Multi Calorimetry in Liquid Scintillator Neutrino Detector

Yang HAN SYSU, Guangzhou

SYSU-PKU Collider Physics forum For Young Scientists

29.06.2022

Some background information about neutrinos and oscillations...

for audience not in neutrino field...

2

Neutrinos

Figure from: https://home.cern/science/physics/standard-model

Neutrino oscillation

Neutrino flavor transformation

Neutrino mass and mixing

Global picture of oscillation parameters

Unknowns

Unknowns and Efforts

Liffel tow

JUNO in brief

Primary Physics Topics:

8

JUNO in brief

Example: Energy systematics (unnoticed non-linearity) \rightarrow Misinterpretation of MO

Liquid Scintillator Neutrino Detector

-one of the most successful and widely used neutrino detection technology

Liquid Scintillator Neutrino Detector

A few examples along history...

Reines and Cowan liquid scintillator counter "Discovery of neutrino" (1950s)

KamLAND Detector (2002~now) (Kamioka Liquid Scintillator Antineutrino Detector) "Reactor neutrino oscillation"

Borexino Detector (2007~now) "Solar neutrino detection"

Daya Bay Detector (2011~2020) "Neutrino oscillation θ_{13} "

Main Components

Calorimetric Responses

Calorimetry in terms of charge

 Large pixel
 "Integration" Calorimetry

 Photon sensor
 Sophisticated Systematics:

 Multiple charge pulse
 Noise baseline;

 Integration strategy ...

Calorimetry examples

	LS Target Mass (ton)	Nb. of PMTs	PMT Dimension (inch)	Light Yield (PE/MeV)	Single PMT mean illumination @1MeV@center	Single PMT charge range (For 1~10 MeV)	Energy resolution @1MeV	Energy systematics
KamLAND	1000	1880	20&17	~250	~0.1		~6%	~1.4%
Borexino	300	2212	8	~500	~0.3	Approximately 1~10PE	~5%	~1%
Daya Bay	20	190	8	~170	~0.9		~8%	<1%

Calorimetry examples

	LS Target Mass (ton)	Nb. of PMTs	PMT Dimension (inch)	Light Yield (PE/MeV)	Single PMT mean illumination @1MeV@center	Single PMT charge range (For 1~10 MeV)	Energy resolutior @1MeV	Energy systematics
KamLAND	1000	1880	20&17	~250	~0.1		~6%	~1.4%
Borexino	300	2212	8	~500	~0.3	Approximately 1~10PE	~5%	~1%
Daya Bay	20	190	8	~170	~0.9		~8%	<1%
		La (coverc Cost	rge pixe Ige&cha t effect	el nnels) ive		Single 'Integration' Calorimetry'	₽°	Systematics ~ Detector size
	L.J.	Wen et al	. NIM.A 947	(2019) 1627	66	THE AND AND		

Calorimetry examples

	LS Target Mass (ton)	Nb. of PMTs	PMT Dimension (inch)	Light Yield (PE/MeV)	Single PMT mean illumination @1MeV@center	Single PMT charge range (For 1~10 MeV)	Energy resolution @1MeV	Energy systematics
KamLAND	1000	1880	20&17	~250	~0.1		~6%	~1.4%
Borexino	300	2212	8	~500	~0.3 Approximate 1~10PE		~5%	~1%
Daya Bay	20	190	8	~170	~0.9	~0.9		<1%
JUNO	20,000	18,000 (main)	20 (main)	~1300	~0.1	1~100PE	~3%	<1% (required)

Large Scale Detector \oplus High Precision Energy Meas. \rightarrow Calorimetric challenge

Calorimetric challenge

in "integration" Calorimetry

Response degeneracy

QNL: charge nonlinearity LSNL: liquid scintillator non-linearity NU: non-uniformity NS: non-stability

Calorimetric challenge

Response degeneracy examples:

• Energy non-linearity induced by charge response

• Energy non-uniformity mimicked by charge response

Challenge for diagnosis&calibration in single calorimetry!

Multi Calorimetry

-for high precision calorimetry systematics control

Multi Calorimetry Concept

Dual Calorimetry@JUNO

>20-inch Large PMT (LPMT)

3-inch Small PMT (SPMT)

	Target Mass (ton)	Nb. of PMTs	PMT Dimension (inch)	Light Yield (PE/MeV)	Single PMT mean illumination @1MeV@center	Single PMT charge range (For 1~10 MeV)	Energy systematics	
JUNO	20,000	~18,000 (main)	20-inch (main)	~1300	~0.1	1~100PE	<1%	
		~25,600 (secondary)	3-inch (secondary)	~50	~0.002	1PE (Dominant)	(required)	

Multi Calorimetry Principle

Multi Calorimetry Principle

Skip detailed methodologies to reach Multi Calorimetry

Focus on: potential precise systematics control in energy linearity and uniformity, with JUNO as an example

Multi Calorimetry Potentials

Direct charge response non-linearity (QNL) control

Multi Calorimetry Potentials

Degeneracy breakdown

Charge response induced energy non-linearity control

Multi Calorimetry Potentials

Degeneracy breakdown

Charge response mimicked energy non-uniformity control

Conclusion

Neutrino oscillation in high precision measurement era.

Huge Detector \otimes Precise Systematics Control \otimes Cost ...

Multi Calorimetry offers an option.

For JUNO (already), and also beyond...