QCD dense matter and color superconductor

Mei Huang 黄梅

University of Chinese Academy of Sciences, 中国科学院大学核科学与技术学院

2022年复旦大学粒子物理与核物理暑期学校

2022年8月13-21

- I. A brief introduction on QCD dense matter
- **II. QCD critical end point**
- **III.** Quarkyonic matter and EOS for neutron star
- **IV. Color superconductor**
- V. Summary and outlook

Neutron star (NS) is a kind of compact stars, which is the remnant after a massive super-giant star collapses. From August 1967 on, when the existence of NSs was confirmed by the discovery of radio pulsars, more than 2700 radio pulsars have been detected. It has been wondered for more than a half century what's the internal structure of NSs, whether quark matter exists inside the core of NSs.

DENSE MATTER

Neutron stars get denser with depth. Although researchers have a good sense of the composition of the outer layers, the ultra-dense inner core remains a mystery.

Core scenarios

A number of possibilities have been suggested for the inner core, including these three options.

Image: Output of the second second

Quarks

The constituents of protons and neutrons — up and down quarks — roam freely.

00 00 00 00 00 00 00

Bose-Einstein condensate

Particles such as pions containing an up quark and an anti-down quark combine to form a single quantum-mechanical entity.

Hyperons

Particles called hyperons form. Like protons and neutrons, they contain three quarks but include 'strange' quarks.

"多信使"时代

更多的引力波探测器及射电望远镜对引力波和致密星体 (质量和半径)进行精确测量,一方面对理论进行约束, 另一方面也需要理论对实验结果进行理解。

Pulsar Timing Array对 PSRJ0348+0432和PSR J1624-2230的质量测量 2倍太阳质量

LIGO/VirgoGW170817, 致密星体半径约12km

nature > news feature > article

Nature | Vol 579 | 5 March 2020 | 21

NEWS FEATURE 04 March 2020

The golden age of neutron-star physics has arrived

These stellar remnants are some of the Universe's most enigmatic objects – and they are finally starting to give up their secrets.

Dense Matter: QCD CEP, Quarkyonic matter, CSC

K. Fukushima and T. Hatsuda, Rept. Prog. Phys. <u>74</u>, 014001(2011); arXiv: 1005.4814

Quarkyonic matter

Separation of quark dynamics and gluodynamics?

McLerran, Pisarski, Nucl. Phys. A 796 (2007) 83.

QCD properties in the vacuum

- 重要难题
- I.Spontaneous Chiral symmetry breaking (quark dynamics) Goldstone boson and chiral condensate
 - Chiral partners have different masses

II. Confinement (Gluodynamics)

基于AdS/CFT对偶的 全息方法

手征模型

Strong QCD

Chiral restoration and deconfinement Polyakov loop NJL model

Claudia Ratti, Michael A. Thaler, Wolfram Weise, hep-ph/0506234

Kenji Fukushima, Phys.Lett.B 591 (2004) 277-284, hep-ph/0310121

300

Chiral dynamics and Gluodynamics in Dynamical hQCD model

Holographic Duality: Gravity/QFT

AdS/CFT : Original discovery of duality

J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)

Supersymmetry and conformality are required for AdS/CFT.

In general, supersymmetry and conformality are not necessary

General Gravity/QFT:

String theory was born out of attempts to understand the strong interactions: Veneziano model, string model: Nambu,Nielsen, Susskind

In the sixties many new mesons and hadrons were discovered. It was suggested that these might not be new fundamental particles. Instead they could be viewed as different oscillation modes of a string.

1, String model & "Regge trajectories" $J_{\text{max}} \sim C$ $M_{\text{max}} \sim C$ $m^{2} \sim T$

 $J_{\rm max} \sim \alpha' m^2 + const$

3, Effective theory in terms of strings

t' Hooft '74

t' Hooft large Nc limit

take Nc colors instead of 3, SU(Nc)

$$S = \frac{1}{4 g_{\rm YM}^2} \int d^4 x \, \operatorname{Tr} \left(F_{\mu\nu} F^{\mu\nu} \right)$$

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}]$$

$$(A_{\mu})_{ij} = A^a_{\mu} \ (T^a)_{ij}$$

QCD at low energies, when the coupling is large, dual of a weakly coupled string theory

Vacuum-to-vacuum amplitude in large Nc gauge theory

$$\log Z = \sum_{h=0}^{\infty} N_{c}^{2-2h} f_{h}(\lambda) = N_{c}^{2} f_{0}(\lambda) + f_{1}(\lambda) + \frac{1}{N_{c}^{2}} f_{2}(\lambda) + \cdots,$$

Vacuum-to-vacuum amplitude in string theory

$$\mathcal{A} = \sum_{h=0}^{\infty} g_s^{2h-2} F_h(\alpha') = \frac{1}{g_s^2} F_0(\alpha') + F_1(\alpha') + g_s^2 F_2(\alpha') + \cdots,$$

where g_s is the string coupling, $2\pi\alpha'$ is the inverse string tension, and $F_h(\alpha')$ is the contribution of 2d surfaces with h holes.

The string coupling constant gs is of order 1/Nc,

Closed strings would be glueballs. Open strings would be the mesons.

Problems:

- 1) Strings do not make sense in 4 (flat) dimensions
 - Trying to quantize a string in four dimension leads to tacyons.

- 2) Strings always include a graviton, ie., a particle with m=0, s=2
 - For this reason strings are normally studied as a model for quantum gravity.

QCD: pQCD is confirmed by DIS non-perturbative QCD region, challenging in describing hadrons in terms of quark and gluon DOF.

String theory: trying to make itself a theory of everything.

Holographic Duality: Gravity/QFT

AdS/CFT : Original discovery of duality

J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998)

Supersymmetry and conformality are required for AdS/CFT.

In general, supersymmetry and conformality are not necessary

General Gravity/QFT:

Holographic Duality: (d+1)-Gravity/ (d)-QFT

Holography & Emergent critical phenomena:

When system is strongly coupled, new weakly-coupled degrees of freedom dynamically emerge.

The emergent fields live in a dynamical spacetime with an extra spatial dimension.

The extra dimension plays the role of energy scale in QFT, with motion along the extra dimension representing a change of scale, or renormalization group (RG) flow.

Allan Adams,¹ Lincoln D. Carr,^{2,3} Thomas Schäfer,⁴ Peter Steinberg⁵ and John E. Thomas⁴

Holographic QCD or gravity dual of QCD

Real QCD world:

Rich experimental data and lattice data

Holographic Duality & RG flow

Coarse graining spins on a lattice: Kadanoff and Wilson

 $H = \sum_{x,i} J_i(x)\mathcal{O}^i(x)$

J(x): coupling constant or source for the operator

$$H = \sum_{i} J_i(x, 2a) \mathcal{O}^i(x)$$

$$H = \sum_{i} J_i(x, 4a) \mathcal{O}^i(x)$$

$$u\frac{\partial}{\partial u}J_i(x,u) = \beta_i(J_j(x,u),u)$$

arXiv:1205.5180

Holographic Duality & RG flow

QFT on lattice equivalent to GR problem from Gravity

A systematic framework: Graviton-dilaton system

$$S_G = \frac{1}{16\pi G_5} \int d^5 x \sqrt{g_s} e^{-2\Phi} \left(R_s + 4\partial_M \Phi \partial^M \Phi - V_G^s(\Phi) \right)$$

N=4 Super YM
conformalQC
nonconAdS5deforme
deforme
$$ds^2 = \frac{L^2}{z^2} (dt^2 + d\vec{x}^2 + dz^2)$$
 $ds^2 = \frac{h(z)L^2}{z^2}$ $V_E(\phi) = -\frac{12}{L^2}$ Dilaton field breaks

ed AdS₅

$$ds^{2} = \underbrace{\frac{h(z)L^{2}}{z^{2}}}_{z^{2}} \left(dt^{2} + d\vec{x}^{2} + dz^{2} \right)$$

s conformal symmetry

Input: QCD dynamics at IR Solve: Metric structure, dilaton potential

Pure gluon system:

$$\mathscr{L}_G = -\frac{1}{4} G^a_{\mu\nu}(x) G^{\mu\nu,a}(x),$$

Gluon condensate at IR: $Tr\langle G^2 \rangle$

5D action: graviton-dilaton

$$S_G = \frac{1}{16\pi G_5} \int d^5 x \sqrt{g_s} e^{-2\Phi} \left(R_s + 4\partial_M \Phi \partial^M \Phi - V_G^s(\Phi) \right)$$

$${
m Tr}\langle G^2
angle$$
 dual to $\Phi(z)$

A systematic framework: Graviton-dilaton system

$$S_G = \frac{1}{16\pi G_5} \int d^5 x \sqrt{g_s} e^{-2\Phi} \left(R_s + 4\partial_M \Phi \partial^M \Phi - V_G^s(\Phi) \right)$$

N=4 Super YM
conformalQC
nonconAdS5deforme
deforme
$$ds^2 = \frac{L^2}{z^2} (dt^2 + d\vec{x}^2 + dz^2)$$
 $ds^2 = \frac{h(z)L^2}{z^2}$ $V_E(\phi) = -\frac{12}{L^2}$ Dilaton field breaks

ed AdS₅

$$ds^{2} = \underbrace{\frac{h(z)L^{2}}{z^{2}}}_{z^{2}} \left(dt^{2} + d\vec{x}^{2} + dz^{2} \right)$$

s conformal symmetry

Input: QCD dynamics at IR Solve: Metric structure, dilaton potential

Dynamical hQCD & RG

deformed AdS₅

Gluodynamics

Glueball spectra EOS for pure gluon system

Confinement and deconfinement in graviton-dilaton system

For pure gluon system

S. He, M. H., Q. S. Yan, arXiv:1004.1880, PRD2011 D.N, Li, S. He, M. H., Q. S. Yan, arXiv:1103.5389, JHEP2011

What's confinement?

Confinement: Regge behavior and linear quark potential

Confinement for pure glue system

Confinement potential $V_{Q\bar{Q}}(R) = -\frac{\kappa}{R} + \sigma_{str}R + V_0$

Holographic dictionary: J. M. Maldacena, Phys. Rev. Lett. 80, 4859 (1998), hep-th/9803002.

$$\langle W^{4d}[C] \rangle = Z^{5d}_{string}[C] \simeq e^{-S_{NG}[C]}$$

$$V_{Q\overline{Q}}(r) = \lim_{T \to \infty} \frac{1}{T} S_{NG}[\mathcal{C}]$$

Metric structure determines the quark potential !

 AdS₅ only gives Coulomb potential !
 Deformed metric structure is needed to produce the linear potential!

Deformed AdS₅ models I:

Andreev-Zakharov model: quadratic correction

O. Andreev, V.Zakharov, hep-ph/0604204

$$ds^{2} = G_{nm}dX^{n}dX^{m} = R^{2}\frac{h}{z^{2}}\left(dx^{i}dx^{i} + dz^{2}\right) \qquad h = e^{\frac{1}{2}cz^{2}}$$

Holographic Duality: Dictionary

Boundary QFT

Local operator $\mathcal{O}_i(x)$

Bulk field $\Phi_i(x,r)$

Bulk Gravity

$$\Delta(d-\Delta) = m^2 L^2$$

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Strongly coupled

Semi-classical

$$Z_{\rm QFT}[J_i] = Z_{\rm QG}[\Phi[J_i]]$$

$$Z_{\text{QFT}}[J] \simeq e^{-I_{\text{GR}}[\Phi[J]]}$$
$$\langle \mathcal{O}_1(x_1) \dots \mathcal{O}_n(x_n) \rangle = \frac{\delta^n I_{\text{GR}}[\Phi[J_i]]}{\delta J_1(x_1) \dots \delta J_n(x_n)} \Big|_{J_i=0}$$
Pure gluon system:

D.N. Li, M.H., JHEP2013, arXiv:1303.6929

$$\mathscr{L}_G = -\frac{1}{4} G^a_{\mu\nu}(x) G^{\mu\nu,a}(x),$$

IR: Gluon condensate $\text{Tr}\langle G^2 \rangle$ Effective gluon mass $\langle g^2 A^2 \rangle$ String tension, linear confinement

5D action: graviton-dilaton

$$S_{G} = \frac{1}{16\pi G_{5}} \int d^{5}x \sqrt{g_{s}} e^{-2\Phi} \left(R_{s} + 4\partial_{M} \Phi \partial^{M} \Phi - V_{G}^{s}(\Phi) \right)$$

$$\operatorname{Tr}\langle G^{2} \rangle \quad \langle g^{2}A^{2} \rangle \quad \text{dual to} \quad \Phi(z)$$

$$\Phi(z) = \mu_{G}^{2}z^{2} \tanh(\mu_{G^{2}}^{4}z^{2}/\mu_{G}^{2})$$

$$\Phi(z) \stackrel{z \to 0}{\to} \mu_{G^{2}}^{4}z^{4}, \qquad \Phi(z) \stackrel{z \to \infty}{\to} \mu_{G}^{2}z^{2}.$$

However, the dual gluon operator of dimension-2 dilaton field is not known!

 $\langle g^2 A^2 \rangle \longleftrightarrow \Phi(z) \qquad \operatorname{Tr} \langle G^2 \rangle \longleftrightarrow \Phi^2(z)$

Gauge invariant & Local operator

4) Dilaton field: quartic at UV and quadratic at IR

$$\Phi(z) = \mu_G^2 z^2 \tanh(\mu_{G^2}^4 z^2 / \mu_G^2)$$
$$\Phi(z) \xrightarrow{z \to \infty} \mu_{G^2}^4 z^4,$$
$$\Phi(z) \xrightarrow{z \to \infty} \mu_G^2 z^2,$$

Scalar glueball D.N. Li, M.H., JHEP2013, arXiv:1303.6929

39

Yidian Chen, M.H., 1511.07018

J^{PC}	Operator	Dimension	Supergravity	M_5^2
0++	$Tr(G^2)$	4	ϕ	0
0-+	$Tr(G\tilde{G})$	4	$C_{ au}$	0
$1^{\pm -}$	$Tr(G\{G,G\})$	6	$B_{ij}, C_{ij\tau}$	15
2^{++}	$Tr(G_{\mu\alpha}G_{\alpha\nu} - \frac{1}{4}\delta_{\mu\nu}G^2)$	4	G_{ij}	4
2^{++}	$E^a_i E^a_j - B^a_i B^a_j - trace$	4	Absent	4
2^{-+}	$E^a_i B^a_j + B^a_i E^a_j - trace$	4	Absent	4
$2^{\pm -}$	$Tr(G\{G,G\})$	6	$B_{ij}, C_{ij\tau}$	16

Glueball spectra: Yidian Chen, M.H., 1511.07018

J^{PC}	4-dimensional operator: $\mathscr{O}(x)$		p	M_{5}^{2}
0++	$Tr(G^2) = \vec{E^a} \cdot \vec{E^a} - \vec{B^a} \cdot \vec{B^a}$		0	0
0-+	$Tr(G\tilde{G}) = \vec{E}^a \cdot \vec{B}^a$		0	0
0+-	$\operatorname{Tr}\left(\left\{\left(D_{\tau}G_{\mu\nu}\right),\left(D_{\tau}G_{\rho\nu}\right)\right\}\left(D_{\mu}G_{\rho\alpha}\right)\right)$		0	45
0	$\operatorname{Tr}\left(\left\{\left(D_{\tau}G_{\mu\nu}\right),\left(D_{\tau}G_{\rho\nu}\right)\right\}\left(D_{\mu}\tilde{G}_{\rho\alpha}\right)\right)$	9	0	45
1-+	$f^{abc}\partial_{\mu} \begin{bmatrix} G^{a}_{\mu\nu} \end{bmatrix} \begin{bmatrix} G^{b}_{v\rho} \end{bmatrix} \begin{bmatrix} G^{c}_{\rho\alpha} \end{bmatrix}, f^{abc}\partial_{\mu} \begin{bmatrix} G^{a}_{\mu\nu} \end{bmatrix} \begin{bmatrix} \tilde{G}^{b}_{v\rho} \end{bmatrix} \begin{bmatrix} \tilde{G}^{c}_{\rho\alpha} \end{bmatrix},$		1	24
	$f^{abc}\partial_{\mu}\left[\tilde{G}^{a}_{\mu\nu}\right]\left[G^{b}_{v\rho}\right]\left[\tilde{G}^{c}_{\rho\alpha}\right], \ f^{abc}\partial_{\mu}\left[\tilde{G}^{a}_{\mu\nu}\right]\left[\tilde{G}^{b}_{v\rho}\right]\left[G^{c}_{\rho\alpha}\right]$			
1+-	$d^{abc}\left(ec{E}_{a}\cdotec{E}_{b} ight)ec{B}_{c}$	6	1	15
1	$d^{abc}\left(ec{E_a}\cdotec{E_b} ight)ec{E_c}$		1	15
2^{++}	$E^a_i E^a_j - B^a_i B^a_j - trace$		2	4
2^{-+}	$E^a_i B^a_j + B^a_i E^a_j - trace$	4	2	4
2+-	$d^{abc} \mathcal{S} \left[E_a^i \left(\vec{E}_b imes \vec{B}_c \right)^j ight]$	6	2	16
2	$d^{abc} \mathcal{S} \left[B^i_a \left(\vec{E}_b imes \vec{B}_c \right)^j ight]$	6	2	16
3+-	$d^{abc} \mathcal{S} \left[B^i_a B^j_b B^k_c ight]$	6	3	15
3	$d^{abc} \mathcal{S} \left[E^i_a E^j_b E^k_c \right]$	6	3	15

$$\begin{split} u_{n}^{''} + V_{\mathscr{G}}\mathscr{G}_{n} &= m_{\mathscr{G},n}^{2}\mathscr{G}_{n}, \\ V_{\mathscr{G}} &= \frac{3A_{s}^{''} + \frac{3}{z^{2}} - p\Phi^{''}}{2} + \frac{\left[3A_{s}^{'} - \frac{3}{z} - p\Phi^{'}\right]^{2}}{4} \\ &+ \frac{1}{z^{2}}e^{2A_{s}}e^{-c_{r.m.}\Phi}M_{\mathscr{G},5}^{2}. \end{split}$$
$$-\mathscr{V}_{n}^{''} + V_{\mathscr{V}}\mathscr{V}_{n} &= m_{\mathscr{V},n}^{2}\mathscr{V}_{n}, \\ M_{s}^{''} &= \frac{1}{z^{2}} - p\Phi^{''} \left[A_{s}^{'} - \frac{1}{z} - p\Phi^{'}\right]^{2} \end{split}$$

$$\begin{split} \mathcal{V}_{\mathscr{V}} &= \frac{A_{s}^{''} + \frac{1}{z^{2}} - p\Phi^{''}}{2} + \frac{\left[A_{s}^{'} - \frac{1}{z} - p\Phi^{'}\right]}{4} \\ &+ \frac{1}{z^{2}} e^{2A_{s}} e^{-c_{\text{r.m.}}\Phi} M_{\mathscr{V},5}^{2}. \end{split}$$

$$\begin{split} -\mathscr{T}_{n}^{''} + V_{\mathscr{T}}\mathscr{T}_{n} &= m_{\mathscr{T},n}^{2}\mathscr{T}_{n}, \\ V_{\mathscr{T}} &= \frac{3A_{s}^{''} + \frac{3}{z^{2}} - p\Phi^{''}}{2} + \frac{\left[3A_{s}^{'} - \frac{3}{z} - p\Phi^{'}\right]^{2}}{4} \\ &+ \frac{1}{z^{2}} e^{2A_{s}} e^{-c_{\text{r.m.}}\Phi} M_{\mathscr{T},5}^{2}. \end{split}$$

Lin Zhang, Chutian Chen, Yidian Chen, M.H. *Phys.Rev.D* 105 (2022) 2, 026020

Lin Zhang, Chutian Chen, Yidian Chen, M.H. *Phys.Rev.D* 105 (2022) 2, 026020

 $\phi(z) = c_1 z^2,$

Agree well with lattice results on EOS for pure gluon system

Lin Zhang, Chutian Chen, Yidian Chen, M.H. *Phys.Rev.D* 105 (2022) 2, 026020

 $\phi(z) = c_1 z^2,$

Quardratic dilaton field describes pure gluon system reasonably well.

45

Soft-wall AdS5 model or KKSS model

A. Karch, E. Katz, D. T. Son and M. A. Stephanov, Phys. Rev. D 74, 015005 (2006)

AdS₅ metric

$$g_{MN} dx^M dx^N = e^{2A(z)} (dz^2 + \eta_{\mu\nu} dx^\mu dx^\nu)$$

 $A(z) = -\ln z, \ \Phi(z) = z^2$

A dilaton field to restore Regge behavior

$$I = \int d^5x \, e^{-\Phi(z)} \sqrt{g} \left\{ -|DX|^2 + 3|X|^2 - \frac{1}{4g_5^2} (F_L^2 + F_R^2) \right\}$$
$$M_{n,S}^2 = 4n + 4S$$

However: only Coulomb potential, no linear quark potential

Degeneration of chiral partners in KKSS model

Light flavor meson spectra:

D.N. Li, M.H., JHEP2013, arXiv:1303.6929

Action for pure gluon system: Graviton-dilaton coupling

$$S_G = \frac{1}{16\pi G_5} \int d^5 x \sqrt{g_s} e^{-2\Phi} \left(R + 4\partial_M \Phi \partial^M \Phi - V_G(\Phi) \right)$$

Action for light hadrons: KKSS model

$$S_{KKSS} = -\int d^5x \sqrt{g_s} e^{-\Phi} Tr(|DX|^2 + V_X(X^+X,\Phi) + \frac{1}{4g_5^2}(F_L^2 + F_R^2)).$$

Total action: $S = S_G + \frac{N_f}{N_c} S_{KKSS_c}$

Graviton-dilaton-scalar system

Dilaton in Mod I:
$$\Phi(z) = \mu_G^2 z^2$$

Dilaton in Mod II: $\Phi(z) = \mu_G^2 z^2 \tanh(\mu_{G^2}^4 z^2/\mu_G^2)$

	Mod IA	Mod IB	Mod IIA	Mod IIB
G_5/L^3	0.75	0.75	0.75	0.75
$m_q \; ({\rm MeV})$	5.8	5.0	8.4	6.2
$\sigma^{1/3} \; (MeV)$	180	240	165	226
μ_G	0.43	0.43	0.43	0.43
μ_{G^2}	-	-	0.43	0.43

 Table 7. Two sets of parameters.

$$\begin{split} -s_{n}^{''} + V_{s}(z)s_{n} &= m_{n}^{2}s_{n}, \\ -\pi_{n}^{''} + V_{\pi,\varphi}\pi_{n} &= m_{n}^{2}(\pi_{n} - e^{A_{s}}\chi\varphi_{n}), \\ -\varphi_{n}^{''} + V_{\varphi}\varphi_{n} &= g_{5}^{2}e^{A_{s}}\chi(\pi_{n} - e^{A_{s}}\chi\varphi_{n}), \\ -v_{n}^{''} + V_{v}(z)v_{n} &= m_{n,v}^{2}v_{n}, \\ -a_{n}^{''} + V_{a}a_{n} &= m_{n}^{2}a_{n}, \end{split} \qquad V_{s} &= \frac{3A_{s}^{''} - \phi^{''}}{2} + \frac{(3A_{s}^{'} - \phi^{'})^{2}}{4} + e^{2A_{s}}V_{C,\chi\chi}, \\ V_{\pi,\varphi} &= \frac{3A_{s}^{''} - \phi^{''} + 2\chi^{''}/\chi - 2\chi^{'2}/\chi^{2}}{4} \\ &+ \frac{(3A_{s}^{'} - \phi^{''} + 2\chi^{''}/\chi)^{2}}{4}, \\ V_{\varphi} &= \frac{A_{s}^{''} - \phi^{''}}{2} + \frac{(A_{s}^{'} - \phi^{'})^{2}}{4}, \\ V_{v} &= \frac{A_{s}^{''} - \phi^{''}}{2} + \frac{(A_{s}^{'} - \phi^{'})^{2}}{4} + g_{5}^{2}e^{2A_{s}}\chi^{2}. \end{split}$$

Produced hadron spectra compared with data

D.N. Li, M.H., JHEP2013, arXiv:1303.6929

Ground states: chiral symmetry breaking Excitation states: linear confinemnt

Quenched gluodynamics +flavor dynamics

$$\begin{split} S &= S_b + S_m, \\ S_b &= \frac{1}{16\pi G_5} \int d^5 x \sqrt{-g^s} e^{-2\phi} [R^s + 4\partial_\mu \phi \partial^\mu \phi - V_s(\phi) - \frac{h(z)}{4} e^{\frac{4\phi}{3}} F_{\mu\nu} F^{\mu\nu}], \quad \text{Gluon Background} \\ S_m &= -\int d^5 x \sqrt{-g^s} e^{-\phi} Tr[\nabla_\mu X^\dagger \nabla^\mu X + V_X(|X|, F_{\mu\nu} F^{\mu\nu})]. \quad \text{Matter part} \end{split}$$

Dynamical holographic QCD Graviton-dilaton-scalar system

	Gluodynamics	Quark dynamics	
DhQCD	Dilaton background	Flavor background	
SS:D4-D8 D3-D7	Dp brane: D4, D3	Dq brane: D8, D7	A
PNJL	Polyakov-loop potential	NJL model	

Interplay between gluodynamics and quark dynamics!!!

Comparing with the Witten-Sakai-Sugimoto model

4-8 open strings give chiral (from D8) and anti-chiral (from anti-D8) fermions in the fundamental representation.

Graviton-dilaton system

 $g^s_{MN} = b^2_s(z)(dz^2 + \eta_{\mu\nu}dx^{\mu}dx^{\nu}), \ \ b_s(z) \equiv e^{A_s(z)}$

Produced quark potential compared with Cornell potential

Smaller chiral condensate, smaller pion decay constant, better pion form factor

D.N. Li, S. He, M.H., Q. S. Yan, arXiv:1103.5389, JHEP2011

D.N. Li, S. He, M.H., Q. S. Yan, arXiv:1103.5389, JHEP2011

D.N. Li, S. He, M.H., Q. S. Yan, arXiv:1103.5389, JHEP2011

Electric screening

Heavy quark potential

2.0

бp[≘]′

 $g_p = 0.7$

15

Polyakov loop: color electric deconfinement

Magnetic screening and magnetic confinement

spatial Wilson loop spatial string tension

D.N. Li, S. He, M.H., Q. S. Yan, arXiv:1103.5389, JHEP2011

V. HQCD and Jet quenching

Parton energy loss in QGP

The dominant effect of the medium on a high energy parton is medium-induced Bremsstrahlung.

$$\Delta E \approx -\frac{\alpha_s}{2\pi} N_C \hat{q} L^2$$

Baier, Dokshitzer, Mueller, Peigne, Schiff (1996):

 \hat{q} : reflects the ability of the medium to "quench" jets.

$$\hat{q} = rac{\left\langle k_T^2 \right\rangle}{L} \approx rac{\mu^2}{\lambda}$$
 μ : Debye mass λ : mean free path

Chen, Greiner, Wang, XNW, Xu, PRC 81 (2010) 064908

Jet quenching characterizing phase transition?

Csernai et al, Phys.Rev.Lett.97:152303,2006

η /s characterizes phase transitions CJT+Boltzmann Eq

J.W Chen, MH, Y.H. Li, E. Nakano, D.L.Yang, Phys.Lett.B670:18-21,2008, arXiv: 0709.3434

1, Minimum at Tc, most difficult condition for momentum transportation.

2. The value of $\eta\text{/s}$ at phase transition decreases with increases of coupling strength

Jet quenching characterizing phase transition!

Shear/bulk viscosity characterizing phase transition!

Quenched gluodynamics +flavor dynamics

$$\begin{split} S &= S_b + S_m, \\ S_b &= \frac{1}{16\pi G_5} \int d^5 x \sqrt{-g^s} e^{-2\phi} [R^s + 4\partial_\mu \phi \partial^\mu \phi - V_s(\phi) - \frac{h(z)}{4} e^{\frac{4\phi}{3}} F_{\mu\nu} F^{\mu\nu}], \quad \text{Gluon Background} \\ S_m &= -\int d^5 x \sqrt{-g^s} e^{-\phi} Tr[\nabla_\mu X^\dagger \nabla^\mu X + V_X(|X|, F_{\mu\nu} F^{\mu\nu})]. \quad \text{Matter part} \end{split}$$

Baryon number fluctuations at mu=0

Xun Chen, Danning Li, M.H, JHEP 03 (2020) 073 Z.B Li, K.Xu,X.Y.Wang, M.H. arXiv:1801.09215

Quenched result: Quarkyonic phase

EOS of dense QCD matter

Model I: Gubser Model, extended by Song He et.al

$$V_{\phi}(\phi) = -12\cosh(c_1\phi) + (6c_1^2 - \frac{3}{2})\phi^2 + c_2\phi^6,$$
$$h_{\phi}(\phi) = \frac{1}{1+c_3}\operatorname{sech}(c_4\phi^3) + \frac{c_3}{1+c_3}e^{-c_5\phi},$$

Model parameters are fixed by lattice result Nf=2+1 at \mu=0

Rong-Gen Cai, Song He, Li Li, Yuan-Xu Wang, arXiv:2201.02004

 $\phi(z) = c_1 z^2,$

Parameters fixed by lattice results of EOS for pure gluon system

Lin Zhang, Chutian Chen, Yidian Chen, M.H. *Phys.Rev.D* 105 (2022) 2, 026020

Lin Zhang, M.H., to appear

1, For stable NS, confined matter is favored; most probably, a quarkyonic state.

2, pure gluon part gives a stiff EOS, matter part soften the EOS,

2, quark matter will give unstable NSs.

3, a peak for sound velocity

Relation between chiral symmetry breaking and confinement and whether there is quarkyonic matter can only be answered when gluodynamics and chiral dynamics are fully solved!

Light flavor Hadron spectra

Effective models hQCD models

Phase structure

Effective models hQCD models

Deconfinement Hard Easy

Hot QCD matter properties

Which properties of hot QCD matter can we hope to determine ?

$$\begin{bmatrix} \mathsf{Easy} \\ \mathsf{for} \\ \mathsf{LQCD} \end{bmatrix} \begin{pmatrix} T_{\mu\nu} \Leftrightarrow \varepsilon, p, s \\ c_s^2 = \partial p / \partial \varepsilon \end{bmatrix} \quad \text{Equation of state: spectra, coll. flow, fluctuations} \\ \begin{array}{l} \mathsf{Speed of sound: correlations} \\ \mathsf{Speed of sound: correlations} \\ \end{array} \\ \begin{array}{l} \eta = \frac{1}{T} \int d^4 x \left\langle T_{xy}(x) T_{xy}(0) \right\rangle \\ \mathsf{Shear viscosity: anisotropic collective flow} \\ \end{array} \\ \begin{array}{l} \eta = \frac{1}{T} \int d^4 x \left\langle T_{xy}(x) T_{xy}(0) \right\rangle \\ \mathsf{Shear viscosity: anisotropic collective flow} \\ \end{array} \\ \begin{array}{l} \mathsf{Hard} \\ \mathsf{for} \\ \mathsf{LQCD} \\ \end{array} \\ \begin{array}{l} \hat{q} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \left\langle U^{\dagger} F^{a+i}(y^-) U F_i^{a+}(0) \right\rangle \\ \hat{e} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \left\langle iU^{\dagger} \partial^- A^{a+}(y^-) U A^{a+}(0) \right\rangle \\ \hat{e} = \frac{4\pi \alpha_s}{3N_c} \int dx \left\langle U^{\dagger} F^{a0i}(x) t^a U F^{b0i}(0) t^b \right\rangle \\ \end{array} \\ \begin{array}{l} \mathsf{Momentum/energy diffusion: \\ \mathsf{parton energy loss, jet fragmentation} \\ \end{array} \\ \begin{array}{l} \mathsf{Easy} \\ \mathsf{for} \\ \mathsf{LQCD} \\ \end{array} \\ \begin{array}{l} \mathsf{R}_{\mathsf{p}} = -\lim_{\mathsf{bd} \to \mathsf{so}} \frac{1}{|x|} \ln \left\langle U^{\dagger} E^a(x) U E^a(0) \right\rangle \\ \end{array} \\ \begin{array}{l} \mathsf{Color screening: Quarkonium states} \\ \end{array} \\ \end{array} \\ \end{array}$$

Demat wueller

Which properties of hot QCD matter can we hope to determine ?

$$T_{\mu\nu} \Leftrightarrow \varepsilon, p, s \quad \text{Equation of state: spectra, coll. flow, fluctuations}$$

$$c_s^2 = \partial p / \partial \varepsilon \quad \text{Speed of sound: correlations}$$
Hard for
$$\begin{array}{l} \text{Hard for} \\ \text{Effective} \\ \text{QCD} \end{array} \qquad \eta = \frac{1}{T} \int d^4 x \left\langle T_{xy}(x) T_{yy}(0) \right\rangle \quad \text{Shear viscosity: anisotropic collective flow} \\ \hat{q} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \left\langle U^{\dagger} F^{a+i}(y^-) U F_i^{a+}(0) \right\rangle \\ \hat{e} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \left\langle iU^{\dagger} \partial^- A^{a+}(y^-) U A^{a+}(0) \right\rangle \\ \hat{e} = \frac{4\pi \alpha_s}{N_c} \int d\tau \left\langle U^{\dagger} F^{a0i}(\tau) t^a U F^{b0i}(0) t^b \right\rangle \\ m_D = -\lim_{k \to \infty} \frac{1}{|x|} \ln \left\langle U^{\dagger} E^a(x) U E^a(0) \right\rangle \quad \text{Color screening: Quarkonium states} \end{array}$$

Which properties of hot QCD matter can we hope to determine ?

$$\begin{array}{ll} T_{\mu\nu} \iff \varepsilon, p, s \quad \mbox{Equation of state: spectra, coll. flow, fluctuations} \\ \hline {\bf Easy for hQCD} & c_s^2 = \partial p \ / \ \partial \varepsilon & \mbox{Speed of sound: correlations} \\ \hline {\bf \eta} = \frac{1}{T} \int d^4x \left\langle T_{xy}(x) T_{xy}(0) \right\rangle & \mbox{Shear viscosity: anisotropic collective flow} \\ \hline {\bf q} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \left\langle U^{\dagger} F^{a+i}(y^-) U F_i^{a+}(0) \right\rangle \\ \hline {\bf e} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \left\langle i U^{\dagger} \ \partial^- A^{a+}(y^-) U A^{a+}(0) \right\rangle \\ \hline {\bf k} = \frac{4\pi \alpha_s}{3N_c} \int d\tau \left\langle U^{\dagger} F^{a0i}(\tau) t^a U F^{b0i}(0) t^b \right\rangle \\ \hline {\bf m}_D = -\lim_{|x| \to \infty} \frac{1}{|x|} \ln \left\langle U^{\dagger} E^a(x) U E^a(0) \right\rangle & \mbox{Color screening: Quarkonium states} \end{array}$$

But we need a hQCD close to QCD! Dynamical hQCD model is one of the candidates!