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Motivation
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‣ The discovery of  the Higgs boson is a great victory of  the Standard Model (SM), 
however there are many questions remain unaddressed

‣ Many extensions to the SM have been proposed and a variety of  searches targeting those 
models have been conducted. One of  the most popular signatures at ATLAS: dijet final 
states 
- Created by quarks/gluons -> decay to quarks/gluons 
- Large statistics

‣ For some beyond the SM models predict an enhanced coupling to the third-generation 
quarks 
- Sensitivity to such models can be dramatically improved by requiring the jets from the 

resonance decays to be tagged as originating from a b-quark



Di-b-jet Search
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JHEP03(2020)145

Invariant mass distribution from 
leading and sub-leading jets

Fit smoothly falling SM background 
Search for deviation from it

Limits setting on the BSM models if 
no significant deviation found

https://link.springer.com/article/10.1007/JHEP03(2020)145


Analysis Selection
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‣ Full Run-2 dataset collected by the ATLAS detector used 
‣ Pre-selection 

- Single, small-radius jet trigger used: HLT-j420 
- To improve searching sensitivity: 

• Background: mainly 2-2 scattering in QCD; dominate in t-channel 

• Upper bound on jet rapidity difference placed:  

- B-tagger: DL1r tagger at 77% selected 

• Smoothness of the invariant mass distribution 

• Sensitivity

|y* | =
1
2

|y1 − y2 |



Search Result
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‣  No significant deviations observed.‣ The SM background of  the  spectrum 
is determined by a functional fit to data: 

          , where  
‣ Sliding Window Fit (SWiFt) instead of  

global fit employ: 
- Sliding localized fit on smaller  range 
- Background in each mass bin is 

predicted by fitting in a mass window 
around that bin

mjj

f(x) = p1(1 − x)p2xp3+p4x x = mjj / s

mjj



Limit & Improvement
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‣ Stringent limit on models with heavy resonances in hadronic final states 
‣ Comparing to previous di-b-jet analysis: 

- A factor within 1.2 and 3.5 improvement seen, maximum at 4 TeV 
- Benefits from substantial improvement in the b-jet tagging algorithm and associated 

systematic uncertainties



B-jet Identification … in ATLAS
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IPxD RNNIPSV1 JetFitter SMTpT, |η |

machine learning techniques

B-tagging Score

Boosted Decision Tree

Deep Neural Network

B-tagging reply on B-hadron properties: 
- Relatively long lifetime 

• Introduce a displaced vertex 
- Large mass 

• Decay products tend to have higher transverse momentum 
- Semi-leptonic decay with a soft muon 

• Have higher multiplicities



B-jet Identification … in ATLAS
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Neural Network-based taggers outperform BDT-
based tagger with increased statistics 

- Tagger performance is better 
- Less time consuming 

DL1r outperform DL1 tagger 
- Benefits from RNNIP: take correlations between 

tracks into account



New b-taggers for Run 3
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FTAG-2021-004 
ATL-PHYS-PUB-2022-027

New b-taggers for Run 3 are being developed 
- New machine learning techniques applied: deep sets, graph neural network 
- Great improvements have been observed

DIPS: 
- Solves the same task as RNNIP 
- Deep sets algorithm applied instead of 

RNN 
- Treat tracks in jet: unordered, variable-

sized  b-hadron decay products do not 
exhibit any intrinsic sequential ordering

⇒

https://link.springer.com/article/10.1007/JHEP03(2020)145
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2021-004/
https://cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf
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FTAG-2021-004 
ATL-PHYS-PUB-2022-027

New b-taggers for Run 3 are being developed 
- New machine learning techniques applied: deep sets, graph neural network 
- Great improvements have been observed

GN1: predict jet flavour without the need for 
intermediate low-level algorithms 

https://link.springer.com/article/10.1007/JHEP03(2020)145
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2021-004/
https://cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf


Calibration
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‣ For both BDT and NN-based taggers 
- Calibration obtained in the forms of data-to-simulation scale factors (SFs) 
- Uncertainties are added to the SFs 

• Data-based uncertainty at  GeV 
• Data-based + extrapolation uncertainty at  GeV

pT ≤ 400
pT > 400

ATL-PHYS-PUB-2021-003

https://cds.cern.ch/record/2753444/files/ATL-PHYS-PUB-2021-003.pdf


Calibration
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‣ For both BDT and NN-based taggers 
- Calibration obtained in the forms of data-to-simulation scale factors (SFs) 
- Uncertainties are added to the SFs 

• Data-based uncertainty at  GeV 
• Data-based + extrapolation uncertainty at  GeV

pT ≤ 400
pT > 400

ATL-PHYS-PUB-2021-003
 Are there other ways to handle the uncertainties of 

NN-based b-taggers? 

https://cds.cern.ch/record/2753444/files/ATL-PHYS-PUB-2021-003.pdf


NN Uncertainty Quantification
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‣ Deep neural network model: 
- What do the output “probabilities” tell us? 
- How to tell if the model is making sensible prediction or giving random answers? 
- Does the model know what it doesn’t know? 

‣ Uncertainty quantification (UQ) can help answer the questions: 
- Bayesian Neural Network (BNN): offers a mathematically grounded way, however 

• Difficult to use 
• Hard to choose a good prior 
• Slow to train and computationally expensive 

- Dropout Uncertainty Quantification (DUQ):  
• Proposed by Y. Gal in 2016 
• Claims by enabling Dropout during evaluation provide 

          an approximation of the network’s posterior probability 
          distribution



Monte - Carlo Dropout
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arxiv 1506.02142‣ Dropout: 
- A standard technique for training neural networks 
- Avoids over-fitting by randomly deactivating 

connections between nodes of neural network during 
the training process

‣ As amazing as Y. Gal’s claim sounds, it is not rigorously justified nor systematically evaluated 
- Proposed a method to fully validate the method 
- Novel application to b-tagging



DUQ Method Workflow
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Evaluate multiple times 
with DL1r model with 

Dropout enabled
DL1r Distribution for each jet

Validation

Jet

• Calculate the significance for 
each jet 

 

• The probability that a jet’s 
significance will correspond to a 
correct categorization is calculated 
using a normal distribution’s CDF

significance =
DL1median − cut

(DL1median − CIj)2



Jet-level closure test: 
- Predicted probability vs jet 

accuracy 
- The difference between each is 

mainly within 1%

Sample-level closure test: 
- Predicted probability vs sample accuracy 
- Less than 2% difference noticed 

• Mainly covered by the statistical uncertainty

Accuracy* 
(w/o Dropout)

Accuracy 
(w Dropout)

72.55 74.2

extended Z’ 36.9 35.1

* ~100k jets used to perform sample closure test on both  and  samples, statical uncertainty roughly ~1% tt̄ Z′ 

Validation
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Uncertainty vs. pT
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‣ Apply DUQ method on nominal samples, captures the NN uncertainty 
- Small uncertainty noticed as expected

‣ Would without binning be 
an option?



Entering into HL-LHC
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‣ LHC will enter high-luminosity phase in 2025 
- An integrated luminosity of  3000 fb-1 will be expected 

‣ To cope with the harsh radiation environment, detector occupancy and bandwidth saturation, 
ATLAS Inner Detector will be replaced by an all-silicon detector, Inner Tracker (ITk) 

ITk Pixel TDR

https://cds.cern.ch/record/2285585


Entering into HL-LHC
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‣ Design goal: ITk should have the same or better performance as the current detector but in the 
harsher environment of  the HL-LHC



Module
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Module, as the basic unit of pixel detector, needs to be tested. 
-  Consists of a silicon sensor bump-bonded to a front-end (FE) chip glued to a flexible PCB

‣ RD53A chip: 
- Size: pixels by   pixels 

• Pixel size:  by  
- 3 FEs under evaluations

400 192
50μm 50μm

Module flex

Wire bond areas
4 x Frond-end Chips

Planar sensor (  thick)110μm

41
.1

m
m

42.1mm
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Module Testing
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‣  To develop the necessary testing infrastructure for 
the electrical qualification of  each assembled 
module, a phased approach has been adopted 
across the collaboration to achieve these different 
testing capabilities:

Module testing setup at Argonne

•Basic electrical tests 
- Turn on module at 20°C 
- Module tuning 

•Full QC test 
- Thermal cycling  

• 1 extreme cycle from -55°C to 60°C 
• 10 cycles from - 45°C to 45°C 

- Source scan at 20°C (around 10 hours) 
- Burn-in test at -15°C for at least 8 hours



Argonne Pixel Telescope at Fermilab
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‣ As part of  the R&D programs towards the validation of  a new detector technology, beam tests 
are required to evaluate the module designs  

‣ An Argonne Pixel Telescope installed to perform such studies 
- 6 telescope planes installed with FEI4B quad modules 

•  pixel size 50 x 250 µm2 and 200µm in thickness 
- YARR and FELIX setup as DAQ system



Argonne Pixel Telescope at Fermilab
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‣ As part of  the R&D programs towards the validation of  a new detector technology, beam tests 
are required to evaluate the module designs  

‣ An Argonne Pixel Telescope installed to perform such studies 
- 6 telescope planes installed with FEI4B quad modules 

•  pixel size 50 x 250 µm2 and 200µm in thickness 
- HitOR trigger applied to select signals leave hit on all six planes 
- YARR and FELIX setup as DAQ system

Hit occupancy with different beam profile



Telescope Performance
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‣ Proteus software used to reconstruct the test beam data 
- Clustering 
- Alignment 
- Track reconstruction 

‣  Test beam scenario simulated using AllPix2 simulation 
software to validate the performance of  the telescope

Pixel Efficiency of  Telescope Plane 0

Telescope Residual

arxiv: 2202.05315

https://link.springer.com/article/10.1007/JHEP03(2020)145
https://arxiv.org/abs/2202.05316


Summary
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‣ Di-b-jet analysis performed to search for new heavy resonances 
- No significant deviations found from the SM background 
- Great improvement thanks to the amazing b-tagger 

‣ New machine learning techniques are being applied to develop 
new, more powerful b-taggers 

‣ For HL-LHC, ITk potentially helps to improve b-tagging 
performance 
- Test performed on basic detector unit 
- Fine tracking resolution from Argonne Pixel Telescope

Thank You!


