of Hy and H

Since all higher states are suppressed relative to the ground state by a
factor e~ (En—Bo)t=¢ 5o we have

Tt ) j0) = (7Rl (10)) )
(0] e~ Mlt=) » ((iEolt=0) (0]02) ) (@) (19)
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Vacuum states of Hy and H

We can approximate

Q) ~ lim

too—00(1—i€)

(¢ )

lim <'Eo(too+to (0) 1)Ut0,
(¢ 7)ol
)¢

too%oo (1—ie)

Q| = lim

too—r00(1—i€)

~ lim (e’E"(tm_t" (0|2) -1 (0] U(to, to) (20)

too—r00(1—i€)

where we have used Eq. (8) and Hp|0) = 0.
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Normalization

The normalization condition for the ground state reads
1=(Q|Q)
= lim (2B (0]0)[72) (0] Ut t0) Ulto, —t) [0)  (21)

too—r00(1—i€)

which determines the normalization constant

' 1
2iEotoo | (Q]0) |~2 = li 22
QIO =i T Ul =) [0) (22)
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Gell-Mann-Low theorem

Using Egs. (7,20), E

G(Xay) =

Qun Wang (MP/USTC)

d. (1) can be written as

(Q To(x)o(y) 12) 1
oo O Ut — 2] 0)
% (0] U(tso, to) TU' (x0, t0) 1 (x) U (0, to)
< U (yo, to)d1(y) U(yo, to) U(to, —ts0) 0)
im (0L TIr(x)é () U(teo, —t)] [0)
e (0] Ut —£) [0)

(23)
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Non-equilibrium

Green functions in non-equilibrium
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Two-point Green function in non-equilibrium

In non-equilibrium, the two point correlation function is defined through
the density operator at the initial time

G(x,y) = (To(x)o(y)) = %Tr[ﬂ(to)T¢(X)¢(y)] (24)

where the trace is taken over initial states which can be expanded in
eigenstates of free Hamiltonian Hp.
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Two-point function on CTP

The interaction H; is is switched on in later time. Using Eq. (7), we can
write Eq. (24) as

G(x,y)

1
Ty () T6000()]

Trp(tO)Tr[P(to) TU (x0, to)p1(x) U(x0, to)
% Ut (y0, t0)é1(y) U(x0, to)]

WTT[PUO) TUT (x0, to) 1 (x) U(x0, y0) 81 (v ) U(yo, t0)]

Trp(tO)Tr[p(to)Tp¢/(x)¢,(y)UCTP(t0)] (25)
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Evolution operator on CTP

Here Uctp(to) is the unitary evolution operator defined on a closed-time
path (CTP) starting from ty to +00 and back to tp (see Fig. 1),

Ucrp(to) = Tp [exp (—i - dtH,(t))}

— Tp [exp <—,/ dt, Hy(t) + / dt_H(t )] (26)

In Egs. (25,26), Tp is the ordering operator on the CTP. From Eq. (26)
we see that the interaction terms leading to vertices in Feynman rules on
the negative time branch have got a minus sign relative to those on the
positive time branch. The difference between G(x, y) in vacuum and
non-equilibrium is that there is no evolution of an in-state to a state at tg
and a state at g to an out-state. Only states at tg is involved which lead
to the CTP.
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Figure: The Closed Time Path.
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Difference between vacuum and non-equilbrium

The difference between G(x, y) in vacuum and non-equilibrium is that
there is no evolution of an in-state to a state at tg and a state at ty to an
out-state. Only states at tj is involved which lead to the CTP.
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Two-point Green functions on CTP

There are two equivalent forms of Green functions on the CTP: (1) The
original definition:

G(x1,%) = (Tptha(x1)s(x2)) (27)

where x19 and xxg are on the CTP, and Tp denotes the time-order operator
on the CTP. (2) Matrix form:

G+t G+ GF G<
G:<G+ G>:<G> GF> (28)

where we have used G~ = G<, G+t =G>, G+ = GF, G— = GF.
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Two-point Green functions on CTP

The definition of Green functions are

Grs(x, %) = (Toalx)vs(x2))
Gf,B(XL)Q) = (Tava(x1)¥s(x2))
G, x2) = —(Ps0x)alx))
Grs(xi,x) = (Yalx)Ps(x2)) (29)

where T and T4 denote the time-order and time-antiorder operator
respectively, and o, 8 = 1,2, 3, 4 denote Dirac indices.
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Equivalent form of two-point function

We can use the physical representation by the unitary transformation

0 GA GFH G< _
(GR GC>:U<G> GF>U1 (30)

1 1 -1 1 r 1 1 1
v=H(i ) eer-G(hn) e
Only three of them are independent due to the identity
GF 4+ GF =G>+ G<.

where
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Equivalent form of two-point function

The explicit form is

GR = 0(t1 — )G +0(ta— t,)G= — G=
= 0(t1 — )(G” — G%)
GA = O(t —t)G” +0(tr —11)G~ — G~
= 0(tp—t1)(G= - G”)
G¢ = ¢F+G6F=6"+¢G~ (32)
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Schematical Dyson-Schwinger Equation

Schematically, the Dyson-Schwinger (DS) equations on CTP read

Gl = Gl-%
1 1

G = ] = ]
Gl-X Gyl(1- Gx)
]' n
= mGO = ;)(GOZ) Go = Go+ GZ Gy
1 1
G = =G
(1-%G)G ' '1-%Go
= ) G(XGo)" = Go+ GXG (33)
n=0
GGy'! = 1+GX
G 'G = 1+316 (34)
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Dyson-Schwinger (DS) equation on CTP

The explicit form of the KB equation for two-point function on CTP is
—i(iv. 0% — m)G(x1, x2)
= 5?)(x1 - x2) —|—/Cdx'Z(x1,X’)G(X',X2) (35)
where x1, xo and x’ are space-time points on the CTP, dx = d*x, and the

integral is defined on the contour. The delta function on the CTP is
expressed in terms of normal delta functions

. (5(4)(X1 — X2), X12 € ty
6(C)(x1 —xp) = —5(4)(x1 - x2), X12 € t_ (36)
0, (x1,x2) € (ty,t_)or(t_,ty)

Equation (35) can also be put into an equivalent matrix form in normal
coordinates.
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Kadanoff-Baym (KB) equation

The equation for G< for (x1,x2) € (t4,t-),

—i(ilryd — m)G=(x1, %) = h/ dx’ [ZF(XLXI)G<(XI7X2)

—Z<(X1,X/)Gf(X/,X2):|
_ h/ dx’ [ZR(xl,x')G<(x',x2)

15 (x1, X) GAX, xz)} (37)

Note that all x1, xo and x’ are ordinary coordinates (not on CTP).
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Proof of Eq. (37)

For (x1,x2) € (t4+,t_), the CTP integral in r.h.s. of Eq. (
rewritten into a normal integral

/ dx' ¥ (x1, X" )G (X', x2)

= / dx’ [ZF(Xl,x)G<(x x) — E<(x1,x)GF (¥, x2)| (38)

to

35) can be

Then we can express ¥F and GF in terms of ¥= and GS,

YF(xi,x) = 0(ty — )7 (x1, X') + O(t' — t1)X=(x1, x)
GF (X, %) = 0(t — £2)G<(X, %) + 0(t2 — ') G™ (¥, x2)  (39)

Qun Wang (MP/USTC) From KBE to SBE August 2022 33 /91



Proof of Eq. (37)

Then we have

L = /too dx’ { [0(1‘1 — YT (xq, X)) + 0(t — tl)):<(X17X,)] G=(X, x2)

— Z<(X1,X’) [0(1" — t2)G<(X/,X2) + 0(t2 — tl)G>(XI,X2)]}

t1 [e'e}
= / dx’Z>(x1,x’)G<(x/,X2)+/ dx' < (x1,x") G (X', x2)
to t1

0 t2
—/ dx'E<(x1,x")G<(X', x2) —/ dx'E<(x1,x") G (X, x2) 40)
(5 to
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Proof of Eq. (37)

(Continued)
t1
e = [ [ ) 5] 6o

/ dX'E%(x1,x') [G7 (X, %) — G (X, x2)]

AL [ e

/t dx' [Z7(x1,X") — £%(x1, X)] G=(X', x2)

t2
— [, X) [67 (X 3) = GF(¢ xe)]

to

= [ [E )67 () + 27 (X)X )] (1)

to
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Proof of Eq. (37)

Here we have used

YR(x1,x') = 0(ty — t') (27 (x1, x") — % (x1, )]
GA(X,x) = —0(tr — ') [G™ (X, %) — G<(X, x)]

Qun Wang (MP/USTC) From KBE to SBE August 2022 36 /91



KB equation in matrix form

Equivalently one can write Eqs. (35) in the matrix form corresponding to
DS equation G, 'G =1+ XG,

GF G<
RG] (e [T
1 0
- 5(4)(X1_X2)<0 —1)

oo ZF _3< GF G<
v dxl( s> _xF ) (Xl’xl)< 6> GF ) () (42)

Note that all x1, x» and x’ are ordinary coordinates (not on CTP).
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KB equation in matrix form

Corresponding to GG(;1 =1+ G, we can also derive the KB equation
with the differential operators acting on Green's functions in the left

( GF G=< e
! ( G> Gf ) (X17X2)(l7uaﬁ2 +m)

= (5(4)(X1 - X2) < é f)l )

%) GF —_G< ZF y <
+f dxl( 6> —GF>(X1’X/)<2> ZF)(X/’Xz) )

o0
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Wigner transformation (WT)

We rewrite x; and x> by

1
X = E(Xl +X2)
Yy =X — X2 (44)

and then make Fourier transformation with respect to y of Eq. (37). The
Fourier transform is defined as

Alp) = /dxeip'XA(x)
AK) = [ ldble " A(p) (45)
where [dp] = d*p/(27)*.
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WT for Kinetic terms

We take WT for Eq. (37). The kinetic term becomes

hin = /dye'py i(i7u0 — m)G(x1, %)]

= —i/dyeip'y <I’YM18$L( + /’Yuaff - m) G<(y7X)

= /dye (/*yﬂ %a“ ) G<(y,X)

= —i <i’7u28; + P — m) G=(p, X) (46)
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WT and gradient expansion for collision terms

We now make a gradient expansion of |.h.s. of Eq. (37). First we should
define coordinate variables

(x1, %) — (X,y)

(Xl?X,) - <X+ ylvy_y/>

y = X =x
y=y = xx—-xx—(—-x)
= x3—x (47)
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WT and gradient expansion for collision terms

The collision term in Eq. (37) can be rewritten as Eq. (41) (his
suppressed). By setting to = —oo we obtain at the leading order of
gradient expansion

li—(x1,x) = / dx’ [ZR(Xl,X')G<(X',x2) + Z<(X1,X/)GA(X/,X2):|

oo 1 1
= / dy'zF (y -y X+ 2y’> G= (y’,X - E(y - y’))
> dy'>< —v'. X 1 / GA "X — 1 )
+ ly y =y X+2y v, 2(y y')
~ 104 (48)

where /iol and IJ(rl_) are the contribution of the leading and next-to-leading

order in space-time derivatives, respectively.
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WT and gradient expansion for collision terms

They are given by
120:%) = [ a/ERiy -y 0650/ X)
+/OO dy'S<(y — ¥/, X)GA(Y', X)
Dy, x) = / dy'y, LR (y = . X)G=(y/. X)
= TRy Y X) 0 YDK G X)
+% /_Z dy'y, %= (y — y', X)GA(Y', X)

1 oo
5 | X - YOG X) (49)
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WT for collision terms

The Wigner transformation of IJ(FO_) and If_ll reads

19 (p, X) = / dye>/" O (y, X)
=ZR(p, X)G<(p, X) + T=(p, X)G*(p,X) ~ (50)
1M (p, X) = / dye>/" D (y, X)
- —%ih [a;zR(p,X)agcﬂp,X)
T R(p, X)0% G<(p, X))
- %ih [6;z<(p,X)agGA(p, X)
92T (p, X)9% G*(p, X)) (51)

where we have replaced y — —ih0p.
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WT for collision terms

We can use Poisson bracket
{A,B}pg = 6§‘<A858 — 65A8§‘<B (52)
to rewrite (51) as
(p,Xx) = / dye™ /" (y, X)
_ 1. R <
- Elh{z (p,X),G (p7X)}P.B.

_%ih{2<(p’x)’ GA(p’X)}P.B. (53)
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KB equation in phase space

Then the KB equation for G< is then

(i'yu;haﬁ‘( + yupt — m> G<(p,X)
= i [ZR(p, X)6(p, X) + T<(p. X) G*(p, X)
A [{e0.ce),,
{Ze.X). e X)), | (54)

where we have recovered h. Note that every propagator contributes 7,
every vertex contributes A1, so for Feynman diagram in Fig. (2) is in the
order hi. So the first term in the right-hand side is in the order ki, while the
second term is in the order 72 due to spatial derivative.
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Feynmann diagram for selfenergy

Figure: Feynman diagrams in QED for (a,c) £ (p) and (b,d) X<(p). Solid lines
represent fermion propagators, wavy lines represent photon propagators.

(a) G< (b) G~
q q q q
- G> + + G< -
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Feynmann diagram for selfenergy

Figure: Feynman diagrams in QED for (a,c) X~ (p) and (b,d) X<(p). Solid lines
represent fermion propagators, wavy lines represent photon propagators.

(c) (d)
G< G
q * + 4 q + +Q1
QXO\ ’OxQ on‘ 'OXQ
- z + + 7 -
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Retarded and Advanced Green functions

The retarded Green function is defined as

GR(y,X) =0(%0) [G”(y,X) — G=(y, X)] (55)

We take Wigner transformation
GR(p,X) = /d“ye""yGR(y,X)
= [ d*eP760) [G>(y,><) - G(y. X))

/d4ye / edoyo
qo — IE

« / [d*Kle *¥[G™ (k, X) — G=(k, X)] (56)

where we have used

1 o 1 ;
0(y0) = 27”/ dqo _ gfd0yo (57)

—00 Go — 1€
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Retarded and Advanced Green functions

We first complete the integral over yp and then over qg

GR(p, X) /[d4k]/dq0/dy0d3ye i(p—k)-y oi(Po+d0—ko)yo

[G” (k,X) — G=(k,X)]

X

qo — Je
=5 /[d4k] / dqo(27)*8(po + qo — ko)o® (p — k)

X [G™ (k, X) — G=<(k, X)]

qo — i€

1
- o —————
27ri/_ood0kg—po—ie

x [ (ko, P, X) — G=(ko, p, X)] (58)
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Retarded and Advanced Green functions

For the advanced two-point function we can derive the similar formula
1
GA(p, X) = / ————[G”(ko,p, X) — G=(ko, p, X 59
(p, X ko_p0+,6[ (ko, p, X) (ko,p, X)]  (59)

Similar to Eq. (58,59), we have

1 1
YR(p, X)= — [ dhg———— [T (ko, p, X) — =<(ko.p, X
(pv ) o2 /d okO — po — ie [ ( 0,P; ) ( 0,P, )]

1 1
TA(p, X) = 27T/dk Y — [Z7 (ko, p, X) = = (ko, P, X)]  (60)
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On-shell approximation

If we only consider the scattering effect which corresponds to taking the
imaginary part of (ko — po ie)_l, then we have

1 .
m ~ Fimd(ko — po) (61)
So we obtain
OR(p) ~ 5 [O>(P) 0=(p)]
0(p) ~ 3 [0%(p) ~ O<(p)] (62

where O = %, G.
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KB equation in phase space

Then the KB equation for G< becomes
1
(iwzh@ﬁé + Pt = m> G=(p. X)
1
= _Iih [Z<(p7X)G>(p7X) - Z>(p7X)G<(an)]

_%hz {=5(p, %), 67 (. X)} p .
—{Z7(p, X), G<(p. X) } p 5| (63)

Similarly one can derive the KB equation for G~ from Eq. (63) by
changing G<= — G~ in the left-hand side. The collision term in the r.h.s. is
denoted as /..
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Lecture 2: Wigner function and MVSD for fermions

Introduction to Matrix Valued Spin dependent Distribution (MVSD) for
fermions.
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Fermion fields

Quantized free Fermion fields are
Z / d®k 1
21h)3 2E;
x [a(s, K)u(s, k)e~ /" ¢ pi(s, k)v(s,k)e"k-x/ﬂ
Z / d®k 1
21h)3 2E;
X [a (s, K)T(s, k) ™/ + b(s, k)7 (s, k)e—”"x/ﬁ} (64)

where k° = E, = B = Vk? + m2, the index s = +1 denotes the spln state
parallel or anti-parallel to the quantization direction n, and a(s, k), af(s, k),
b(s, k), and bf(s, k) are creation and annihilation operators for fermions
and antifermions, respectively, and u(k, s) and v(k,s) are spinors for
fermions and antifermions, respectively.
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Fermion fields

These operators satisfy anticommutation relations
{a(r.p.t).al(s,a,6) } = {b(r.p, 1), bl(s,0, ) |
= 2E,(271)%6,56C) (p — q) (65)

and all other anticommutators are vanishing. We have equal time
anti-commutation relations

{Wa(t:x), 0p(t,y)} = {l(t,%), vl(t,y)}
{a(t,%), ¥(t,y)} = dapd(x—y) (66)
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Fermion spinors

In Dirac representation, the spinors take the explicit form

o - vETe( )

Ep+m

v(s,p) = —iy/Ep+m( *r (67)

02X

They satisfy the relation v(s, p) = iv?u*(s, p), which one readily proves

using opo00p = —o*.
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Fermion spinors

The spin eigenstates of xs along n = (sin 6 cos ¢, sin §sin ¢, cos 0) are

e~ cos ¢ —e 9ginl
= 2 — 2
X+ < sing ) » X- ( cos% ) (68)
which satisfy
n = cos e ?sinf
g o e®?sinf  —cosh
(0-n)xs = sxs (69)
One can check
(02x2)Tooaxi = —xloxs (70)
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MVSD for fermions

The Wigner function can be defined from the two-point function
G=(x1,x) in Eq. (29)

Gos(x. p) = /d4yeip'y/hG<(X17X2)
= [ e (G (x= ) v (x+ 5))
3 3
= [ @ [ ey a6 28,
L (a1 9)a@.1)) Tl )u . )l =1k
- (blk.5)81(a. 1) sk, S, e k-0 kab e |

(71)

where we have used the field quantization form of (64) and neglected

(a'(k,s)b'(q,r)) and (b(k,s)a(q,r)).
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MVSD for fermions

We can carry out integral over y and obtain

d*k  d3q 1 1
< _ 4 -
Gaslx, p) = =(27h) / (2mh)3 (2mh)? &= 2E, 2E,

X { <aT(k, s)a(q, r)>U5(k,s)ua(q, r)eilk=a)x/n
x 6 [p — (k+q)/2]
+ (b(k,5)b'(a. 1)) V(k, s)va(a, r)

e G+ (-4 )21 (72)

where we have used the field quantization form of (64) and neglected

(a'(k,s)b'(q,r)) and (b(k,s)a(q,r)).
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MVSD for fermions

We change integral variables from ¢ and k to p’ and u (qo = Ep/4u/2 and
ko = Ep’fu/2)

p = %(k +9)
po = %(Ep’+u/2 + Epr—u/2)
u=q—k
o = Epriuja — Eprup2 (73)
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MVSD for fermions

We have

1
< = —(27h 4/
Galg(xv P) ( T ) (2’7Th 27rh 3 Z 2E p+u/2 2Ep—u/2

X af — 1u s)a —i—lu r
P S P S
1 _ 1 —iux/h 5(4) ,
o |P+our)|Ts(p—cus)e dM(p—p)
Ey(271)36,56) (u)

i
(5ol 1)

1 1 ;
XV, (_p + Eua I’) Vs <_p o 2U,S> elu.x/h5(4)(p+ pl)}
(74)
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MVSD for fermions

Then complete the integral over p
GS = —(27h)
aplp) =~ (2 / (27h)? Z i, b/ 2E e

X f - ! + 1 r
al|p—gus P+ u,
1 — 1 —iu-x/h /
Uq, P+§Uaf ug { P — §U75 € 6(Po — Po)
n [2Ep(27rh)35,55(3)(u)

RE )

1 1 ;
X Vo (-P +ou f> v <_P oW 5> e /"5 (po + P(/))} (75)
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MVSD: leading order result

For the leading order resuld of MVSD, we make approximation
1 _ 1 _
Ug, p+§u,r g (P—ZWs) = Ua (p,r)ds(p,s)

+1 _ 1
V, — —u,r|v —pP—-Uu,s
(o' P 2 B p PR

Q

Va (_p’ r) Lz (_p7 S)

E, + E,_
5<Po— p+u/22 . u/2> ~ 6(po— Ep)
Eptus2 + Ep—u
5<p0+ p+/22 p /2) ~ 6(p0+E,)
1 1

t
—_
~
=)
N—r

Ep+u/2Epfu/2 - Eg
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MVSD: leading order result

We define MVSD (spin density matrix) at the leading order
3 (o)1)
= /%j::if,e_"”‘x/ﬁd(p - u) <aT (p — ;u,s> a (p + %u, r>>
£ (x, —p) = le_:p/ (2(f;) iuxfh <bT <—p - %U, r> b <—p - ;u,s>>

X <bJr <—p - %u, r) b <—p + ;u,s)> (77)

The MVSD £ can be written as (scalar + polarization part)

FO = 2Tk (FO) 4 L7 e (rF) (78)
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MVSD: leading order result

In Eq. (77) we used p* = (Ep, —p), and we have flipped the sign of u in

the second equality of fs(r_’o)(x, p) and reused up = E_p_ /2 — E_p_y/2, 50
that the definition of u* is the same as the fermion.
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WEF in MVSD: leading order result

Then the Wigner function in terms of MVSD at the leading order reads

Gs(x, p) = —(27h)0(po)o (p? — m?)

x 3 ua (p.r) Ts (p.s) 47V (x.p)

- (2Wh)9(—Po) (p2 — )

X Z Voc —P, S) |: - fs(r_yo)(x7 _p):|
G (x. p) = () (P> = m?)

%> ta (P, r) T3 (pr5) [0 — 479 (x,p)

(27Th)9(—P0) (p2 ~ )

<3 (—p.5) £SO (x. ~p) (79)
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Components of WF

WEF can be decomposed in terms of Clifford algebra basis

Fa={1,9",iys,vsv", 0"} (80)

with 75 = 7> = ir29293* and o# = L[v#,4"]. Then G<() can be
decomposed as

1 1
GO = (J—“(O) +ins PO + 4PV 4y AQ) + QJWSS))> (81)
The components can be extracted as
FO =y [G<(°)] , PO = Ty [75G<(°>]

V(’g) =Tr ['y“G<(O)} , Al{o) =Tr [7“’75G<(0)]

Sty =T |:UIWG<(O):| (82)
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Clifford Components of WF at 0-th order

The Clifford component are
PO = o
FO = —(2rh)2ms (p* — m?)
x {0(po) T [F(-O)] — 6(—po)Tx [1— F-O(=p)| }

p o _ P o)

Ay = —(@mh)2ms (p* = m?) {6(po)n(p, nj) T (i +0)
+60(—po)n(—p, nj)Tr [ij(_vo)(_p)}}
v 1 va,
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Polarization direction

Note that p* = (po, p), and constraint p#.AéLO) = 0 since

8(po)p - n(p,nj) =0 and O(—pg)p - n(—p,n;) = 0. Here we have [n3 is the
spin quantization direction in the particle’s rest frame, n*(p, n;) is the
4-vector of the direction nj in the rest frame]

n;-p (nj - p)p
b n) — (M . j
m(p,ny) ( m ’nJ+m(Ep+m)>’
+ _ n ny —iny o
ng = (cos¢cosh,sinpcosh,—sinb)
n, = (—sin¢,cos¢,0)
n3 = n=(sinfcosae,sinfsin ¢, cosb) (84)
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Formulas for spinors

In deriving Eq.

u(r,p)u(s,p)

v(r,p)v(s,p)

(83) we used following formulas with p* = (Ep, p)

1
(m +~"py) 6rs + Emvsv“nu(p, n;)(7j)sr

P, ;) (7))sr

N~

1
— 4 Emapc pn(
i?u* (r,p)in*u"(s, p)]'°

= 2 [u(r,p)a(s,p)]* 72
1 1

= 5,72 (m + ,-}/H*pu) ’Yzérs + §m72757y*72nu(p7 nj)(fik)sr

1 b )
= a0 0 (0, ) (7 )ar
1 1
= 5 (=m+9"Pu) drs = 5m°" nu(p, 1) (7))

N

1
*Ze,u,l/aﬁoﬂuypanﬁ(p7 nj)(Tj)fS (85)
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Lecture 3: SBE in terms MVSD

Introduction to SBE in terms of MVSD.
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KBE: Clifford components

The KB equation (63) is a Dirac-type equation

(")/MKN — m) G<(X, P) = Icoll (86)
where the operator K* is defined as

10
KH = ph & ’585 (87)

Acting the operator , K¥ + m on the KB equation (86) we can obtain a
Klein-Gordon-type equation

(K2 - m2) G<(X7 P) = (%/KV + m) lcoll (88)

where we have used the property [K),, K,] = 0.
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KBE: Clifford components

Taking the Hermitian conjugate of Eq. (86), we obtain a conjugate
equation

(K> —m?) G=(x,p) = ° [(WK" + m) leon] " 7° (89)
where we have used the Hermitian property of the Wigner function

[G=(x,p)]" =+°G=(x, p)1° (90)

In Egs. (88) and (89) we have
h2
K2=p2—zﬁ)2<+iﬁp'ax

2% _ 2_@2 2
K™ =p 48X ihp - Ox (91)
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KBE: Clifford components

By taking the sum and difference of Eq. (88) and (89) we obtain the

modified on-shell condition and Boltzmann equation for the Wigner
function

h? 1
(7= 0 = ) 6¥(x.p) = 507K + )l

1
+ 5’70 [("}/#Ku + rn)’coll]Jr ’70
i
- 0.6 (x, p) = —2 (4" + M)k

i
LK el 2 (92)
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Mass-shell conditions and Boltzmann equations

Then we obtain equations for components

2
<p2 _ %85 _ m2> Tr (raG<) = ReTr [ra(’)/ K+ m)lcoll] 5

hp-0xTr (T,G<) = ImTr[Ta(y- K+ m)leon], (93)

where we have used F]; = vl a70.
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Semi-classical expansion

We can solve KB equation (63) order by order in powers of /. To this end,
we expand every quantity (functions as well as operators) as

F=> hF (94)
n=0

and truncate this expansion at a given order n.
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Zeroth order in A

In the following, we choose the scalar and axial-vector components F and
A, as independent ones. Then we can express the other components in
terms of F and A,. At zeroth order we have

PO =0
p P ro)
v 1 14
e W (95)

Note that Aéto) is constrained by p - Ay = 0.
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The Boltzmann equations for 7 and A,
1
p- 0. F O =2mimTr (1)
p- O A = _ewaBp T Ty (Uag /c(il)l> (96)

Other components can be obtained from F and A,

1 1 . 1
P(l) = —%aﬁft'&o) + ;Re TI' (I’y5lc(01)1)
1 1 1
N . v (0 W
V;(L ) - Ep'u./—"( ) — %axsz(/u) - ERG Tr (leilcoll)
1 1
m _ L a B L 1 ©
SNV = mE/,LVOéﬁp A + om aX[MVV]
1 1
—;Re Tr (Uuy /C(01)1> (97)
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2nd order in A

The Boltzmann equations for F and A,

p- O FY =2mIm Tr (1(2)

c011> + ReTr (’Y : 8X/($1)1)
p - O AW = —2p# Im Tt (v5lc(§1)1) —2ImTr (7 : pv%“lc(fﬁ)

— ReTr (758“/(1)> (98)

X ‘coll

At order O(h?) the collision term reads

HOREAEY

coll — coll

0
+ Ic(ol)l,PB (99)
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2nd order in A

Here we have defined

i
1G] = =2 [E50(x, p) 67O x, p)
— "0 (x, p)G=O(x, p)
+25O(x,p) 6> W (x, p)

—5>O(x, p)6<W(x, p)]

arises from an expansion to first order in  of the first collision term in Eq.
(63), while

1
Qs =3 [{ZOp). 67Ox,0) )
_ J5>(0) <(0)
{ZO.p). 6O x,p)} | (100)

is the leading-order contribution from the second collision term in Eq. (63).
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SBE in MVSD at leading order

To extract the fermion sector in the left-hand side, we take an integration
over pg = [0, +00] of Eq. (96) for the scalar and axial vector components

to obtain the Boltzmann equation for the scalar and polarization part of
MVSD

1 1 oo
~p. (0) - 1)
Epp Ogtr {f (x, p)] 7Th/0 dpoImTr (lcoll) (101)

L o [nj(.““r]f(o)(x, p)}

Ep
1
,u,l/oz,B (1)
S / dpop, T Tr <aa5/cou> (102)
From the scalar and polarization part of MVSD, one can rebuild fs(,o) as
1 1

(O (0) P (0)

f 2Tr (f ) + 5T Tr (Tf ) . (103)
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SBE in MVSD at leading order (scalar part)

Eip Oyt [f ©(x, p)}
,

_ dpo $<(0) c>(0) _ >(0) 5<(0)
- /0 27rhRT[ G > 6 ]

/ d*pa d’p3
2E (27h) 32E1 (2wh)32E, (27h)32E;

x (21h)*™ (p + p3 — p1 — p2)
< {ED ()R (p2) |1 £5A(p3)]| |1~ £7(p)]
~EA ) (p) |1 = £ ()] [1 - B (e2)| }
« Re (Mgcalar + Mzcalar) (104)
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SBE in MVSD at leading order (polarization part)

! —p-0 tr[ (H)n Tf( )(x,p)}

Ep
1 dpo
_ L was [T dPo <(0) c>(0) _ 5>(0) c<(0)
= /0 27Thpl,ReTr [Uag (z G >0 ¢ )]
_ 1 chvab / d®p> d3ps
T 2E, 2m° (2rh) 3251 (27h)32E, (2h)32E;

x (2mh)*6™) (p+ ps — p1 — p2)
< (P p2) [1 = £55(p)] [1 - £7(p)
~E ()7 (p) [1 - A (e 1 - £52(R2)| }
x Re (ML, + ME%L) (105)
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Two-point functions at O(h)

At O(h), two-point Green functions have three contributions

where Gq§c(l) is the quasi-classical part (due to corrections from MVSD),
Gé(l) is the gradient and collision part, and Gogﬁ(l) is the off-shell part.

Here we neglect Gfﬁ(l) since its contribution is of higher order in the
coupling constant. Note that GS(©) is quasi-classical automatically. By
definition, quc(l) satisfies

pQ
((]C) 0

D _ P~ -1
V(SC) = 7fq(c)

1
Dpv va (¢
S = —Zamodp A% (107)
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Quasi-classical part of two-point functions at O(h)

Here .7-"((1%) and .Agh)ﬁ are given by
.7:((1%) = —(2rh)2mé (p* — m?)
x {0(po)Tr | FFD)] 4 0(—po) T [fﬁ”(— )]}
.A((llc)“ = —(2rh)2md (p* — m?) { 0(p Tr (ij(+’1))

+6(—po)*(—p. nj)Tr [nf<—1>( )}} (108)

We see the above provide first order corrections to F(© and A©7F in (83)
through MVSD f(&1),
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Gradient and collision part of two-point functions at O(h)

On the other hand, ]—"(Vl) and Ag)ﬁ contain spacetime derivatives of the

zeroth-order Wigner functions and the collision term Ic(jl)l

1 1
P(vl) _ 778#A(0)+ERGTY( Ic(ol)1>
1
W, = s - ReTr (4%)
1 1 0 1
o = o tren() oo

Note that we have set F(vl) =0 and Ag)“ 0. If .7-" and A(l)“ are

non-vanishing, it can be absorbed into quasi- c|a55|ca| contrlbutlons of WFs
by a redefinition of the first-order MVSD.
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Gradient and collision part of two-point functions at O(h)

So Gé(l) can be put into the form
1
GeW =6z » —S—mi 73 (0 -A(O))
”aﬂs(‘” + a’“’@ WO
8m

x C v

Q

— [’y“ax,u, G<(°)} (110)

Adm
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SBE in MVSD at next-to-leading order

Boltzmann equations at the next-to-leading order

1

£ P 0utr [0 )| = Gt (B3 san) + Bucatar (BIG] o)

+ Gscalar (lc(gl)l,p3> + Cicalar <8XI(531)1> (111)

Eip Oty [l rTF O (x, p)]
:
= <A/c(;l)l, kin> + Gy (Alc(gl)l, nonkin)

0 1
+ Cgﬁtol (/c(ol)l,PB) + (61501 (axlc(ol)l) (112)
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Solve MVSD order by order in A

MVSD as a series of i
f(Xap) = f(O)(va) + hf(l)(x,p) +oe

1 1
= ETr(f)%—ET-Tr(Tf) (113)

The space-time evolution of the polarization part can given by Tr (7). We
see in Eq. (112) that the polarization part depends on space-time
derivative of f(9)(x, p) which can provide shear and vorticity contribution.
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Summary and conclusion

@ SBE in terms of MVSD can be derived from KBE.
@ The MVSD can be solved order by order in .

@ A rigorous approach to spin dynamics from first principle of quantum
field theory.
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