# QCD dense matter and color superconductor

## Mei Huang 黄梅

## University of Chinese Academy of Sciences, 中国科学院大学核科学与技术学院

2022年复旦大学粒子物理与核物理暑期学校

2022年8月13-21

- I. A brief introduction on QCD dense matter
- **II. QCD critical end point**
- **III. Quarkyonic matter and EOS for neutron star**
- **IV.** Color superconductor(CSC)
- V. Summary and outlook

## Dense Matter: QCD CEP, Quarkyonic matter, CSC



K. Fukushima and T. Hatsuda, Rept. Prog. Phys. <u>74</u>, 014001(2011); arXiv: 1005.4814

## **Reviews on CSC:**

K. Rajagopal and F. Wilczek, hep-ph/0011333; D. K. Hong, Acta Phys.Polon. B32, 1253 (2001); M. Alford, Ann. Rev.Nucl. Part.Sci. 51, 131 (2001); **T. Schaefer, hep-ph/0304281;** D.H. Rischke, Prog.Part. Nucl. Phys. 52, 197 (2004); M. Buballa, Phys. Rept. 407, 205 (2005); H.-C. Ren, hep-ph/0404074; M. Huang, Int. J. Mod. Phys. E14, 675 (2005); I.Shovkovy, Found. Phys. 35, 1309 (2005); Qun Wang, Prog.Phys. 30 (2010) 173, e-Print: 0912.24855 Mark G. Alford, Andreas Schmitt, Krishna Rajagopal, Thomas Schäfer, Rev.Mod.Phys. 80 (2008) 1455-1515 • e-Print: 0709.4635

**BCS Theorem** 



If there is an attractive interaction in a cold fermi sea, the system is unstable with respect to formation of a particle-particle condensate

**Cooper pair in momentum space.** 



#### The birth of CSC



#### Bogoliubov transformation

BCS超导理论:





电子相互作用:

$$H = \sum_{\mathbf{k}\sigma} \xi_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \frac{1}{N} \sum_{\mathbf{k}\mathbf{k}'} V_{\mathbf{k}\mathbf{k}'} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow}$$

电子形成  
Cooper pair: 
$$\Delta_{\mathbf{k}} = -\frac{1}{N} \sum_{\mathbf{k}'} V_{\mathbf{k}\mathbf{k}'} \left\langle c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow} \right\rangle$$

$$H = \sum_{\mathbf{k}\sigma} \xi_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} - \sum_{\mathbf{k}} \left( \Delta_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} + \Delta^{*}_{\mathbf{k}} c_{-\mathbf{k}\downarrow} c_{\mathbf{k}\uparrow} \right) + \sum_{\mathbf{k}} \Delta_{\mathbf{k}} \left\langle c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow} \right\rangle$$

#### BCS超导理论:

Bogoliubov transformation:

电子-空穴  
组合成准粒子  
$$c_{\mathbf{k}\uparrow} = u_{\mathbf{k}}^* \gamma_{\mathbf{k}\uparrow} + v_{\mathbf{k}} \gamma_{-\mathbf{k}\downarrow}^{\dagger}$$
  
 $c_{-\mathbf{k}\downarrow}^{\dagger} = u_{\mathbf{k}} \gamma_{-\mathbf{k}\downarrow}^{\dagger} - v_{\mathbf{k}}^* \gamma_{\mathbf{k}\uparrow}$   
  
可角化的准粒子  
(自由准粒子系统):  $H = \sum_{\mathbf{k}\sigma} E_{\mathbf{k}} \gamma_{\mathbf{k}\sigma}^{\dagger} \gamma_{\mathbf{k}\sigma} + E_{0}$ 

准粒子色散关系: 
$$E_{\mathbf{k}} = \sqrt{\xi_{\mathbf{k}}^2 + |\Delta_{\mathbf{k}}|^2}$$

Solet Takone pariorino current provide the super summer  
Mpederabus zies kbanzobannyo barnobyo gynkyano  

$$H(g) < nicenspo kbanzobannyo barnobyo gynkyano
 $H(g) < nicenspo kbanzobannyo barnobyo gynkyano
 $C hepecranobornsku currensmensus, coorbererby ounau
Crazucruke Doge Simupeans.
Torik, nararas  $B(1)$ :  
 $H(g) = \sum_{i} a_{i} \frac{e^{iHg}}{VV}$   
marynus:  
 $J_{i} = \sum_{i} \frac{|H|^{2}}{2m} + a_{i}a_{i} + \frac{1}{2V} \sum_{i} \Delta(H_{i}+H_{i}+H_{i}+H_{i}) + h_{i}a_{i}a_{i}a_{i}a_{i}a_{i}$   
 $H(h_{i}+H_{i})$   
 $A(H) coorder pynkymo (ponumpi
 $\Delta(H) = \begin{cases} 1, f = 0 \\ 0, f \neq 0 \end{cases}$$$$$$

8

准粒子色散关系: 
$$E_{\mathbf{k}} = \sqrt{\xi_{\mathbf{k}}^2 + |\Delta_{\mathbf{k}}|^2}$$



#### 对称性破缺机制: BCS理论、手征对称性自发破缺、Higgs 机制



#### Where to find CSC?

#### **CSC in Compact Stars?**



## inner core

 $ho/
ho_0 \,{\approx}\, 5 \,{-}\, 10$ 

It's natural to expect that CS exists in the core of compact stars

Where to find CSC?

## **BCS pairing:**

 $\Delta_{
m BCS}\,{\sim}\,100\,{
m MeV}$ ,  $T^{
m C}_{
m BCS}\,{=}\,0.567\,\Delta_{
m BCS}$ 

## Is it possible to find some signatures of diquark fluctuations in HIC?

## Future HICs for CEP



#### Where to find CSC?



Some basic properties of

standard BCS Superconductor





If there is an attractive interaction in a cold Fermi sea, the system is unstable with respect to formation of a particle-particle condensate

**Cooper pair in momentum space.** 

The 2SC Phase-I

Spin-0: 2SC 
$$m_{u,d} = 0, \ m_s \gg m_{u,d}$$





#### **Ideal BCS pairing**



## Symmetries

## $SU(3)_C \otimes U(1)_{EM} \otimes SU(f)_L \otimes SU(f)_R \otimes U(1)_B$

$$Q_{EM} = \frac{1}{3} diag(2,-1,-1)$$
  

$$B = \frac{1}{3} diag(1,1,1)$$
  

$$Q_{3} = \frac{1}{2} diag(1,-1,0)$$
  

$$Q_{8} = \frac{1}{3} diag(1,1,-2)$$
  
in color space



## **Residual Symmetries**

$$SU(2)_{C} \otimes \widetilde{U}(1)_{EM} \otimes SU(2)_{L} \otimes SU(2)_{R} \otimes \widetilde{U}(1)_{B}$$

## 3 massless gluons + 5 massive gluons

$$\tilde{Q} = Q_{EM} - \frac{1}{2}Q_8 \qquad \qquad \tilde{B} = B - Q_8$$

#### **Quasiparticle excitation**



$$E_b^{\pm} = \pm |p - \mu| \qquad \qquad E_{\Delta}^{\pm} = \pm \sqrt{(p - \mu)^2 + \Delta^2}$$

#### **Finite temperature behavior**



#### **Meissner effect**

$$SU(3)_c \to SU(2)_c$$





Normal

S/C

Rischke, PRD62:034007,2000

1933: Meissner & Ochsenfeld

**Anderson-Higgs Mechanism** 

## **Rich structure of**

**Color Superconductor** 

#### **Rich Structure of CSC-I**

due to flavor, spin, and other defects

| spin-0                      | 2-flavor                                | <b>3-flavor</b>                      |
|-----------------------------|-----------------------------------------|--------------------------------------|
| Pairing without<br>mismatch | <b>2SC</b>                              | CFL                                  |
| Pairing with                | g2SC                                    | <b>CFL+K, gCFL,</b><br>uSC, dSC, sSC |
|                             | LOFF (Larkin Ovchinnikov Fulde Ferrell) |                                      |
| spin-1                      | 1-flavor                                |                                      |

#### **Pairing without mismatch**



**Rich Structure of CSC-III** 

#### **Pairing with mismatch**

$$\delta \mu, \delta m \to \delta p_F$$

---- due to mass or chemical potential difference





The phase diagram of neutral quark matter: Self-consistent treatment of quark masses

#### **Rich Structure of CSC-IV**

Stefan B. Rüster,<sup>1, \*</sup> Verena Werth,<sup>2, †</sup> Michael Buballa,<sup>2, ‡</sup> Igor A. Shovkovy,<sup>3, §</sup> and Dirk H. Rischke<sup>1, ¶</sup>





## II. Competition between chiral & diquark condensations

#### Why NJL model?



#### Nambu-Gorkov formalism with chiral condensate

To investigate the chiral restoration and color superconductivity phase transitions simultaneously

#### Very convenient at high baryon density

Introducing charge-conjugate fields

$$\psi_C(x) = C \, ar{\psi}^T(x) \ , \ ar{\psi}_C(x) = \psi^T(x) \, C$$

$$\psi(x) = C \, ar{\psi}_C^T(x) \ , \ ar{\psi}(x) = \psi_C^T(x) \, C$$

$$\begin{split} C &= i\gamma^2\gamma_0 \qquad C\gamma_\mu C^{-1} = -\gamma_\mu^T \\ C &= -C^{-1} = -C^T = -C^\dagger \end{split}$$

Charge Conjugate



R.Pisarski, D.Rischke, PRD61(2000) 074017

$$egin{split} \mathcal{L} &= ar{\psi} \left( i \gamma \cdot \partial - m 
ight) \psi - g ar{\psi} \psi \, \phi + rac{1}{2} \left( \partial_\mu \phi \, \partial^\mu \phi - M_s^2 \phi^2 
ight) \ \mathcal{Z} &= \mathcal{N} \int \mathcal{D} ar{\psi} \, \mathcal{D} \psi \, \mathcal{D} \phi \, \exp \left\{ I[ar{\psi}, \psi, \phi] 
ight\} \ I[ar{\psi}, \psi, \phi] &= \int_{x,y} \left( ar{\psi}(x) \, \left[ G_0^+ 
ight]^{-1}(x,y) \, \psi(y) - rac{1}{2} \sum_{a,b=1}^N \phi^a(x) \, D_{ab}^{-1}(x,y) \, \phi^b(y) 
ight) \ &- \int_x \sum_{a=1}^N g \, ar{\psi}(x) \, \Gamma_a \, \psi(x) \, \phi^a(x) \; . \end{split}$$

where  $[G_0^{\pm}]^{-1}(x,y) \equiv -i[i\gamma \cdot \partial \pm \mu \gamma_0 - m] \delta^{(4)}(x-y)$ 

#### Introducing 8-component Spinors

## Nambu-Gorkov Spinors

$$\Psi\equiv\left(egin{array}{c}\psi\\psi_C\end{array}
ight) =ar{\Psi}\equiv\left(ar{\psi}\,,\,ar{\psi}_C
ight)$$

$$I[ar{oldsymbol{\Psi}},oldsymbol{\Psi}] = rac{1}{2} \int_{x,y} ar{oldsymbol{\Psi}}(x) \, \mathcal{S}^{-1}(x,y) \, oldsymbol{\Psi}(y)$$

## Considerably Simplify calculations at $\mu$

## Mean-field Approximation



$$\Delta^{+}(k) = g^{2} \frac{T}{V} \sum_{q} \sum_{a,b} \bar{\Gamma}_{a} D^{ab}(k-q) G_{0}^{-}(q) \Delta^{+}(q) G^{+}(q) \Gamma_{b} .$$

Full Propagator if  $\langle \overline{\psi}\psi \rangle = 0$ 

$$\mathcal{S}^{-1} = \begin{pmatrix} \begin{bmatrix} G_0^+ \end{bmatrix}^{-1} & \Delta^- \\ \Delta^+ & \begin{bmatrix} G_0^- \end{bmatrix}^{-1} \end{pmatrix} \qquad \begin{bmatrix} G_0^\pm \end{bmatrix}^{-1}(k) \equiv \gamma \cdot k \pm \mu \gamma_0 - m$$

$$\mathcal{S} = \begin{pmatrix} G^{+} & -G_{0}^{+} \Delta^{-} G^{-} \\ -G_{0}^{-} \Delta^{+} G^{+} & G^{-} \end{pmatrix}$$

$$\begin{split} G^{\pm} &\equiv \left\{ \left[ G_0^{\pm} \right]^{-1} - \Sigma^{\pm} \right\}^{-1} \ , \ \Sigma^{\pm} \equiv \Delta^{\mp} \, G_0^{\mp} \, \Delta^{\pm} \\ & G_0^{\mp} \, \Delta^{\pm} \, G^{\pm} = G^{\mp} \, \Delta^{\pm} \, G_0^{\pm} \end{split}$$


 $\Lambda_{\pm}(ec{p})=rac{1}{2}(1\pmrac{\gamma_{0}ec{\gamma}\cdotec{p}}{ec{p}})\,.$ 



If quark mass m is not zero

## 1). Perturbative expansion around

$$m = 0$$

M.Rho,E.Shuryak,A.Wirzba,I.zahed hep-ph/0001104,NPA676(2000),273

# Correction of $m \neq 0$

$$S_{11}(q) = \left\{ \Lambda^{+}(\mathbf{q}) \left[ q_{0}^{2} - (\mu - |\mathbf{q}|)^{2} - \left( \mathbf{M}^{\dagger}\mathbf{M} + \frac{\mathbf{M}^{\dagger}m^{2}\mathbf{M}}{(q_{0} - \mu)^{2} - |\mathbf{q}|^{2}} \right) |C(q)|^{2} \right] \Lambda^{+}(\mathbf{q}) \\ + \Lambda^{-}(\mathbf{q}) \left[ q_{0}^{2} - (\mu + |\mathbf{q}|)^{2} - \left( \mathbf{M}^{\dagger}\mathbf{M} + \frac{\mathbf{M}^{\dagger}m^{2}\mathbf{M}}{(q_{0} - \mu)^{2} - |\mathbf{q}|^{2}} \right) |\overline{C}(q)|^{2} \right] \Lambda^{-}(\mathbf{q}) \\ - \Lambda^{+}(\mathbf{q}) \gamma^{0} \left[ q^{0} - \mu + |\mathbf{q}| \right] \left( m - \mathbf{M}^{\dagger}m\mathbf{M} \frac{G^{*}(q)\overline{C}(q)}{(q_{0} - \mu)^{2} - |\mathbf{q}|^{2}} \right) \Lambda^{-}(\mathbf{q}) \\ - \Lambda^{-}(\mathbf{q}) \gamma^{0} \left[ q^{0} - \mu - |\mathbf{q}| \right] \left( m - \mathbf{M}^{\dagger}m\mathbf{M} \frac{\overline{C}^{*}(q)C(q)}{(q_{0} - \mu)^{2} - |\mathbf{q}|^{2}} \right) \Lambda^{+}(\mathbf{q}) \right\}^{-1} \\ \times \gamma^{0}(q_{0} - \mu - \mathbf{q} \cdot \mathbf{q}) .$$
(A7)

Complicated!

Perturbative expansion is not always appropriate!

## 2. An easy way to deal with quark mass

M.H, P.Zhuang, W.Chao, PRD65(2002)076012

Energy projectors with quark mass  $\Lambda_{\pm}(\mathbf{p}) = \frac{1}{2} (1 \pm \frac{\gamma_0(\boldsymbol{\gamma} \cdot \mathbf{p} + m)}{E_p}), \qquad \tilde{\Lambda}_{\pm}(\mathbf{p}) = \frac{1}{2} (1 \pm \frac{\gamma_0(\boldsymbol{\gamma} \cdot \mathbf{p} - m)}{E_p}) ,$   $\Lambda_{\pm}(\vec{p}) \Lambda_{\pm}(\vec{p}) = \Lambda_{\pm}(\vec{p}) \qquad \gamma_0 \Lambda_{\pm}(\mathbf{p}) \gamma_0 = \tilde{\Lambda}_{\mp}(\mathbf{p}), \quad \gamma_5 \Lambda_{\pm}(\mathbf{p}) \gamma_5 = \tilde{\Lambda}_{\pm}(\mathbf{p}).$   $\Lambda_{\pm}(\vec{p}) + \Lambda_{-}(\vec{p}) = 1$ 

## **Massive Quark Propagator**

M.H, P.Zhuang, W.Chao, PRD65(2002)076012

$$G_0^{\pm} = \frac{\gamma_0 \tilde{\Lambda}_+}{p_0 + E_p^{\pm}} + \frac{\gamma_0 \tilde{\Lambda}_-}{p_0 - E_p^{\mp}},$$

$$G^{\pm} = \left(\frac{p_0 - E_p^{\pm}}{p_0^2 - E_{\Delta}^{\pm 2}}\gamma_0\tilde{\Lambda}_+ + \frac{p_0 + E_p^{\mp}}{p_0^2 - E_{\Delta}^{\mp 2}}\gamma_0\tilde{\Lambda}_-\right)(\delta_{\alpha\beta} - \delta_{\alpha b}\delta_{\beta b})\delta^{ij},$$

$$\Xi^{\pm} = \left(\frac{\Delta^{\pm}}{p_0^2 - E_{\Delta}^{\pm 2}}\tilde{\Lambda}_+ + \frac{\Delta^{\pm}}{p_0^2 - E_{\Delta}^{\mp 2}}\tilde{\Lambda}_-\right),$$

#### **Competition Between Chiral & Diquark Condensate**

M.H, P.Zhuang, W.Chao, PRD65(2002)076012

#### a) Using the massive quark propagator Deriving

$$\Omega(T,\mu,m,\Delta)$$

b) Competition between the chiral & diquark condensates

## SU(2) NJL Model

$$\mathcal{L} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m_{0})q + G_{S}\left[(\bar{q}q)^{2} + (\bar{q}i\gamma_{5}\bar{\tau}q)^{2}\right] + G_{D}\left[(i\bar{q}^{C}\varepsilon\epsilon^{b}\gamma_{5}q)(i\bar{q}\varepsilon\epsilon^{b}\gamma_{5}q^{C})\right]$$

bosonic fields

$$\Delta^b \sim i\bar{q}^C \varepsilon \epsilon^b \gamma_5 q, \quad \Delta^{*b} \sim i\bar{q}\varepsilon \epsilon^b \gamma_5 q^C, \quad \sigma \sim \bar{q}q, \quad \pi \sim i\bar{q}\gamma^5 \tau q.$$

$$\begin{split} \tilde{\mathcal{L}} &= \bar{q}(i\gamma^{\mu}\partial_{\mu} - m_{0})q - \bar{q}(\sigma + i\gamma^{5}\tau\pi)q - \frac{1}{2}\Delta^{*b}(i\bar{q}^{C}\varepsilon\epsilon^{b}\gamma_{5}q) - \frac{1}{2}\Delta^{b}(i\bar{q}\varepsilon\epsilon^{b}\gamma_{5}q^{C}) \\ &- \frac{\sigma^{2} + \pi^{2}}{4G_{S}} - \frac{\Delta^{*b}\Delta^{b}}{4G_{D}}, \end{split}$$

$$\mathcal{L} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m_0)q + G_S[(\bar{q}q)^2 + (\bar{q}i\gamma_5\tau q)^2] + G_D[(i\bar{q}^C\varepsilon\epsilon^b\gamma_5q)(i\bar{q}\varepsilon\epsilon^b\gamma_5q^C)].$$

$$q^C = C\bar{q}^T, \ \bar{q}^C = q^T C \qquad C = i\gamma^2\gamma^0$$

$$\begin{split} \tilde{\mathcal{L}} &= \bar{q}(i\gamma^{\mu}\partial_{\mu} - m_{0})q - \bar{q}(\sigma + i\gamma^{5}\tau\pi)q - \frac{1}{2}\Delta^{*b}(i\bar{q}^{C}\varepsilon\epsilon^{b}\gamma_{5}q) - \frac{1}{2}\Delta^{b}(i\bar{q}\varepsilon\epsilon^{b}\gamma_{5}q^{C}) \\ &- \frac{\sigma^{2} + \pi^{2}}{4G_{S}} - \frac{\Delta^{*b}\Delta^{b}}{4G_{D}}, \\ &\Delta^{b} \sim i\bar{q}^{C}\varepsilon\epsilon^{b}\gamma_{5}q, \quad \Delta^{*b} \sim i\bar{q}\varepsilon\epsilon^{b}\gamma_{5}q^{C}, \quad \sigma \sim \bar{q}q, \quad \pi \sim i\bar{q}\gamma^{5}\tau q. \end{split}$$

$$\mathcal{Z} = N' \int [d\bar{q}] [dq] exp\{\int_0^\beta d\tau \int d^3 \mathbf{x} \ (\tilde{\mathcal{L}} + \mu \bar{q} \gamma_0 q)\},\$$

$$\mathcal{Z} = \mathcal{Z}_{const} \mathcal{Z}_b \mathcal{Z}_{r,g}.$$

$$\mathcal{Z}_{const} = N' \exp\{-\int_0^\beta d\tau \int d^3 \mathbf{x} \ [\frac{\sigma^2}{4G_S} + \frac{\Delta^* \Delta}{4G_D}\}.$$

$$\begin{aligned} \mathcal{Z}_b &= \int [d\bar{q}_b] [dq_b] \exp\{\int_0^\beta d\tau \int d^3 \mathbf{x} \ [\frac{1}{2} \bar{q}_b (i\gamma^\mu \partial_\mu - m + \mu\gamma_0) q_b \\ &+ \frac{1}{2} \bar{q}_b^C (i\gamma^\mu \partial_\mu - m - \mu\gamma_0) q_b^C] \}. \end{aligned}$$

$$\mathcal{Z}_{r,g} = \int [d\bar{Q}][dQ] \exp\{\int_0^\beta d\tau \int d^3 \mathbf{x} \left[\frac{1}{2}\bar{Q}(i\gamma^\mu\partial_\mu - m + \mu\gamma_0)Q + \frac{1}{2}\bar{Q}^C(i\gamma^\mu\partial_\mu - m - \mu\gamma_0)Q^C + \frac{1}{2}\bar{Q}\Delta^-Q^C + \frac{1}{2}\bar{Q}^C\Delta^+Q]\}.$$

$$\Psi_b = \begin{pmatrix} q_b \\ q_b^C \end{pmatrix}, \quad \bar{\Psi}_b = (\bar{q}_b \quad \bar{q}_b^C),$$

$$\Psi = \begin{pmatrix} Q \\ Q^C \end{pmatrix}, \quad \bar{\Psi} = (\bar{Q} \ \bar{Q}^C),$$

$$q(x) = \frac{1}{\sqrt{V}} \sum_{n} \sum_{\mathbf{p}} e^{-i(\omega_n \tau - \mathbf{p} \cdot \mathbf{x})} q(\mathbf{p}),$$

$$\begin{aligned} \mathcal{Z}_b &= \int [d\Psi_b] \exp\{\frac{1}{2} \sum_{n,\mathbf{p}} \bar{\Psi}_b \frac{G_0^{-1}}{T} \Psi_b\} \\ &= \mathrm{Det}^{1/2} (\beta G_0^{-1}), \end{aligned}$$

$$\mathcal{Z}_{r,g} = \int [d\Psi] \exp\{\frac{1}{2} \sum_{n,\mathbf{p}} \bar{\Psi} \frac{\mathbf{G}^{-1}}{T} \Psi\}$$
$$= \mathrm{Det}^{1/2} (\beta \mathbf{G}^{-1}).$$

$$\mathbf{G_0}^{-1} = \begin{pmatrix} \begin{bmatrix} G_0^+ \end{bmatrix}^{-1} & 0 \\ 0 & \begin{bmatrix} G_0^- \end{bmatrix}^{-1} \end{pmatrix},$$

$$[G_0^{\pm}]^{-1} = (p_0 \pm \mu)\gamma_0 - \boldsymbol{\gamma} \cdot \mathbf{p} - m$$

$$\mathbf{G}^{-1} = \begin{pmatrix} \begin{bmatrix} G_0^+ \end{bmatrix}^{-1} & \Delta^- \\ \Delta^+ & \begin{bmatrix} G_0^- \end{bmatrix}^{-1} \end{pmatrix}. \qquad \mathbf{G} = \begin{pmatrix} G^+ & \Xi^- \\ \Xi^+ & G^- \end{pmatrix}$$

$$G^{\pm} \equiv \left\{ \left[ G_0^{\pm} \right]^{-1} - \Sigma^{\pm} \right\}^{-1} \ , \ \Sigma^{\pm} \equiv \Delta^{\mp} \, G_0^{\mp} \, \Delta^{\pm} \ ,$$

$$\Xi^{\pm} \equiv -G^{\mp} \Delta^{\pm} G_0^{\pm} = -G_0^{\mp} \Delta^{\pm} G^{\pm}.$$

 $\Omega(T, \mu, m, \Delta)$ 

$$\Omega = -T\frac{\ln Z}{V} = \frac{\sigma^2}{4G_S} + \frac{\Delta^2}{4G_D} - 2N_f \int \frac{d^3p}{(2\pi)^3} [E_p + T\ln(1 + e^{-\beta E_p^+}) + T\ln(1 + e^{-\beta E_p^-}) + E_{\Delta}^+ + 2T\ln(1 + e^{-\beta E_{\Delta}^+}) + E_{\Delta}^- + 2T\ln(1 + e^{-\beta E_{\Delta}^-})]$$

$$E_p^{\pm} = E_p \pm \mu \qquad \qquad E_{\Delta}^{\pm 2} = E_p^{\pm 2} + \Delta^2$$



## A. Variation Method

$$rac{\partial\Omega}{\partial m}=rac{\partial\Omega}{\partial\Delta}=0.$$

# B. Feynman Diagram

$$\begin{aligned} <\bar{q}q>=2<\bar{q}_1q^1>+<\bar{q}_3q^3>\\ <\bar{q}_1q^1>=-iT\sum_n\int\frac{d^3p}{(2\pi)^3}tr[G^+],\\ <\bar{q}_3q^3>=-iT\sum_n\int\frac{d^3p}{(2\pi)^3}tr[G^+_0],\end{aligned}$$

$$\Delta = -2G_D < \bar{q}^C \gamma_5 q >,$$

$$=(iT\sum_n)\int rac{d^3p}{(2\pi)^3}tr[\Xi^+\gamma_5].$$



 $\mu_{\chi} - \mu_{\Delta}$ 

double broken regime





## Summary I

Chiral breaking phase  $\mu < \mu_{\Delta}$ 

Mixed broken phase  $\mu_{\Delta} < \mu < \mu_{\chi}$ 

Color superconductivity  $\mu > \mu_{\chi}$ 

## Diquark pair smoothes quark's Fermi surface

II. Pairing with mismatched Fermi surfaces **Unconventional CSC (since 2002)** 

#### **Reviews:**

M. Huang, Int. J. Mod.Phys. E14, 675 (2005)



Many puzzles! Unsolved problem !



 $\langle \mathbf{u}_{p} \mathbf{d}_{p} \rangle = - \langle \mathbf{u}_{q} \mathbf{d}_{q} \rangle \neq 0$ 

**Pair breaking?** 

Neutral dense quark matter Imbalanced cold atom system, Asymmetric nuclear matter, Electric SC under external magnetic field

.....

### **Charge neutrality condition on 2SC**



#### **Pair breaking?**

#### **Gapless 2SC: result from BCS at Mean-field**

$$\mathcal{L} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m_{0})q + G_{S}\left[(\bar{q}q)^{2} + (\bar{q}i\gamma_{5}\bar{\tau}q)^{2}\right] + G_{D}\left[(i\bar{q}^{C}\varepsilon\epsilon^{b}\gamma_{5}q)(i\bar{q}\varepsilon\epsilon^{b}\gamma_{5}q^{C})\right]$$

Mean-field(MF):

$$\Delta = |\Delta$$

$$\begin{split} \Omega &= \Omega_0 - \frac{1}{12\pi^2} \left( \mu_e^4 + 2\pi^2 T^2 \mu_e^2 + \frac{7\pi^4}{15} T^4 \right) + \frac{(m - m_0)^2}{4G_S} \\ &+ \frac{\Delta^2}{4G_D} - \sum_a \int \frac{d^3 p}{(2\pi)^3} \left[ E_a + 2T \ln \left( 1 + e^{-E_a/T} \right) \right] \end{split}$$



## ---- due to mass or chemical potential difference





$$\left< \mathbf{u}_{p} \mathbf{d}_{-p} \right> = - \left< \mathbf{u}_{q} \mathbf{d}_{-q} \right> \neq 0$$

## **Pairing breaking?**

### **Charge Neutrality in Compact Stars**

$$n_Q^{\rm el} = 0, \qquad n_Q^{\rm color} = 0 \qquad E_{\rm Coulomb} \sim n_Q^2 R^5$$



Otherwise, bulk matter cannot be formed inside stars because of the repulsive Coulomb interaction

## **1. Global charge neutrality: mixed phase**

#### small surface tension

I. Shovkovy, M. Hanauske, M.H, Phys.Rev.D67:103004,2003 S. Reddy and G. Rupak, nucl-th/0405054



#### 2. Local charge neutrality: homogeneous phase





## The Model

$$\mathcal{L} = \bar{q}(i\gamma^{\mu}\partial_{\mu} - m_{0})q + G_{S}\left[(\bar{q}q)^{2} + (\bar{q}i\gamma_{5}\bar{\tau}q)^{2}\right] + G_{D}\left[(i\bar{q}^{C}\varepsilon\epsilon^{b}\gamma_{5}q)(i\bar{q}\varepsilon\epsilon^{b}\gamma_{5}q^{C})\right]$$

Model Parameters

$$m_0 = 0, G_S = 5.0163 GeV^{-2}, \Lambda = 653.3 MeV, \eta = G_D/G_S$$

## **Results in SU(2) NJL Model**

### SU(2) NJL Model

$$\mathcal{L} = \bar{q}(i\not\!\!D + \hat{\mu}\gamma^0)q + G_S[(\bar{q}q)^2 + (\bar{q}i\gamma_5\tau q)^2] + G_D[(i\bar{q}^C\varepsilon\epsilon^b\gamma_5q)(i\bar{q}\varepsilon\epsilon^b\gamma_5q^C)],$$

$$G_S = 5.0163 \text{GeV}^{-2}, \Lambda = 0.6533 \text{GeV}.$$
  
 $m = 0.314 \text{GeV}$   $\eta = G_D/G_S$ 

chiral limit

**Beta-equilibrium:** 

$$\mu_{ij,\alpha\beta} = (\mu \delta_{ij} - \mu_e Q_{ij}) + \frac{2}{\sqrt{3}} \mu_8 \delta_{ij} (T_8)_{\alpha\beta}$$
$$\overline{\mu} = \mu - \mu_e / 6 + \mu_8 / 3$$

$$\delta\mu = \mu_e / 2$$

**Requirement of beta-equilibrium-I** 

# eta -equilibrium:



#### **Requirement of beta-equilibrium-II**



### **Thermodynamic potential**

$$\begin{split} \Omega_{u,d,e} &= -\frac{1}{12\pi^2} \left( \mu_e^4 + 2\pi^2 T^2 \mu_e^2 + \frac{7\pi^4}{15} T^4 \right) + \frac{m^2}{4G_S} \\ &+ \frac{\Delta^2}{4G_D} - \sum_a \int \frac{d^3 p}{(2\pi)^3} \left[ E_a + 2T \ln \left( 1 + e^{-E_a/T} \right) \right], \end{split}$$

### **Dispersion relation**

$$E_{ub}^{\pm} = E(p) \pm \mu_{ub}, \qquad [\times 1]$$
$$E_{db}^{\pm} = E(p) \pm \mu_{db}, \qquad [\times 1]$$
$$E_{\Delta^{\pm}}^{\pm} = E_{\Delta}^{\pm}(p) \pm \delta\mu. \qquad [\times 2]$$

## **Charge Neutrality Condition**

$$\frac{\partial \Omega}{\partial \mu_8} = 0, \frac{\partial \Omega}{\partial \mu_e} = 0$$

Diquark Gap Equation



## **Charge Neutrality**

Electric Charge Neutrality:

$$\frac{2}{3}n_u - \frac{1}{3}n_d - n_e = 0$$

Color Charge Neutrality:

$$n_{ur} + n_{dr} = n_{ug} + n_{dg} = n_{ub} + n_{db}$$

M.H., P.Zhuang, W.Chao PRD67:0650152,2003



# We focus on the region

$$m_{u,d}(\mu) < \mu < m_s(\mu)$$

## $330 MeV < \mu < 550 MeV$

## **Phase diagram**

#### M.H., P.Zhuang, W.Chao PRD67:0650152,2003



# Gap is largely suppressed
# **Chemical Potential of Color charge**

M.H., P.Zhuang, W.Chao PRD67:0650152,2003



## **Chemical Potential of Electron**

#### M.H., P.Zhuang, W.Chao PRD67:0650152,2003



# **Thermodynamic Potential**

#### M.H., P.Zhuang, W.Chao PRD67:0650152,2003





**Destroy Cooper pairing ?** 



#### The ground state: Balance of energy gain and loss

#### **Thermal Stability of g2SC phase**



g2SC phase is a thermal stable state under the restriction of local neutrality condition !!

# **Quasiparticle excitation**



$$E_b^{\pm} = \pm |p - \mu| \qquad \qquad E_{\Delta}^{\pm} = \pm \sqrt{(p - \mu)^2 + \Delta^2}$$

# gapless mode



Gapless Mode !



**2SC BCS pairing:** 

$$r_{BCS} = T_c / \Delta = 0.567$$

# **Finite temperature behavior**





# Temperature dependence of the gap. I.



- Nonmonotonic temperature dependence
- $\bullet$  Transitional behavior: g2SC  $\rightarrow$  2SC  $\rightarrow$  g2SC  $\rightarrow$  normal phase

# Temperature dependence of the gap. II.



- $\bullet$  Extreme nonmonotonic temperature dependence
- Transitional behavior: normal phase  $! \rightarrow g2SC \rightarrow normal phase$

also got by J. Liao and P. Zhuang independently



• The ratio is not universal (unlike in BCS),  $T_c/\Delta_0$  can be arbitrarily large for small  $\eta$ , and approaches  $r_{BCS}$  at large  $\eta$ !

#### **Gapless mode in other systems**

Cold atomic system

W. Liu, F. Wilczek 2002, 2004

Asymmetric Nuclear Matter A. Sedrakian, U. Lombardo, 2000

u, s or d, s quark Matter

E. Gubankova, W. Liu, F. Wilczek 2003

**Charge neutral 3-flavor quark matter** 

M. Alford, C. Kouvaris, K. Rajagopal 2003, 2004 S. Ruster, I. Shovkovy, D. Rischke 2004



#### Meissner effect in g2SC ?

### 1933: Meissner & Ochsenfeld



**Meissner effect in 2SC!** 

D. Rischke, PRD 62:034007, 2000

$$\Pi_{ab}^{\mu\nu}(P) = \frac{1}{2} g_1 g_2 \frac{T}{V} \sum_K \operatorname{Tr}_{s,c,f,NG} \left[ \hat{\Gamma}_a^{\mu} \mathcal{S}(K) \, \hat{\Gamma}_b^{\nu} \, \mathcal{S}(K-P) \right]$$
$$\mathcal{S}(K) = \begin{pmatrix} G^+(K) \ \Xi^-(K) \\ \Xi^+(K) \ G^-(K) \end{pmatrix} \qquad \hat{\Gamma}_a^{\mu} \equiv \begin{pmatrix} \Gamma_a^{\mu} & 0 \\ 0 \ \bar{\Gamma}_a^{\mu} \end{pmatrix}$$



$$M_{M,a}^2 = \Pi_{aa}^{ij}(0,\vec{0})\delta_{ij}$$

## **Remind: Properties of 2SC-III**

### **Meissner effect**

$$SU(3)_c \to SU(2)_c$$

a=1,2,3masslessa=4,5,6,7massivea=8massive

Rischke, PRD62:034007,2000

**Anderson-Higgs Mechanism** 



Normal

S/C

1933: Meissner & Ochsenfeld

#### Meissner effect in g2SC?



δμ

M. H, I. Shovkovy, Phys. Rev. D70 (2004), 051501 M. H, I. Shovkovy, Phys. Rev. D70 (2004) 094030





 $M_{M,a}^2 = \prod_{aa}^{ij} (0,\vec{0}) \delta_{ij}$ 

# **Propagator in explicit form**

$$\begin{split} \mathbf{G}_{u}^{\pm} &= \frac{p_{0} - E_{d}^{\pm}}{(p_{0} \mp \delta \mu)^{2} - E_{\Delta}^{\pm^{2}}} \gamma^{0} \tilde{\Lambda}_{+} + \frac{p_{0} + E_{d}^{\mp}}{(p_{0} \mp \delta \mu)^{2} - E_{\Delta}^{\pm^{2}}} \gamma^{0} \tilde{\Lambda}_{-} \\ \mathbf{G}_{d}^{\pm} &= \frac{p_{0} - E_{u}^{\pm}}{(p_{0} \pm \delta \mu)^{2} - E_{\Delta}^{\pm^{2}}} \gamma^{0} \tilde{\Lambda}_{+} + \frac{p_{0} + E_{u}^{\mp}}{(p_{0} \pm \delta \mu)^{2} - E_{\Delta}^{\pm^{2}}} \gamma^{0} \tilde{\Lambda}_{-} \\ \mathbf{G}_{bu}^{\pm} &= \frac{1}{p_{0} + E_{bu}^{\pm}} \gamma^{0} \tilde{\Lambda}_{+} + \frac{1}{p_{0} - E_{bu}^{\mp}} \gamma^{0} \tilde{\Lambda}_{-} \\ \mathbf{G}_{bd}^{\pm} &= \frac{1}{p_{0} + E_{bd}^{\pm}} \gamma^{0} \tilde{\Lambda}_{+} + \frac{1}{p_{0} - E_{bd}^{\mp}} \gamma^{0} \tilde{\Lambda}_{-} \\ \mathbf{G}_{bd}^{\pm} &= \frac{1}{p_{0} + E_{bd}^{\pm}} \gamma^{0} \tilde{\Lambda}_{+} + \frac{1}{p_{0} - E_{bd}^{\mp}} \gamma^{0} \tilde{\Lambda}_{-} \\ \mathbf{\Lambda}_{p}^{\pm} &= \frac{1}{2} \left( 1 \pm \gamma^{0} \frac{\vec{\gamma} \cdot \vec{p} + m}{E(p)} \right), \end{split}$$

$$\begin{split} \Xi_{ud}^{+} &= -i\Delta^{*} \left[ \frac{1}{(p_{0} + \delta\mu)^{2} - E_{\Delta}^{+2}} \gamma^{5} \tilde{\Lambda}_{+} + \frac{1}{(p_{0} + \delta\mu)^{2} - E_{\Delta}^{-2}} \gamma^{5} \tilde{\Lambda}_{-} \right] \\ \Xi_{du}^{+} &= -i\Delta^{*} \left[ \frac{1}{(p_{0} - \delta\mu)^{2} - E_{\Delta}^{+2}} \gamma^{5} \tilde{\Lambda}_{+} + \frac{1}{(p_{0} - \delta\mu)^{2} - E_{\Delta}^{-2}} \gamma^{5} \tilde{\Lambda}_{-} \right] \\ \Xi_{ud}^{-} &= -i\Delta \left[ \frac{1}{(p_{0} - \delta\mu)^{2} - E_{\Delta}^{-2}} \gamma^{5} \tilde{\Lambda}_{+} + \frac{1}{(p_{0} - \delta\mu)^{2} - E_{\Delta}^{+2}} \gamma^{5} \tilde{\Lambda}_{-} \right] \\ \Xi_{du}^{-} &= -i\Delta \left[ \frac{1}{(p_{0} + \delta\mu)^{2} - E_{\Delta}^{-2}} \gamma^{5} \tilde{\Lambda}_{+} + \frac{1}{(p_{0} - \delta\mu)^{2} - E_{\Delta}^{+2}} \gamma^{5} \tilde{\Lambda}_{-} \right] \end{split}$$

M. H, I. Shovkovy, Phys. Rev. D70 (2004), 051501 M. H, I. Shovkovy, Phys. Rev. D70 (2004) 094030 Paramagnetic -Meissner effect in g2SC!



Meissner mass square for the gluons of color 8 and 4-7 are negative!!!

Anti-Meissner effect / chromomagnetic instability in g2SC  $SU(3)_c \rightarrow SU(2)_c$ 

1, Ideal 2SC



#### **Paramagnetic Meissner Effect!**





Mesoscopic superconductors: a) A loop made of three crystals of HTSC; b) Aluminium disc

Nature 396, 144 - 146 (1998); doi:10.1038/24110

#### (Chromo)Magnetic instability in other gapless phases

### gCFL



Casalbuoni, et.al., PLB605:362-368,2005 Alford, Wang, J.Phys.G31:719-738,2005 K. Fukushima, hep-ph/0506080

**BP:** superfluid density is negative

Wu, Yip, PRA67: 053603, 2003

Is this a universal property for gapless phase?

# **Chromo-magnetic instability in the gCFL phase!**

Casalbuoni, Gatto, Mannarelli, Nardulli, Ruggieri, hep-ph/0410401

M.Alford, Qinghai Wang, hep-ph/0501078

**Superfluid density instability in the gapless atomic system!** Y.Wu, S.Yip, Phys.Rev.A67(2003) **053603** 



What's going wrong in gapless phases ?

**Debye and Meissner masses for gluons with color 1,2,3** 



**Right limit at NQM and 2SC** 

# **Debye and Meissner masses for the 8th gluon**



**Right limit at NQM and 2SC** 

**III. 3. Understanding and resolving instabilities** 

**III.3.1 Probing g2SC phase using other** 

external sources

M. H., hep-ph/0504235, to appear in PRD

# What's going wrong in g2SC phase ? ---- Are there any other instabilities?



g2SC phase is not stable with respect to a baryon current !!!



**Spontaneous baryon current generation** 

$$[\mathcal{S}(P)]^{-1} = \begin{pmatrix} \begin{bmatrix} G_0^+(P) \end{bmatrix}^{-1} & \Delta^- \\ \Delta^+ & \begin{bmatrix} G_0^-(P) \end{bmatrix}^{-1} \end{pmatrix}$$
$$\begin{bmatrix} G_0^\pm(P) \end{bmatrix}^{-1} = \gamma^0(p_0 \pm \hat{\mu}) - \vec{\gamma} \cdot \vec{p},$$
$$[\mathcal{S}_V(P)]^{-1} = \begin{pmatrix} \begin{bmatrix} G_{0,V}^+(P) \end{bmatrix}^{-1} & \Delta^- \\ \Delta^+ & \begin{bmatrix} G_{0,V}^-(P) \end{bmatrix}^{-1} \end{pmatrix}.$$
$$\begin{bmatrix} G_{0,V}^\pm(P) \end{bmatrix}^{-1} = \gamma^0(p_0 \pm \hat{\mu}) - \vec{\gamma} \cdot \vec{p} \mp \vec{\gamma} \cdot \vec{\Sigma}_V,$$

### **Baryon current generation state resmebles LOFF state**



I. Giannakis, H. Ren, hep-ph/0412015, hep-ph/0504053





(Larkin Ovchinnikov Fulde Ferrell)

LOFF in CSC, J. Bowers Ph.D thesis hep-ph/0305301

Chromomagnetic instability in g2SC implies LOFF state is favored

I. Giannakis, H. Ren, hep-ph/0412015

No chromomagnetic instability in LOFF

I. Giannakis, H. Ren, hep-ph/0504053

**III. 3. Understanding and resolving instabilities** 

**III.3.2 Understanding the origin of instabilities** 

# **III.3.2 Understanding the origin of instability**

**Proposals for resolving magnetic instability** 

**Proposal 1)** Single-plane wave LOFF

$$\langle \bar{\psi}(\vec{r})\gamma_5\lambda_2\tau_2\psi_C(\vec{r})\rangle = \Phi e^{2i\vec{q}\cdot\vec{r}}$$
 (2SC)

Giannakis, Ren, PLB611:137-146,2005; NPB723:255-280,2005

$$\langle \psi_{i\alpha} C \gamma_5 \psi_{\beta j} \rangle = \sum_{I=1}^{3} \Delta_I(\mathbf{r}) \epsilon^{\alpha \beta I} \epsilon_{ijI}$$
 (CFL)



Casalbuoni, Gatto, Ippolito, Nardulli, Ruggieri, hep-ph/0507247

A "bad/good" news from Gorbar, Hashimoto, Miransky hep-ph/0509334:

# Charge neutral single-plane wave LOFF state cannot solve the instability related to the 4-7 gluons.

### **Other Proposals**

| 1. Baryon current(?): | MH, hep-ph/0504235                                                              |
|-----------------------|---------------------------------------------------------------------------------|
| 2. Goldstone current: | Hong, hep-ph/0506097;<br>Kryjevski, hep-ph/0508180;<br>Schaefer, hep-ph/0508190 |
| 3. Gluon condensate:  | <b>Gorbar, Hashimoto, Miransky,</b><br>hep-ph/0507303                           |

4. Multi-plane wave LOFF Rajagopal, et.al

5. .....

What's really happening?

#### Low energy DOF changes with increase of mismatch!



BCS system: 1) broken gauge bosons are heavy and decouple from the system, 2) quasiparticles are difficult to be excited;

Mismatch increases: 1)broken gauge bosons' mass decreases and becomes low energy DOF, 2) one branch of quasi-particles becomes much easier to be excited.

# **1. LOFF (Larkin Ovchinnikov Fulde Ferrell)**

 $\Delta(\mathbf{r}) = |\Delta_{\mathbf{q}}| \mathbf{e}^{(i\mathbf{q}\mathbf{r})}$  (FF)

P. Fulde and A. Ferrell Phys. Rev. 135, A550 (1964).

also:

 $\Delta(\mathbf{r}) = |\Delta_{\mathbf{q}}|\cos(\mathbf{q}\mathbf{r})$  (LO)

multi-plane wave

A.I. Larkin and Yu.N. Ovchinnikov Zh. Eksp. Teor. Fiz. 47, 1136 (1964).

# **2.** Phase separation

M.Alford, K.Rajagopal, S.Reddy, F.Wilczek, PRD64(2001), 074017;

- F. Neumann, M. Buballa, M. Oertel, NPA 714, 2003;
- I. Shovkovy, M. Hanauske, M.H, PRD67:103004,2003;
- S. Reddy and G. Rupak, nucl-th/0405054, .....
# **Imbalanced Cold Atom System**

**BP** (gapless phase in cold atom system)

Liu, Wilczek 2003

#### **Superfluid density is negative**

Wu, Yip, PRA67: 053603, 2003

 $\delta = 0\%$  (red),  $\delta = 46\%$  (blue) and  $\delta = 86\%$  (green)



Zwierlein, Schirotzek, Schunck, & Ketterle, Science 2005, cond-mat/0511197 Partridge, Li, Kamar, Liao, & Hulet, Science 2005, cond-mat/0511752.

## **III.** A new framework for mismatched systems

**III.** Nonlinear realization framework (beyond MF)

**III.1. Instability of NG bosons & (LO)FF-like state III.2. Higgs instability & spatial inhomogeneity** 

**Based on the work:** 

M.H. PRD73:045007, 2006; Int.J.Mod.Phys.A21, 910, (2006)

I. Giannakis, D.F.Hou, M.H., H.C.Ren,

PRD75:011501,2007, PRD75:014015,2007



# **III.1. Instability of NG bosons & (LO)FF-like state**

**U(1): Hong,** hep-ph/0506097

**SU(3)->SU(2): M. H.** PRD73:045007, 2006

## **2SC phase:**

$$\begin{pmatrix} \Delta^1(\vec{r}) \\ \Delta^2(\vec{r}) \\ \Delta^3(\vec{r}) \end{pmatrix} = \exp\left[i\sum_{a=4}^8 \varphi_a(\vec{r})T_a\right] \begin{pmatrix} 0 \\ 0 \\ \Delta + H(\vec{r}) \end{pmatrix}$$

nonlinear realization framework

**new quark field:**  
$$q = \mathcal{V}\chi \quad , \quad \bar{q} = \bar{\chi}\mathcal{V}^{\dagger}$$
$$X \equiv \begin{pmatrix} \chi \\ \chi_C \end{pmatrix} \quad , \quad \bar{X} \equiv (\bar{\chi}, \bar{\chi}_C)$$

$$\mathcal{L}_{nl} \equiv \bar{X} \, \mathcal{S}_{nl}^{-1} \, X - \frac{\Phi^+ \Phi^-}{4G_D}$$

$$\begin{split} \mathcal{S}_{nl}^{-1} &\equiv \begin{pmatrix} [G_{0,nl}^+]^{-1} & \Phi^- \\ \Phi^+ & [G_{0,nl}^-]^{-1} \end{pmatrix} & \quad [G_{0,nl}^+]^{-1} = i \not \!\!\!D + \hat{\mu} \, \gamma_0 + \gamma_\mu \, V^\mu, \\ V^\mu &\simeq -\sum_{a=4}^8 \left( \partial^\mu \varphi_a \right) \, T_a \end{split}$$

Shovkovy, Rischke, Phys.Rev.D66:054019,2002 M.H. PRD73:045007 **NG sector** 

$$\Omega_{NG} = \frac{1}{2} \int d^3 \vec{r} \sum_{a=1}^8 m_a^2 (\vec{\mathbf{A}}^a - \frac{1}{g} \,\vec{\nabla} \varphi^a) (\vec{\mathbf{A}}^a - \frac{1}{g} \,\vec{\nabla} \varphi^a) + higher \, orders$$

# **NG currents & (LO)FF-like state**

$$(m_a)^2 < 0, \ a = 4, 5, 6, 7$$
  $\sum_{a=4}^7 < \vec{\mathbf{A}}^a - \frac{1}{g} \, \vec{\nabla} \, \varphi^a > \neq 0$ 

Gluon phase, Gorbar, Hashimoto, Miransky, hep-ph/0507303

$$(m_8)^2 < 0 \qquad \qquad < \vec{\mathbf{A}}^8 - \frac{1}{g} \, \vec{\nabla} \varphi^8 > \neq 0.$$

U(1) (LO)FF-state, Giannakis, Ren, hep-ph/0412015

For the ground state, multi-plane wave might be more favorable

**III.2. Higgs instability & spatial inhomogeneity** 

I. Giannakis, D.F.Hou, M.H., H.C.Ren, hep-ph/0606178; hep-ph/0609098

# **Higgs sector**

$$\Omega_M = -\frac{T}{2} \sum_n \int \frac{d^3 \vec{p}}{(2\pi)^3} \operatorname{Tr} \ln([\mathcal{S}_M(P)]^{-1}) + \frac{\Delta^2}{4G_D}$$
$$\Omega_H = \frac{T}{2} \sum_{k_0} \int \frac{d^3 \vec{k}}{(2\pi)^3} H^*(\vec{k}) \Pi_H(k) H(\vec{k}).$$
$$\Pi_H = -- \bigoplus_{k_0} --$$

# inhomogeneous field

$$\delta \mathcal{F} = \frac{1}{2} \left( \frac{\partial^2 \mathcal{F}}{\partial \Delta^2} \right)_n \delta \Delta^2 + \frac{1}{2} \sum_{\vec{k} \neq 0} \left( \frac{\partial^2 \mathcal{F}}{\partial \Delta^*_{\vec{k}} \partial \Delta_{\vec{k}}} \right)_n \delta \Delta^*_{\vec{k}} \delta \Delta_{\vec{k}}$$
$$\Pi(k) = A_H + B_H k^2 \qquad \text{for } k \ll \Delta$$

### In gapless region

$$A_{H} = \left(\frac{\partial^{2}\Omega}{\partial\Delta^{2}}\right)_{\mu} = \frac{4\bar{\mu}^{2}}{\pi^{2}} \left[1 - \frac{\delta\mu}{\sqrt{(\delta\mu)^{2} - \Delta^{2}}}\right]$$
$$B_{H} = \frac{2\bar{\mu}^{2}}{9\pi^{2}\Delta^{2}} \left[1 - \frac{(\delta\mu)^{3}}{((\delta\mu)^{2} - \Delta^{2})^{\frac{3}{2}}}\right]$$

Sarma Instability

Higgs Instability: induce spatial inhomogeneity

# Inhomogeneous Higgs field induces inhomogeneous charge distribution

### **Coulomb energy**

$$\delta \mathcal{F} = \frac{1}{2} \left( \frac{\partial^2 \mathcal{F}}{\partial \Delta^2} \right)_n \delta \Delta^2 + \frac{1}{2} \sum_{\vec{k} \neq 0} \left( \frac{\partial^2 \mathcal{F}}{\partial \Delta^*_{\vec{k}} \partial \Delta_{\vec{k}}} \right)_n \delta \Delta^*_{\vec{k}} \delta \Delta_{\vec{k}}$$
$$\tilde{\delta \rho}(\vec{k}) = \kappa(k) H(\vec{k}) \qquad \qquad E_{\text{coul.}} = \frac{1}{2V} \sum_{\vec{k} \neq 0} \frac{\delta \rho(\vec{k})^* \delta \rho(\vec{k})}{k^2 + m_D^2(k)}$$



## Sarma Instability can be removed by Coulomb energy



$$\tilde{A}_{H} = \frac{4(b^2 - 3a^2)\bar{\mu}^2(\delta\mu - \sqrt{\delta\mu^2 - \Delta^2})}{\pi^2[3a^2\sqrt{\delta\mu^2 - \Delta^2} + b^2(2\delta\mu + \sqrt{\delta\mu^2 - \Delta^2})]} > 0$$

#### Electric Coulomb energy is not strong enough to compete the Higgs Instability in g2SC

numerical results in whole momentum space



Giannakis, D.F.Hou, M.H., H.C.Ren, hep-ph/0609098

# For gapless superfluid systems, Higgs instability remains, phase separation is favored



Zwierlein, Schirotzek, Schunck, & Ketterle, Science 2005, cond-mat/0511197 Partridge, Li, Kamar, Liao, & Hulet, Science 2005, cond-mat/0511752.

#### Summary

- I. Two instabilities in gapless phases: NGcurrent & (LO)FF state, Higgs instability & spatial inhomogeneity
- II. Gapless superfluidity (BP) state, no other mechanism compete with Higgs instability, phase separation is more favored.
- III. G2SC phase, the Sarma instability can be removed, but electric Coulomb energy is not strong enough to compete the Higgs instability in the whole momentum space.
- IV. gCFL phase, whether color Coulomb energy is strong enough to remove Higgs instability?



CSL, Polar, ...

$$3_c \otimes 3_c = \overline{3}_c \oplus 6_c$$

|                             | 2-flavor                                | <b>3-flavor</b>                      |
|-----------------------------|-----------------------------------------|--------------------------------------|
| Pairing without<br>mismatch | <b>2SC</b>                              | CFL                                  |
| Pairing with<br>mismatch    | g2SC                                    | <b>CFL+K, gCFL,</b><br>uSC, dSC, sSC |
|                             | LOFF (Larkin Ovchinnikov Fulde Ferrell) |                                      |

# **Rich Structure of CSC**



Darmstadt and Frankfurt CSC group Phys.Rev.D72:034004,2005

*Abuki, Kitazawa, & Kunihiro, PLB 615, 102 (2005)*  III. 3.3 Spontaneous Nambu-Goldstone currents generation driven by mismatch

$$\mathcal{V}(x) \equiv \exp\left[i\left(\sum_{a=4}^{7}\varphi_a(x)T_a + \frac{1}{\sqrt{3}}\varphi_8(x)B\right)\right]$$

$$q = \mathcal{V}\chi$$
,  $\bar{q} = \bar{\chi}\mathcal{V}^{\dagger}$ ,  $q_C = \mathcal{V}^*\chi_C$ ,  $\bar{q}_C = \bar{\chi}_C\mathcal{V}^T$ 

new Nambu-Gor'kov spinors

$$X \equiv \begin{pmatrix} \chi \\ \chi_C \end{pmatrix} \ , \ \bar{X} \equiv (\bar{\chi} \, , \, \bar{\chi}_C),$$

$$\begin{split} \Gamma &= -\frac{T}{2} \sum_{n} \int \frac{d^{3}\vec{p}}{(2\pi)^{3}} \mathrm{Tr} \ln([\mathcal{S}_{nl}(P)]^{-1}) + \frac{\Phi^{2}}{4G_{D}} \\ \mathcal{L}_{nl} &\equiv \bar{X} \, \mathcal{S}_{nl}^{-1} \, X - \frac{\Phi^{+}\Phi^{-}}{4G_{D}} \\ \mathcal{V}_{nl}^{\mu} &\equiv \bar{V}^{\dagger} \, (i \, \partial^{\mu}) \, \mathcal{V}, \\ V_{C}^{\mu} &\equiv \mathcal{V}^{\dagger} \, (i \, \partial^{\mu}) \, \mathcal{V}^{*} \\ \end{split} \begin{array}{l} G_{0,nl}^{+-1} &= i \, \mathcal{D} + \hat{\mu} \, \gamma_{0} + \gamma_{\mu} \, V^{\mu}, \\ G_{0,nl}^{--1} &= i \, \mathcal{D}^{T} - \hat{\mu} \, \gamma_{0} + \gamma_{\mu} \, V_{C}^{\mu}. \end{split}$$

$$V^{\mu} \simeq -\sum_{a=4}^{7} \left(\partial^{\mu}\varphi_{a}\right) T_{a} - \frac{1}{\sqrt{3}} \left(\partial^{\mu}\varphi_{8}\right) B$$
$$V^{\mu}_{C} \simeq \sum_{a=4}^{7} \left(\partial^{\mu}\varphi_{a}\right) T^{T}_{a} + \frac{1}{\sqrt{3}} \left(\partial^{\mu}\varphi_{8}\right) B^{T}$$

## **Nambu-Goldstone currents driven by mismatch**

 $<\sum_{a=4}^7 ec arphi_a > 
eq 0$  gluon phase

Gorbar, Hashimoto, Miransky, hep-ph/0507303

$$eq 0$$
 LOFF

**Gluon condensate** 

- I. A brief introduction on CSC
- II. Competition between chiral and diquark condensations
- **III.** Pairing with mismatch
  - III. 1. The gapless 2SC (g2SC) phase
  - **III. 2. Instabilities driven by mismatch**
  - **III. 3. Resolving instabilities in g2SC**

**IV.** Summary