Cluster finding algorithm based on machine learning

Guang Zhao

zhaog@ihep.ac.cn

Problem description

- High-efficient cluster counting algorithm is essential for the dN/dx measurement
- Goal of cluster counting:
 - Both primary electrons and secondary electrons contribute peaks on the waveform
 - Find the number of peaks from primary electrons
- Cluster counting = Peak finding + Clustering
 - Peak finding: Find all peaks
 - Clustering: Discriminate the # of primary ones

Dataset

Labelled MC samples

- ~20 primary ionizations per waveform
- Tuned based-on beam test waveforms: noise model, amplitude, peak rising-time

Peak finding algorithm

Problem:

- Peak detection of waveforms
- Supervised-classification: "signal" and "noise"
- Data in time-sequence form

Recurrent Neural Network (RNN):

- "Memory" structure: internal loops over sequence elements
- Powerful to handle time-sequences

An example for demonstration

Derivative

The NN can find the peaks more effective!

Receiver Operating Characteristic (ROC)

NN is a better binary classifier than the derivative method

Note: ROC curve is a standard tool for evaluation binary classifiers. ROC curve with larger areaunder-curve (AUC) is better

Clustering algorithm

Problem:

- Determine the # of peaks from primary electrons
- Supervised regression

Detected peaks from the peak finding

1D Convolutional Neural Network:

- Extracting features form local input patches
- 1D version of CNN is highly relevant to sequence processing

N_{cls} distributions

Resolution ~23%

- ✓ Very good Gaussian-like distribution
- The resolution is very close to the truth value (~21%), which implies possible improvement on PID

Derivative (no clustering)

Summary

The deep learning algorithm shows promising results from a MC sample

For full simulation:

> To train the network with datasets of larger momentum range

For beam test data (in progressing):

- > Try to label the data
- In progress to better understand the waveform and improve the preprocessing of the training dataset

A 3cm tube waveform from <u>11Nov_0angle_HVnominal_1p2GSPS_5k.root</u>