

高能物理牧野论坛

HEAVY-FLAVOR-CONSERVING WEAK DECAYS OF HEAVY BARYONS

徐繁荣

暨南大学

2022年5月19日

OUTLINE

- Introduction
- General remarks
- S-wave amplitudes
- P-wave amplitudes
- Numerical results
- Summary and discussion

INTRODUCTION

FROM QUARK TO BARYON

1974

Oops-Leon 1976

1977

CHARMED BARYON: RECENT PROGRESSES (I)

• Opportunities brought by BESIII: Λ_c^+

"Physics at BES-III", Int. J. Mod. Phys. A24 (2009)S1-794

PRL 116, 052001 (2016	PHYSICAL REVIEW LETTER	S seek ending 5 FEBRUARY 2016
4	<mark>1.6 GeV, 567/pb</mark>	(BESIII Collaboration)
Mode	This work (%)	PDG (%)
pK_{S}^{0}	$1.52 \pm 0.08 \pm 0.03$	1.15 ± 0.30
$pK^-\pi^+$	$5.84 \pm 0.27 \pm 0.23$	5.0 ± 1.3 2
$pK_S^0\pi^0$	$1.87 \pm 0.13 \pm 0.05$	1.65 ± 0.50
$pK_S^0\pi^+\pi^-$	$1.53 \pm 0.11 \pm 0.09$	1.30 ± 0.35
$pK_S^0\pi^+\pi^-$ $pK^-\pi^+\pi^0$	$4.53 \pm 0.23 \pm 0.30$	3.4 ± 1.0
$\Lambda\pi^+$	$1.24 \pm 0.07 \pm 0.03$	1.07 ± 0.28
$\Lambda\pi^+\pi^0$	$7.01 \pm 0.37 \pm 0.19$	3.6 ± 1.3
$\Lambda \pi^+ \pi^- \pi^+$	$3.81 \pm 0.24 \pm 0.18$	2.6 ± 0.7
$\Sigma^0\pi^+$	$1.27 \pm 0.08 \pm 0.03$	1.05 ± 0.28
$\Sigma^+\pi^0$	$1.18 \pm 0.10 \pm 0.03$	1.00 ± 0.34
$\Sigma^+\pi^+\pi^-$	$4.25 \pm 0.24 \pm 0.20$	3.6 ± 1.0
$\Sigma^+\omega$	$1.56 \pm 0.20 \pm 0.07$	2.7 ± 1.0

PDG 2016: $(6.35 \pm 0.33)\%$

PDG 2021: $(6.28 \pm 0.32)\%$

Beam energy

- Ebeam = $2.3 \rightarrow 2.35$ GeV in 2019
- Ebeam = $2.35 \rightarrow 2.45$ GeV in 2020-21

CHARMED BARYON: RECENT PROGRESSES (II)

- Progresses made by Belle/Belle-II
 - competitive role in Λ_c measurement (benchmarking channel, DCS decays)
 - one important provider for $\Xi_c \& \Omega_c$

PRL 113, 042002 (2014)

PHYSICAL REVIEW LETTERS

week ending 25 JULY 2014

Measurement of the Branching Fraction $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)$

PRL **117**, 011801 (2016)

PHYSICAL REVIEW LETTERS

week ending 1 JULY 2016

First Observation of the Doubly Cabibbo-Suppressed Decay of a Charmed Baryon:

$$\Lambda_c^+ \to p K^+ \pi^-$$

PHYSICAL REVIEW LETTERS 122, 082001 (2019)

First Measurements of Absolute Branching Fractions of the Ξ_c^0 Baryon at Belle

PHYSICAL REVIEW D 100, 031101(R) (2019)

PHYSICAL REVIEW D 97, 032001 (2018)

Rapid Communications

First measurements of absolute branching fractions of the Ξ_c^+ baryon at Belle

Measurement of branching fractions of hadronic decays of the Ω_c^0 baryon

CHARMED BARYON: RECENT PROGRESSES (III)

- Progresses made by LHCb
 - one important provider for $\Xi_c \& \Omega_c$: decays vs. lifetimes
 - discovery and measurement of doubly charmed baryons
 - measurement of bottom baryons

PHYSICAL REVIEW LETTERS 121, 092003 (2018)

Measurement of the Ω_c^0 Baryon Lifetime

R. Aaij *et al.**
(LHCb Collaboration)

(Received 5 July 2018; revised manuscript received 31 July 2018; published 31 August 2018)

PHYSICAL REVIEW LETTERS

Evidence for the Strangeness-Changing Weak Decay $\Xi_h^- \to \Lambda_h^0 \pi^-$

R. Aaij et al.*

(LHCb Collaboration)

(Received 13 October 2015; published 11 December 2015)

11 DECEMBER 2015

PRL 115, 241801 (2015)

CHARMED BARYON WEAK DECAYS

• The Pioneering work has been done in 1990s.

(Hai-Yang Cheng, B Tseng, '92 & '93 PRD)

More modes have been studied and completed in recent years.

7011	VII	MENIC	1	CHENC
ZOU.	XU.	MENCT.	and	CHENG

PHYS. REV. D **101,** 014011 (2020)

TABLE V. The singly Cabibbo-suppressed decays $\Xi_c \to \mathcal{B}_f P$ in units of $10^{-2} G_F$ GeV². Branching fractions (in unit of 10^{-3}) and the asymmetry parameter α are shown in the last two columns.

Channel	$A^{ m fac}$	A^{com}	A^{tot}	$B^{ m fac}$	B^{ca}	B^{tot}	$\mathcal{B}_{ ext{theo}}$	$lpha_{ m theo}$
$\Xi_c^+ \to \Lambda \pi^+$	0.46	-1.50	-1.04	-1.69	2.16	0.47	0.85	-0.33
$\Xi_c^+ o \Sigma^0 \pi^+$	-0.90	-1.00	-1.90	3.29	0.74	4.03	4.30	-0.95
$\Xi_c^+ o \Sigma^+ \pi^0$	0.32	1.00	1.32	-1.16	1.61	0.44	1.36	0.23
$\Xi_c^+ o \Sigma^+ \eta$	-0.74	1.42	0.68	2.58	-2.19	0.39	0.32	0.36
$\Xi_c^+ o p \bar{K}^0$	0	-2.10	-2.10	0	2.64	2.64	3.96	-0.83
$\Xi_c^+ \to \Xi^0 K^+$	-2.30	1.16	-1.14	8.43	-3.46	4.97	2.20	-0.98
$\Xi_c^0 \to \Lambda \pi^0$	-0.12	1.06	0.95	0.42	-0.96	-0.53	0.24	-0.41
$\Xi_c^0 \to \Lambda \eta$	0.27	1.51	1.78	-0.94	-0.71	-1.65	0.81	-0.59
$\Xi_c^0 o \Sigma^0 \pi^0$	-0.23	-0.70	-0.93	0.82	1.36	2.18	0.38	-0.98
$\Xi_c^0 o \Sigma^0 \eta$	0.53	-1.01	-0.48	-1.83	1.55	-0.28	0.05	0.36
$\Xi_c^0 o \Sigma^- \pi^+$	-1.28	-1.41	-2.69	4.67	0.22	4.89	2.62	-0.90
$\Xi_c^0 o \Sigma^+\pi^-$	0	1.41	1.41	0	2.49	2.49	0.71	0.89
$\Xi_c^0 \to pK^-$	0	-0.94	-0.94	0	-1.86	-1.86	0.35	0.99
$\Xi_c^0 \to n\bar{K}^0$	0	-2.10	-2.10	0	2.96	2.96	1.40	-0.89
$\Xi_c^0 \to \Xi^0 K^0$	0	2.10	2.10	0	-4.17	-4.17	1.32	-0.85
$\Xi_c^0 \to \Xi^- K^+$	-2.31	-0.94	-3.24	8.49	0.71	9.20	3.90	-0.97

H.-Y. Cheng, F. Xu et. al. series of works, 2018-2020

HEAVY BARYON WEAK DECAYS

Weak decay via heavy quark

Weak decay via light quark: Heavy-Flavor-Conserving weak decays
 the heavy quark behaves as a spectator [heavy quark symmetry, chiral symmetry]
 emitted light mesons are soft [effective Hamiltonian, current algebra]

EXPERIMENTS OF HFC WEAK DECAYS

•
$$\Xi_b^- \to \Lambda_b^0 \pi^-$$

PRL **115**, 241801 (2015)

PHYSICAL REVIEW LETTERS

week ending 11 DECEMBER 2015

Evidence for the Strangeness-Changing Weak Decay $\Xi_b^- o \Lambda_b^0 \pi^-$

R. Aaij *et al.**
(LHCb Collaboration)

(Received 13 October 2015; published 11 December 2015)

$$\frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \mathcal{B}(\Xi_b^- \to \Lambda_b^0 \pi^-) = (5.7 \pm 1.8^{+0.8}_{-0.9}) \times 10^{-4}$$

 $0.1 \sim 0.3$

$$\mathcal{B}(\Xi_b^- \to \Lambda_b^0 \pi^-) = (0.57 \pm 0.21) \sim (0.19 \pm 0.07)\%$$

•
$$\Xi_c^0 \to \Lambda_c^+ \pi^-$$

PHYSICAL REVIEW D 102, 071101(R) (2020)

Rapid Communications

First branching fraction measurement of the suppressed decay $\Xi_c^0 o \pi^- \Lambda_c^+$

R. Aaij *et al.**
(LHCb Collaboration)

$$\mathcal{B}(\Xi_c^0 \to \pi^- \Lambda_c^+) = (0.55 \pm 0.02 \pm 0.18)\%$$

Order: 10^{-3}

THEORETICAL STUDIES OF HFC WEAK DECAYS

- The early considerations
 - Cheng [(CLY)²)] 1992

heavy quark plays the role of spectator quark

$$B(\Xi_c^0 \to \Lambda_c^+ \pi^-) = 3.8 \times 10^{-4} ,$$

$$B(\Xi_c^+ \to \Lambda_c^+ \pi^0) = 5.0 \times 10^{-4} ,$$

$$B(\Omega_c^0 \to \Xi_c^{\prime +} \pi^-) = 0.9 \times 10^{-5} .$$

- Some properties
 - PV S-wave: 1/2 poles
 - \bullet PC P-wave: $1/2^+$ poles; the amplitudes vanish for antitriplet in heavy quark limit

diquark of antitriplet is scalar: $J^P=0^+$ angular momentum conservation forbids $0^+\to 0^++0^-$

PHYSICAL REVIEW D VOLUME 46, NUMBER 11 1 DECEMBER 1992 Heavy-flavor-conserving nonleptonic weak decays of heavy baryons Hai-Yang Cheng, Chi-Yee Cheung, and Guey-Lin Lin

Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of Ch

Y. C. Lin
Physics Department, National Central University, Chung-li, Taiwan 32054, Republ

Tung-Mow Yan
Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of Ch
and Floyd R. Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New

Hoi-Lai Yu Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of Ch (Received 22 June 1992)

PHYSICAL REVIEW D

VOLUME 46, NUMBER 3

1 AUGUST 1992

Heavy-quark symmetry and chiral dynamics

Tung-Mow Yan

Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China and Floyd R. Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853*

Hai-Yang Cheng, Chi-Yee Cheung, and Guey-Lin Lin Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

•

Physics Department, National Central University, Chung-li, Taiwan 32054, Republic of China

Hoi-Lai Yu

Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China (Received 2 March 1992)

$$\Sigma_c^+ = \frac{1}{\sqrt{6}} [(udc + duc)\chi_S + (13) + (23)],$$

$$\Xi_c^+ = \frac{1}{\sqrt{6}} [(usc - suc)\chi_A + (13) + (23)],$$

THEORETICAL STUDIES OF HFC WEAK DECAYS

- The early considerations
 - Gronau-Rosner 2016
 constructive interference: W-exchange & S-wave amp.

$$\mathcal{B}(\Xi_b^- \to \pi^- \Lambda_b) = (6.32 \pm 4.24 \pm 0.16) \times 10^{-3}$$

$$= (6.3 \pm 4.2) \times 10^{-3},$$

$$= (6.3 \pm 4.2) \times 10^{-3},$$

$$(1.76^{+2.26}_{-1.34}) \times 10^{-4}$$

$$(1.34 \pm 0.53) \times 10^{-3}$$

• Cheng [(CLY)²)] 2016

destructive interference: W-exchange & S-wave amp.

Mode	A	${\cal B}$	Mode	A	${\cal B}$
$\Xi_c^0 \to \Lambda_c^+ \pi^-$	1.7×10^{-7}	0.87×10^{-4}	$\Xi_b^0 \to \Lambda_b^0 \pi^-$	2.3×10^{-7}	2.0×10^{-3}
				4.3×10^{-7}	
$\Xi_c^+ \to \Lambda_c^+ \pi^0$	0.9×10^{-7}	0.93×10^{-4}	$\Xi_b^- o \Lambda_b^0 \pi^0$		
				2.7×10^{-7}	2.5×10^{-3}

PHYSICAL REVIEW D **93**, 034020 (2016)

S-wave nonleptonic hyperon decays and $\Xi_b^- \to \pi^- \Lambda_b$

Michael Gronau

Physics Department, Technion, Haifa 32000, Israel

Jonathan L. Rosner

Enrico Fermi Institute and Department of Physics, University of Chicago Chicago, Illinois 60637, USA (Received 4 January 2016; published 10 February 2016)

branching ratio order: 10^{-4}

THEORETICAL STUDIES OF HFC WEAK DECAYS

- After 2021: spectator W-exchange enhance P-wave amplitude
 - Niu-Wang-Zhao, 2022

calculate in NR constitute quark model

 Σ_c pole terms enhance $\Xi_c \to \Lambda_c^+ \pi$

Eur. Phys. J. C (2022) 82:297 https://doi.org/10.1140/epjc/s10052-022-10224-0

THE EUROPEAN
PHYSICAL JOURNAL C

Review

Topological tensor invariants and the current algebra approach: analysis of 196 nonleptonic two-body decays of single and double charm baryons – a review

Stefan Groote^{1,a}, Jürgen G. Körner²

- ¹ Füüsika Instituut, Tartu Ülikool, W. Ostwaldi 1, 50411 Tartu, Estonia
- ² PRISMA Cluster of Excellence, Institut für Physik, Johannes-Gutenberg-Universität, Staudinger Weg 7, 55099 Mainz, Germany

- Groote-Korner, 2021
- How about make use of Current Algebra?
 Don't forget the origin!

GENERAL DESCRIPTION

DEPICT THE TWO-BODY WEAK DECAY

at quark level

light quark

$$H_{ ext{eff}} = rac{G_F}{\sqrt{2}} V_{ud}^* V_{us} (c_1 O_1 + c_2 O_2) + ext{H.c.}$$

"spectator" quark
$$H_{\mathrm{eff}}^{(c)} = \frac{G_F}{\sqrt{2}} V_{cd}^* V_{cs}(c_1 \tilde{O}_1 + c_2 \tilde{O}_2) + \mathrm{H.c.}$$

$$O_1=(\bar{d}u)(\bar{u}s), \qquad O_2=(\bar{d}s)(\bar{u}u),$$

$$\tilde{O}_1 = (\bar{d}c)(\bar{c}s)$$
 and $\tilde{O}_2 = (\bar{c}c)(\bar{d}s)$

at hadron level

$$M(\mathcal{B}_i \to \mathcal{B}_f + P) = i\bar{u}_f(A - B\gamma_5)u_i$$

$$\Gamma = \frac{p_c}{8\pi} \left[\frac{(m_i + m_f)^2 - m_P^2}{m_i^2} |A|^2 + \frac{(m_i - m_f)^2 - m_P^2}{m_i^2} |B|^2 \right]$$

$$\alpha = \frac{2\kappa \operatorname{Re}(A^*B)}{|A|^2 + \kappa^2 |B|^2}$$

TOPOLOGICAL APPROACH

$$M(\mathcal{B}_i \to \mathcal{B}_f P) = i\bar{u}_f (A - B\gamma_5)u_i$$

L.-L. Chau, H.-Y. Cheng and B. Tseng, Phys. Rev. D 54(1996)2132

TOPOLOGICAL APPROACH

S-WAVE AMPLITUDES

Ξ_c decays: s decay

$$\langle \pi^{-} \Lambda_{c}^{+} | H_{\text{eff}} | \Xi_{c}^{0} \rangle^{\text{fac}} = \frac{G_{F}}{\sqrt{2}} V_{ud}^{*} V_{us} | \overline{a_{1}} \langle \pi^{-} | (\bar{d}u) | 0 \rangle \langle \Lambda_{c}^{+} | (\bar{u}s) | \Xi_{c}^{0} \rangle$$
$$\langle \pi^{0} \Lambda_{c}^{+} | H_{\text{eff}} | \Xi_{c}^{+} \rangle^{\text{fac}} = \frac{G_{F}}{\sqrt{2}} V_{ud}^{*} V_{us} | \overline{a_{2}} \langle \pi^{0} | (\bar{u}u) | 0 \rangle \langle \Lambda_{c}^{+} | (\bar{d}s) | \Xi_{c}^{+} \rangle$$

$$a_1 = c_1 + \frac{c_2}{N_c}, \qquad a_2 = c_2 + \frac{c_1}{N_c}$$

$$\begin{bmatrix} a_1 = c_1 + \frac{c_2}{N_c}, & a_2 = c_2 + \frac{c_1}{N_c} \end{bmatrix} \begin{cases} \langle \Lambda_c^+ | (\bar{u}s) | \Xi_c^0 \rangle &= \bar{u}_{\Lambda_c} \Big[f_1^{\Lambda_c \Xi_c}(q^2) \gamma_\mu + f_2^{\Lambda_c \Xi_c}(q^2) i \sigma_{\mu\nu} q^\nu + f_3^{\Lambda_c \Xi_c}(q^2) q_\mu \\ &- g_1^{\Lambda_c \Xi_c}(q^2) \gamma_\mu \gamma_5 - g_2^{\Lambda_c \Xi_c}(q^2) i \sigma_{\mu\nu} q^\nu \gamma_5 - g_3^{\Lambda_c \Xi_c}(q^2) q_\mu \gamma_5 \Big] u_{\Xi_c} \end{cases}$$

$$A(\Xi_c^0 \to \Lambda_c^+ \pi^-)^{\text{fac}} = -\frac{G_F}{\sqrt{2}} V_{ud}^* V_{us} a_1 f_{\pi} (m_{\Xi_c} - m_{\Lambda_c}) f_1^{\Lambda_c^+ \Xi_c^0} (m_{\pi}^2),$$

$$A(\Xi_c^+ \to \Lambda_c^+ \pi^0)^{\text{fac}} = -\frac{G_F}{2} V_{ud}^* V_{us} a_2 f_{\pi} (m_{\Xi_c} - m_{\Lambda_c}) f_1^{\Lambda_c^+ \Xi_c^+} (m_{\pi}^2).$$

Pole model

$$\langle \mathcal{B}_i | H_{\text{eff}} | \mathcal{B}_j \rangle = \bar{u}_i (a_{ij} + b_{ij} \gamma_5) u_j$$

$$\langle \mathcal{B}_i^*(1/2^-)|H_{\text{eff}}^{\text{pv}}|\mathcal{B}_i\rangle = b_{i^*j}\bar{u}_iu_j$$

$$M(\mathcal{B}_i \to \mathcal{B}_f + P) = i\bar{u}_f(A - B\gamma_5)u_i$$

$$A^{\text{pole}} = -\sum_{\mathcal{B}_{n}^{*}(1/2^{-})} \left[\frac{g_{\mathcal{B}_{f}\mathcal{B}_{n^{*}}M}b_{n^{*}i}}{m_{i} - m_{n^{*}}} + \frac{b_{fn^{*}}g_{\mathcal{B}_{n^{*}}\mathcal{B}_{i}M}}{m_{f} - m_{n^{*}}} \right] + \cdots,$$

$$B^{\text{pole}} = -\sum_{\mathcal{B}_{n}} \left[\frac{g_{\mathcal{B}_{f}\mathcal{B}_{n}M}a_{ni}}{m_{i} - m_{n}} + \frac{a_{fn}g_{\mathcal{B}_{n}\mathcal{B}_{i}M}}{m_{f} - m_{n}} \right] + \cdots,$$

intermediate state: 1/2⁻ complicated!

current algebra technique

$$\text{Goldberger-Treiman relation:} \quad g_{\mathcal{B}'\mathcal{B}P^a} = \frac{\sqrt{2}}{f_{P^a}}(m_{\mathcal{B}'} + m_{\mathcal{B}})g_{\mathcal{B}'\mathcal{B}}^A, \qquad g_{\mathcal{B}*\mathcal{B}P^a} = \frac{\sqrt{2}}{f_{P^a}}(m_{\mathcal{B}*} - m_{\mathcal{B}})g_{\mathcal{B}*\mathcal{B}}^A,$$

soft-pion limit: $A^{\mathrm{pole}} \rightarrow A^{\mathrm{com}}$

$$A^{\mathrm{pole}} \to A^{\mathrm{com}}$$

$$A^{\text{pole}} = -\sum_{\mathcal{B}_n^*(1/2^-)} \left[\frac{g_{\mathcal{B}_f \mathcal{B}_{n^*} M} b_{n^* i}}{m_i - m_{n^*}} + \frac{b_{fn^*} g_{\mathcal{B}_{n^*} \mathcal{B}_i M}}{m_f - m_{n^*}} \right] + \cdots$$

$$b_{ji} * = -b_{i} *_{j}$$

$$A^{
m com} = -rac{\sqrt{2}}{f_{P^a}} \langle \mathcal{B}_f | [Q_5^a, \mathcal{H}_{
m eff}^{
m pv}] | \mathcal{B}_i
angle = -rac{\sqrt{2}}{f_{P^a}} \langle \mathcal{B}_f | [Q^a, \mathcal{H}_{
m eff}^{
m pc}] | \mathcal{B}_i
angle \ rac{Q^a = \int d^3x ar{q} \gamma^0 rac{\lambda^a}{2} q, \qquad Q_5^a = \int d^3x ar{q} \gamma^0 \gamma_5 rac{\lambda^a}{2} q.}$$

$$Q^a=\int d^3x ar q \gamma^0 rac{\lambda^a}{2} q, \qquad Q^a_5=\int d^3x ar q \gamma^0 \gamma_5 rac{\lambda^a}{2} q.$$

tedious calculation related to $1/2^-$ can be avoided

An example

$$A^{
m com} = -rac{\sqrt{2}}{f_{P^a}} \langle \mathcal{B}_f | [Q^a, \mathcal{H}^{
m pc}_{
m eff}] | \mathcal{B}_i
angle$$

$$A(\Xi_{c}^{0} \to \Lambda_{c}^{+}\pi^{-})^{\text{nf}} = -\frac{1}{f_{\pi}} \langle \Lambda_{c}^{+} | [I_{+}, \mathcal{H}_{\text{eff}} + \mathcal{H}_{\text{eff}}^{(c)}] | \Xi_{c}^{0} \rangle$$

$$= \frac{1}{f_{\pi}} \langle \Lambda_{c}^{+} | \mathcal{H}_{\text{eff}} | \Xi_{c}^{+} \rangle + \frac{1}{f_{\pi}} \langle \Lambda_{c}^{+} | \mathcal{H}_{\text{eff}}^{(c)} | \Xi_{c}^{+} \rangle,$$

$$\equiv A_{su \to ud}^{\text{nf}} + A_{cs \to cd}^{\text{nf}}$$

$$A_{su \to ud}^{\text{nf}} \} = \frac{G_F}{2\sqrt{2}f_{\pi}} V_{ud}^* V_{us}(c_1 - c_2) \begin{cases} X \\ -Y, \end{cases}$$

$$X \equiv \langle \Lambda_c^+ | (\bar{d}u)(\bar{u}s) - (\bar{u}u)(\bar{d}s) | \Xi_c^+ \rangle,$$

$$Y \equiv \langle \Lambda_c^+ | (\bar{d}c)(\bar{s}c) - (\bar{c}c)(\bar{d}s) | \Xi_c^+ \rangle.$$

$$V_{cd}^* V_{cs} = -V_{ud}^* V_{us}$$

$$A(\Xi_c^0 \to \Lambda_c^+ \pi^-) = A^{\text{fac}} + A_{su \to ud}^{\text{nf}} + A_{sc \to cd}^{\text{nf}}$$

$$= \frac{G_F}{\sqrt{2} f_{\pi}} V_{ud}^* V_{us} \left[-a_1 f_{\pi}^- (m_{\Xi_c} - m_{\Lambda_c}) f_1^{\Lambda_c^+ \Xi_c^0} (m_{\pi}^2) + \frac{1}{2} (c_1 - c_2) (X - Y) \right]$$

other results

$$A(\Xi_{c}^{0} \to \Lambda_{c}^{+}\pi^{-}) = A^{\text{fac}} + A^{\text{nf}}_{su \to ud} + A^{\text{nf}}_{sc \to cd}$$

$$= \frac{G_{F}}{\sqrt{2}f_{\pi}} V_{ud}^{*} V_{us} \left[-a_{1}f_{\pi}(m_{\Xi_{c}} - m_{\Lambda_{c}}) f_{1}^{\Lambda_{c}^{+}\Xi_{c}^{0}}(m_{\pi}^{2}) + \frac{1}{2}(c_{1} - c_{2}) (X - Y) \right]$$

$$\begin{split} A(\Xi_c^+ \to \Lambda_c^+ \pi^0) \; &= \; \frac{G_F}{2 f_\pi} V_{ud}^* V_{us} \left[-a_2 f_\pi^2 (m_{\Xi_c} - m_{\Lambda_c}) f_1^{\Lambda_c^+ \Xi_c^+} (m_\pi^2) + \frac{1}{2} (c_1 - c_2) \left(X - Y \right) \right] \\ A(\Xi_b^- \to \Lambda_b^0 \pi^-) \; &= \; \frac{G_F}{\sqrt{2} f_\pi} V_{ud}^* V_{us} \left[-a_1 f_\pi^2 (m_{\Xi_b} - m_{\Lambda_b}) f_1^{\Lambda_b^0 \Xi_b^-} (m_\pi^2) + \frac{1}{2} (c_1 - c_2) X \right], \\ A(\Xi_b^0 \to \Lambda_b^0 \pi^0) \; &= \; \frac{G_F}{2 f_\pi} V_{ud}^* V_{us} \left[-a_2 f_\pi^2 (m_{\Xi_b} - m_{\Lambda_b}) f_1^{\Lambda_b^0 \Xi_b^0} (m_\pi^2) + \frac{1}{2} (c_1 - c_2) X \right]. \end{split}$$

heavy quark W-exchange

$$A(\Omega_{c}^{0} \to \Xi_{c}^{+} \pi^{-}) = -\frac{G_{F}}{\sqrt{2}} V_{ud}^{*} V_{us} a_{1} f_{\pi} (m_{\Omega_{c}} - m_{\Xi_{c}}) f_{1}^{\Xi_{c}^{+} \Omega_{c}^{0}} (m_{\pi}^{2}) - \frac{1}{f_{\pi}} \langle \Xi_{c}^{0} | \mathcal{H}_{\text{eff}} + \mathcal{H}_{\text{eff}}^{(c)} | \Omega_{c}^{0} \rangle,$$

$$A(\Omega_{c}^{0} \to \Xi_{c}^{0} \pi^{0}) = -\frac{G_{F}}{2} V_{ud}^{*} V_{us} a_{2} f_{\pi} (m_{\Omega_{c}} - m_{\Xi_{c}}) f_{1}^{\Xi_{c}^{0} \Omega_{c}^{0}} (m_{\pi}^{2}) + \frac{1}{\sqrt{2} f_{\pi}} \langle \Xi_{c}^{0} | \mathcal{H}_{\text{eff}} + \mathcal{H}_{\text{eff}}^{(c)} | \Omega_{c}^{0} \rangle$$

$$\langle \Xi_c^+ | b_u^\dagger b_s | \Omega_c^0 \rangle$$

$$\langle \Xi_c^0 | b_d^\dagger b_s | \Omega_c^0 \rangle$$

$$\langle \Xi_c^+ | b_u^{\dagger} b_s | \Omega_c^0 \rangle$$
 $\langle \Xi_c^0 | b_d^{\dagger} b_s | \Omega_c^0 \rangle$ $\langle \mathcal{B}_{\bar{3}} | \mathcal{H}_{\text{eff}} | \mathcal{B}_6 \rangle = 0$

$$A(\Omega_c^0 \to \Xi_c^+ \pi^-) = -\frac{1}{f_\pi} a_{\Xi_c^0 \Omega_c^0}, \qquad A(\Omega_c^0 \to \Xi_c^0 \pi^0) = \frac{1}{\sqrt{2} f_\pi} a_{\Xi_c^0 \Omega_c^0}$$

$$A(\Omega_b^- \to \Xi_b \pi) = 0$$

P-WAVE AMPLITUDES

Ξ_c decays: s decay

$$\langle \pi^{-} \Lambda_{c}^{+} | H_{\text{eff}} | \Xi_{c}^{0} \rangle^{\text{fac}} = \frac{G_{F}}{\sqrt{2}} V_{ud}^{*} V_{us} | \overline{a_{1}} \langle \pi^{-} | (\bar{d}u) | 0 \rangle \langle \Lambda_{c}^{+} | (\bar{u}s) | \Xi_{c}^{0} \rangle$$
$$\langle \pi^{0} \Lambda_{c}^{+} | H_{\text{eff}} | \Xi_{c}^{+} \rangle^{\text{fac}} = \frac{G_{F}}{\sqrt{2}} V_{ud}^{*} V_{us} | \overline{a_{2}} \langle \pi^{0} | (\bar{u}u) | 0 \rangle \langle \Lambda_{c}^{+} | (\bar{d}s) | \Xi_{c}^{+} \rangle$$

$$a_1 = c_1 + \frac{c_2}{N_c}, \qquad a_2 = c_2 + \frac{c_1}{N_c}$$

$$A(\Xi_c^0 \to \Lambda_c^+ \pi^-)^{\text{fac}} = -\frac{G_F}{\sqrt{2}} V_{ud}^* V_{us} a_1 f_{\pi}(m_{\Xi_c} - m_{\Lambda_c}) f_1^{\Lambda_c^+ \Xi_c^0}(m_{\pi}^2),$$

$$B(\Xi_c^0 \to \Lambda_c^+ \pi^-)^{\text{fac}} = \frac{G_F}{\sqrt{2}} V_{ud}^* V_{us} a_1 f_{\pi}(m_{\Xi_c} + m_{\Lambda_c}) g_1^{\Lambda_c \Xi_c}(m_{\pi}^2)$$

$$\langle B_{\overline{3}}(v',s')|q^{\mu}A_{\mu}^{a}|B_{\overline{3}}(v,s)\rangle = \langle 0|\overline{u}(v',s')\phi_{v'}h_{v'}(q^{\mu}A_{\mu}^{a})\overline{h}_{v}\phi_{v}^{\dagger}u(v,s)|0\rangle$$

$$= \langle 0|\overline{u}(v',s')h_{v'}\overline{h}_{v}u(v,s)|0\rangle\langle 0|\phi_{v'}(q^{\mu}A_{\mu}^{a})\phi_{v}^{\dagger}|0\rangle$$

vanishes in heavy quark limit

Pole model

$$A^{\text{pole}} = -\sum_{\mathcal{B}_{n}^{*}(1/2^{-})} \left[\frac{g_{\mathcal{B}_{f}\mathcal{B}_{n^{*}}M}b_{n^{*}i}}{m_{i} - m_{n^{*}}} + \frac{b_{fn^{*}}g_{\mathcal{B}_{n^{*}}\mathcal{B}_{i}M}}{m_{f} - m_{n^{*}}} \right] + \cdots,$$

$$B^{\text{pole}} = -\sum_{\mathcal{B}_{n}} \left[\frac{g_{\mathcal{B}_{f}\mathcal{B}_{n}M}a_{ni}}{m_{i} - m_{n}} + \frac{a_{fn}g_{\mathcal{B}_{n}\mathcal{B}_{i}M}}{m_{f} - m_{n}} \right] + \cdots,$$

$$g_{\mathcal{B}'\mathcal{B}P^a} = rac{\sqrt{2}}{f_{P^a}}(m_{\mathcal{B}'}+m_{\mathcal{B}})g_{\mathcal{B}'\mathcal{B}}^A.$$

$$B^{\text{pole}} = -\frac{\sqrt{2}}{f_{P^a}} \sum_{\mathcal{B}_n} \left[g_{\mathcal{B}_f \mathcal{B}_n}^A \frac{m_f + m_n}{m_i - m_n} a_{ni} + a_{fn} \frac{m_i + m_n}{m_f - m_n} g_{\mathcal{B}_n \mathcal{B}_i}^A \right]$$

 Ξ_h decays

$$a_{\Lambda_b^0\Xi_b^0} = \langle \Lambda_b^0 | \mathcal{H}_{ ext{eff}} | \Xi_b^0
angle$$

$$B(\Xi_{b}^{-} \to \Lambda_{b}^{0}\pi^{-})^{\text{pole}} = -\frac{1}{f_{\pi}} \left(a_{\Lambda_{b}^{0}\Xi_{b}^{0}} \frac{m_{\Xi_{b}^{-}} + m_{\Xi_{b}^{0}}}{m_{\Lambda_{b}^{0}} - m_{\Xi_{b}^{0}}} g_{\Xi_{b}^{0}\Xi_{b}^{-}}^{A(\pi^{-})} + a_{\Lambda_{b}^{0}\Xi_{b}^{\prime}} \frac{m_{\Xi_{b}^{-}} + m_{\Xi_{b}^{\prime}}}{m_{\Lambda_{b}^{0}} - m_{\Xi_{b}^{\prime}}} g_{\Xi_{b}^{\prime}\Xi_{b}^{-}}^{A(\pi^{-})} \right)$$

$$B(\Xi_{b}^{0} \to \Lambda_{b}^{0}\pi^{0})^{\text{pole}} = -\frac{\sqrt{2}}{f_{\pi}} \left(g_{\Lambda_{b}^{0}\Sigma_{b}^{0}}^{A(\pi^{0})} \frac{m_{\Lambda_{b}^{0}} + m_{\Sigma_{b}^{0}}}{m_{\Xi_{b}^{0}} - m_{\Sigma_{b}^{0}}} a_{\Sigma_{b}^{0}\Xi_{b}^{0}} + g_{\Lambda_{b}^{0}\Lambda_{b}^{0}}^{A(\pi^{0})} \frac{2m_{\Lambda_{b}^{0}}}{m_{\Xi_{b}^{0}} - m_{\Lambda_{b}^{0}}} a_{\Lambda_{b}^{0}\Xi_{b}^{0}} + a_{\Lambda_{b}^{0}\Xi_{b}^{\prime}}^{A(\pi^{0})} \frac{2m_{\Lambda_{b}^{0}}}{m_{\Xi_{b}^{0}} - m_{\Lambda_{b}^{0}}} a_{\Lambda_{b}^{0}\Xi_{b}^{0}} + a_{\Lambda_{b}^{0}\Xi_{b}^{\prime}}^{A(\pi^{0})} + a_{\Lambda_{b}^{0}\Xi_{b}^{\prime}}^{A(\pi^{0})} \frac{2m_{\Lambda_{b}^{0}}}{m_{\Lambda_{b}^{0}} - m_{\Xi_{b}^{\prime}}} g_{\Xi_{b}^{\prime}\Xi_{b}^{0}}^{A(\pi^{0})} \right),$$

no extra W-exchange diagram

$$\langle \mathcal{B}_{\bar{3}} | \mathcal{H}_{\text{eff}} | \mathcal{B}_6 \rangle = 0$$

⇒ no P-wave contributions!

$${
m Tr}(ar{\mathcal{B}}_{ar{3}}\gamma_{\mu}\gamma_5 A^{\mu}\mathcal{B}_{ar{3}}) \longrightarrow \mathbf{0}$$
 (heavy quark limit)

■ $J^P(\text{diquark in }3) = 0^+$, $0^+ \to 0^+ + 0^-$ for $\mathcal{B}_{\bar{3}} \to \mathcal{B}_{\bar{3}} + P$ is forbidden for p-wave, angular momentum conservation

 Ξ_c decays: only non-spectator W-exchange diagrams contribute

• factorizable amplitudes vanish

$$a_{\Sigma_c^{0(+)}\Xi_c^{0(+)}} = \langle \Sigma_c^{0(+)} | \mathcal{H}_{\text{eff}}^{(c)} | \Xi_c^{0(+)} \rangle, \qquad a_{\Lambda_c^+\Xi_c'^+} = \langle \Lambda_c^+ | \mathcal{H}_{\text{eff}}^{(c)} | \Xi_c'^+ \rangle$$

$$(m_{\Lambda_c^+} + m_{\Sigma_c^+})/(m_{\Xi_c^+} - m_{\Sigma_c^+}) = 315$$

enhanced P-wave contributions!

Ω_c and Ω_b decays

receive factorizable amplitudes

$$1^{+} \rightarrow 0^{+} + 0^{-}$$

non-factorizable amplitudes

$$B(\Omega_{c}^{0} \to \Xi_{c}^{+} \pi^{-}) = \frac{G_{F}}{\sqrt{2}} V_{ud}^{*} V_{us} \, a_{1} f_{\pi}(m_{\Omega_{c}} + m_{\Xi_{c}}) g_{1}^{\Xi_{c}^{+} \Omega_{c}^{0}}(m_{\pi}^{2}) - \frac{1}{f_{\pi}} g_{\Xi_{c}^{+} \Xi_{c}^{\prime 0}}^{A(\pi^{-})} \frac{m_{\Xi_{c}^{+}} + m_{\Xi_{c}^{\prime 0}}}{m_{\Omega_{c}^{0}} - m_{\Xi_{c}^{\prime 0}} \Omega_{c}^{0}},$$

$$B(\Omega_{c}^{0} \to \Xi_{c}^{0} \pi^{0}) = \frac{G_{F}}{2} V_{ud}^{*} V_{us} \, a_{2} f_{\pi}(m_{\Omega_{c}} + m_{\Xi_{c}}) g_{1}^{\Xi_{c}^{0} \Omega_{c}^{0}}(m_{\pi}^{2}) - \frac{\sqrt{2}}{f_{\pi}} g_{\Xi_{c}^{0} \Xi_{c}^{\prime 0}}^{A(\pi^{0})} \frac{m_{\Xi_{c}^{0}} + m_{\Xi_{c}^{\prime 0}}}{m_{\Omega_{c}^{0}} - m_{\Xi_{c}^{\prime 0}}} a_{\Xi_{c}^{\prime 0} \Omega_{c}^{0}},$$

$$B(\Omega_{b}^{-} \to \Xi_{b}^{0} \pi^{-}) = \frac{G_{F}}{\sqrt{2}} V_{ud}^{*} V_{us} \, a_{1} f_{\pi}(m_{\Omega_{b}} + m_{\Xi_{b}}) g_{1}^{\Xi_{b}^{0} \Omega_{b}^{-}}(m_{\pi}^{2}),$$

$$B(\Omega_{b}^{-} \to \Xi_{b}^{-} \pi^{0}) = \frac{G_{F}}{2} V_{ud}^{*} V_{us} \, a_{2} f_{\pi}(m_{\Omega_{b}} + m_{\Xi_{b}}) g_{1}^{\Xi_{b}^{-} \Omega_{b}^{-}}(m_{\pi}^{2}),$$

$$a_{\Xi_c'^0\Omega_c^0} = \langle \Xi_c'^0 | \mathcal{H}_{ ext{eff}}^{(c)} | \Omega_c^0 \rangle$$

MODEL ESTIMATIONS

THE REMAINING TASK: FORM FACTORS AND MATRIX ELEMENTS

MIT bag model
$$\psi = \begin{pmatrix} iu(r)\chi \\ v(r)\boldsymbol{\sigma} \cdot \hat{\mathbf{r}}\chi \end{pmatrix}$$

$$f_1^{\mathcal{B}_f \mathcal{B}_i}(q_{\max}^2) = \langle \mathcal{B}_f \uparrow | b_{q_1}^{\dagger} b_{q_2} | \mathcal{B}_i \uparrow \rangle \int d^3 \mathbf{r} (u_{q_1}(r) u_{q_2}(r) + v_{q_1}(r) v_{q_2}(r)),$$

$$g_1^{\mathcal{B}_f \mathcal{B}_i}(q_{\max}^2) = \langle \mathcal{B}_f \uparrow | b_{q_1}^{\dagger} b_{q_2} \sigma_z | \mathcal{B}_i \uparrow \rangle \int d^3 \mathbf{r} \left(u_{q_1}(r) u_{q_2}(r) - \frac{1}{3} v_{q_1}(r) v_{q_2}(r) \right),$$

$$g_{\mathcal{B}'\mathcal{B}}^{A} = \langle \mathcal{B}' \uparrow | b_{q1}^{\dagger} b_{q2} \sigma_z | \mathcal{B} \uparrow \rangle \int d^3 r \left(u_{q1} u_{q2} - \frac{1}{3} v_{q1} v_{q2} \right)$$

$$a_{\mathcal{BB}_c} = \frac{G_F}{2\sqrt{2}} \sum_{q=d,s} V_{cq} V_{uq} (c_1 - c_2) \langle \mathcal{B} | O_-^q | \mathcal{B}_c \rangle$$

THE RESULTS: FORM FACTORS AND MATRIX ELEMENTS

Form factors

$$f_1^{\Lambda_b^0\Xi_b^-} = f_1^{\Lambda_c^+\Xi_c^0} \ = \ \langle \Lambda_c^+ | b_u^\dagger b_s | \Xi_c^0
angle \int d^3 {f r} (u_u u_s + v_u v_s) = 4\pi Z_3,$$

$$f_1^{\Lambda_b^0 \Xi_b^0} = f_1^{\Lambda_c^+ \Xi_c^+} = \langle \Lambda_c^+ | b_d^\dagger b_s | \Xi_c^+ \rangle \int d^3 \mathbf{r} (u_d u_s + v_d v_s) = -4\pi Z_3$$

$$g_1^{\Xi_b^0 \Omega_b^-} = g_1^{\Xi_c^+ \Omega_c^0} = \langle \Xi_c^+ | b_u^\dagger b_s \sigma_z | \Omega_c^0 \rangle \int d^3 \mathbf{r} (u_u u_s - \frac{1}{3} v_u v_s) = -\sqrt{\frac{2}{3}} (4\pi Z_2)$$

$$g_1^{\Xi_b^- \Omega_b^-} = g_1^{\Xi_c^0 \Omega_c^0} = \langle \Xi_c^0 | b_d^\dagger b_s \sigma_z | \Omega_c^0 \rangle \int d^3 \mathbf{r} (u_d u_s - \frac{1}{3} v_d v_s) = -\sqrt{\frac{2}{3}} (4\pi Z_2)$$

$$\frac{1}{\sqrt{2}}g_{\Lambda_c^+\Sigma_c^0}^{A(\pi^-)} = g_{\Lambda_c^+\Sigma_c^+}^{A(\pi^0)} = -g_{\Xi_c^+\Xi_c^0}^{A(\pi^-)} = -g_{\Xi_c^+\Xi_c^{\prime 0}}^{A(\pi^-)} = -2g_{\Xi_c^+\Xi_c^{\prime 0}}^{A(\pi^0)} = 2g_{\Xi_c^0\Xi_c^{\prime 0}}^{A(\pi^0)} = \frac{1}{\sqrt{3}}(4\pi Z_1)$$

$$Z_{1} = \int_{0}^{R} r^{2} dr \left(u_{u}^{2} - \frac{1}{3} v_{u}^{2} \right)$$

$$Z_2 = \int_0^R r^2 dr \left(u_u u_s - \frac{1}{3} v_u v_s \right)$$

$$Z_3 = \int_0^R r^2 dr \left(u_u u_s + v_u v_s \right)$$

$$4\pi Z_1 = 0.65$$
, $4\pi Z_2 = 0.71$, $4\pi Z_3 = 0.985$

THE RESULTS: FORM FACTORS AND MATRIX ELEMENTS

Matrix elements

$$X \equiv \langle \Lambda_c^+ | (\bar{d}u)(\bar{u}s) - (\bar{u}u)(\bar{d}s) | \Xi_c^+ \rangle,$$

$$Y \equiv \langle \Lambda_c^+ | (\bar{d}c)(\bar{s}c) - (\bar{c}c)(\bar{d}s) | \Xi_c^+ \rangle.$$

$$X=32\pi X_2,$$

$$X = 32\pi X_2, \qquad Y = 8\pi (Y_1 + Y_2)$$

$$a_{\Sigma_c^+ \Xi_c^+} = \frac{1}{\sqrt{2}} a_{\Sigma_c^0 \Xi_c^0} = -a_{\Lambda_c^+ \Xi_c'^+} = \frac{G_F}{2\sqrt{2}} V_{cd}^* V_{cs} (c_1 - c_2) \frac{2}{\sqrt{3}} (-Y_1 + 3Y_2) (4\pi)$$

$$a_{\Xi_c^0\Omega_c^0} = \frac{G_F}{2\sqrt{2}} V_{cd}^* V_{cs} (c_1 - c_2) 2\sqrt{\frac{2}{3}} (Y_1 - 3Y_2)(4\pi)$$

$$a_{\Xi_{c}^{\prime 0}\Omega_{c}^{0}} = -\frac{G_{F}}{2\sqrt{2}}V_{cd}^{*}V_{cs}(c_{1}-c_{2})\frac{2\sqrt{2}}{3}(Y_{1}+9Y_{2})(4\pi)$$

diquark model

$$X_{
m di} = rac{2}{3\,m_{
m di}} g_{du} g_{us}$$

$$(c_1 - c_2)g_{du}g_{us} = 0.066 \pm 0.013 \text{ GeV}^4$$

$$X_{
m di} = rac{1}{c_1 - c_2} \, (5.6 \pm 1.1) 10^{-2} {
m GeV}^3$$

$$egin{aligned} X_2 &= \int_0^R r^2 dr (u_d u_u + v_d v_u) (u_s u_u + v_s v_u), \ Y_1 &= \int_0^R r^2 dr (u_d v_c - v_d u_c) (u_s v_c - v_s u_c), \ Y_2 &= \int_0^R r^2 dr (u_d u_c + v_d v_c) (u_s u_c + v_s v_c), \end{aligned}$$

$$X_2 = 1.66 \times 10^{-4} \,\mathrm{GeV}^3$$
, $Y_1 = 8.37 \times 10^{-6} \,\mathrm{GeV}^3$, $Y_2 = 2.11 \times 10^{-4} \,\mathrm{GeV}^3$,

RESULTS & SUMMARY

PREDICTIONS

	$\Xi_c^0 o \Lambda_c^+ \pi^-$	$\Xi_c^+ \to \Lambda_c^+ \pi^0$	$\Xi_b^- o \Lambda_b^0 \pi^-$	$\Xi_b^0 o \Lambda_b^0 \pi^0$
A (in units of 10^{-7})	2.53 ± 0.75	2.02 ± 0.53	3.43 ± 0.76	2.80 ± 0.53
$m{B}$ (in units of 10 ⁻⁷)	244	181	0	0
α	$0.70^{+0.13}_{-0.17}$	$0.74^{+0.11}_{-0.16}$	0	0
\mathcal{B}	$(1.76^{+0.18}_{-0.12}) \times 10^{-3}$	$(3.03^{+0.29}_{-0.22}) \times 10^{-3}$	$(4.67^{+2.29}_{-1.83}) \times 10^{-3}$	$(2.87^{+1.20}_{-0.99}) \times 10^{-3}$
$\mathcal{B}_{ ext{expt}}$	$(5.5 \pm 1.8) \times 10^{-3}$	_	see Ea. (1.2)	_
			$= (0.57 \pm 0.21) \sim (0.19 \pm 0.07)\%.$	

- matrix element result of X is taken in diquark model
- $\Xi_b^- \to \Lambda_b^0 \pi^-$ is consistent with LHCb measurement, $\Xi_c^0 \to \Lambda_c^+ \pi^-$ is close to exp.

	$\Omega_c^0 o \Xi_c^+ \pi^-$	$\Omega_c^0 o \Xi_c^0 \pi^0$	$\Omega_b^- o \Xi_b^0 \pi^-$	$\Omega_b^- o \Xi_b^- \pi^0$
A	-1.72	1.21	0	0
B	40.12	-32.19	-15.96	-3.48
\mathcal{B}	5.1×10^{-4}	2.8×10^{-4}	6.5×10^{-5}	2.8×10^{-6}
α	-0.98	-0.99	0	0

COMPARISON I: $\Xi_c^0 \to \Lambda_c^+ \pi^-$

	$A^{\mathrm{fac}} + A^{\mathrm{nf}}_{su o ud}$	$A_{sc o cd}^{ m nf}$	$A^{ m tot}$	$\mathcal{B}_{ ext{S-wave}}$
This work	3.27 ± 0.75^{-a}	-0.74	2.53 ± 0.75	$(2.53^{+1.74}_{-1.28}) \times 10^{-4}$
Gronau, Rosner [10]	3.97 ± 0.59	-1.86 ± 0.91	2.11 ± 1.08	$(1.76^{+2.26}_{-1.34}) \times 10^{-4}$
	3.97 ± 0.59	1.86 ± 0.91	5.83 ± 1.08	$(1.34 \pm 0.53) \times 10^{-3}$

^aExplicitly, $A^{\rm fac} = -0.56$ and $A^{\rm nf}_{su\to ud} = 3.83 \pm 0.75$ in unit of 10^{-7} .

- factorizable and W-exchange (light quark): this work destructive while GR constructive
- spectator W-exchange diagram contribution is destructive
- only S-wave contribution is considered, and predicted branching fraction is smaller than experimental measurement.

COMPARISON II: E DECAYS

Branching fractions (in units of 10^{-3}) of charm-flavor-conserving decays $\Xi_c \to \Lambda_c^+ \pi$.

Mode	$(CLY)_a^2$	$(CLY)_b^2$	Faller	Gronau	Voloshin	Niu	This work	Experiment
	[<u>1</u>]	<u>[8]</u>	<u>[7]</u>	[10]	[<u>11</u>]	[12]		[15]
$\Xi_c^0 o \Lambda_c^+ \pi^-$	0.39	0.17	< 3.9	$0.18^{+0.23}_{-0.13}$	$> 0.25 \pm 0.15$	5.8 ± 2.1	$1.76^{+0.18}_{-0.12}$	$5.5\pm0.2\pm1.8$
				1.34 ± 0.53				
$\Xi_c^+ o \Lambda_c^+ \pi^0$	0.69	0.11	< 6.1	< 0.2	_	11.1 ± 4.0	$3.03^{+0.29}_{-0.22}$	_
				2.01 ± 0.80				

• the order is correct and approaches to experimental value

SUMMARY

- P-wave amplitudes of $\Xi_Q \to \Lambda_Q \pi$ vanish, provided heavy quark does not participate weak interaction.
- In presence of nonspectator W-exchange, S-wave amplitude receive destructive contribution.
- $\Xi_b^- \to \Lambda_b^0 \pi^-$ will be smaller than experimental value when X is evaluated in bag model hence diquark model is adopted.
- $\Xi_c \to \Lambda_c \pi$ is dominated by PC pole terms, induced by nonspectator W-exchange.
- $\Omega_b^- \to \Xi_b^0 \pi$ receive only factorizable P-wave contributions; $\Omega_c \to \Xi_c \pi$ acquire additional nonspectator W-exchange for both PV and PC amplitudes.

#