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Motivation

» The discovery of the Higgs boson is a great victory of the Standard Model (SM),
however there are many questions remain unaddressed

» Many extensions to the SM have been proposed and a variety of searches targeting those
models have been conducted. One of the most popular signatures at ATLAS: dijet final
states
- Created by quarks/gluons -> decay to quarks/gluons
- Large statistics

» For some beyond the SM models predict an enhanced coupling to the third-generation
quarks
- Sensitivity to such models can be dramatically improved by requiring the jets from the
resonance decays to be tagged as originating from a b-quark
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e, Invariant mass distribution from
- leading and sub-leading jets

Limits setting on the BSM models if
no significant deviation found

Fit smoothlyfalling SM background
Search for deviation from it



https://link.springer.com/article/10.1007/JHEP03(2020)145

Analysis Selection

» Full Run-2 dataset collected by the ATLAS detector used
» Pre-selection
- Single, small-radius jet trigger used: HLT-j420
- To improve searching sensitivity:
» Background: mainly 2-2 scattering in QCD; dominate in t-channel
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Search Result

» The SM background of the m; spectrum o o
» No significant deviations observed.

is determined by a functional fit to data:
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Limit & Improvement

» Stringent limit on models with heavy resonances in hadronic final states
» Comparing to previous di-b-jet analysis:
- A factor within 1.2 and 3.5 improvement seen, maximum at 4 TeV
- Benefits from substantial improvement in the b-jet tagging algorithm and associated

systematic uncertainties
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B-jet Identification ... in ATLAS

b-jet

B-tagging reply on B-hadron properties:

- Tracks. - Relatively long lifetime
- ’ » Introduce a displaced vertex
Jeil\ma” - Large mass
Vertex .
| g » Decay products tend to have higher transverse momentum
Prompt X . . .
Tracks / v - Semi-leptonic decay with a soft muon
- - Have higher multiplicities

SV1 JetFitter
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| Boosted Decision Tree
machine learning techniques <
Deep Neural Network



B-jet Identification ... in ATLAS
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_ ATLAS Preliminary Simulation —— MV2(2018)
4| Vs =13 TeV, PFlow jets, tt Sim. —=—: DL1f.=0.08 (2018)
20 GeV <pr <230 GeV, |n| <2.5 —.. DL1rf,=0.018 (2019)
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Neural Network-based taggers outperform BDT-

based tagger with increased statistics

- Tagger performance is better

Light-flavor jets rejection
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- Less time consuming
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New b-taggers for Run 3 ATLPYS-PUB-2022:027

New b-taggers for Run 3 are being developed
- New machine learning techniques applied: deep sets, graph neural network
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- Great improvements have been observed
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- Deep sets algorithm applied instead of
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https://link.springer.com/article/10.1007/JHEP03(2020)145
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2021-004/
https://cds.cern.ch/record/2811135/files/ATL-PHYS-PUB-2022-027.pdf
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New b-taggers for Run 3 are being developed
- New machine learning techniques applied: deep sets, graph neural network
- Great improvements have been observed
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https://link.springer.com/article/10.1007/JHEP03(2020)145
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Calibration

» For both BDT and NN-based taggers
- Calibration obtained in the forms of data-to-simulation scale factors (SFs)
- Uncertainties are added to the SFs
» Data-based uncertainty at p; < 400 GeV
» Data-based + extrapolation uncertainty at p, > 400 GeV
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https://cds.cern.ch/record/2753444/files/ATL-PHYS-PUB-2021-003.pdf

Calibration

» For both BDT and NN-based taggers

- Calibration obtained in the forms of data-to-simulation scale factors (SFs)
- Uncertainties are added to the SFs

- Data-based uncertainty at p, < 400 GeV

+ Data-based + extrapolation uncertainiss ' ncertainties of

b-taggers

ATL-PHYS-PUB-2021 -003
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https://cds.cern.ch/record/2753444/files/ATL-PHYS-PUB-2021-003.pdf

NN Uncertainty Quantification

» Deep neural network model:
- What do the output “probabilities” tell us?
- How to tell if the model is making sensible prediction or giving random answers?
- Does the model know what it doesn’t know?

» Uncertainty quantification (UQ) can help answer the questions:
- Bayesian Neural Network (BNN): offers a mathematically grounded way, however
- Difhicult to use
- Hard to choose a good prior
- Slow to train and computationally expensive

- Dropout Uncertainty Quantification (DUQ):
- Proposed by Y. Gal in 2016
- Claims by enabling Dropout during evaluation provide
an approximation of the network’s posterior probability
distribution

13



Monte - Carlo Dropout

» Dropout:

- A standard technique for training neural networks

- Avoids over-fitting by randomly deactivating

connections between nodes of neural network during

the training process

Training steps

p(f(x.(-))). -

Uncert

fainty estimation
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a) Standard Neural Net

(b) After applying dropout.

Apply dropout in prediction steps

p(t(x,0) -

» As amazing as Y. Gal’s claim sounds, it is not rigorously justified nor systematically evaluated

- Proposed a method to fully validate the method

- Novel application to b-tagging
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DUQ Method Workflow

Evaluate multiple times
with DL1r model with
prcermey Dropout enabled

iDL 1r Distribution for each jet]

|
jet b-tagged rate = 0.99 - 77% WP cut

- DL1 mean value

DL1 median value
- 68% CI

* Calculate the significance for
each jet

0.30 -
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median

\/ (D L lmedian o CI])2
* The probability that a jet’s
significance will correspond to a

correct categorization is calculated
using a normal distribution’s CDF

significance =

0.20 A
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Density
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Validation

1.0
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Jet-level closure test:
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- Predicted probability vs jet
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Sample-level closure test:

- Predicted probability vs sample accuracy

72.55 74.2

- Less than 2% difference noticed

e Mainly covered by the statistical uncertainty
extended 7’ 36.9 35.1

* ~100k jets used to perform sample closure test on both ¢ and Z’' samples, statical uncertainty roughly ~1% 16



Uncertainty vs. pT

» Apply DUQ method on nominal samples, captures the NN uncertainty
- Small uncertainty noticed as expected
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Entering into HL-LHC

» LHC will enter high-luminosity phase in 2025
- An integrated luminosity of 3000 tb-! will be expected

» To cope with the harsh radiation environment, detector occupancy and bandwidth saturation,
ATLAS Inner Detector will be replaced by an all-silicon detector, Inner Tracker (I'Tk)
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https://cds.cern.ch/record/2285585

Entering into HL-LHC

» Design goal: I'Tk should have the same or better performance as the current detector but in the
harsher environment of the HL-LHC
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Module

Module, as the basic unit of pixel detector, needs to be tested.
- Consists of a silicon sensor bump-bonded to a front-end (FE) chip glued to a tlexible PCB

Wire bond areas
4 x Frond-end Chips

Module flex

» RD53A chip:
- Size: 400pixels by 192 pixels

o Pixel size: S50um by S0um
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Module Testing

Module testing setup at Argonne

» To develop the necessary testing infrastructure for

the electrical qualification of each assembled

module, a phased approach has been adopted

across the collaboration to achieve these different P i | - B

testing capabilities:

* Basic electrical tests
- Turn on module at 20°C
- Module tuning
e Full QC test
- Thermal cycling
* 1 extreme cycle from -55°C to 60°C
* 10 cycles from - 45°C to 45°C
- Source scan at 20°C (around 10 hours)
- Burn-in test at -15°C for at least 8 hours

\

"COMMON HYBRID V3.8 \
 DBNS2A Y alal™
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Argonne Pixel Telescope at Fermilab

» As part of the R&D programs towards the validation of a new detector technology, beam tests

are required to evaluate the module designs
» An Argonne Pixel Telescope installed to perform such studies
- 6 telescope planes installed with FEI4B quad modules
e pixel size 50 x 250 pm2 and 200pm in thickness
- YARR and FELIX setup as DAQ system

Up-stream Down-stream
3 FEI4B quad DUT 3 FEI4B quad Up-stream Down-stream
modules cold box modules 3 FEI4B quad modules 3 FEI4B quad modules

0 T1 T2 T3 T4 15

DUT

ORI | | | Beam
direction

RCE

proton beam;

DCS

——

Computer
= p YARR
Computer
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onne Pixel Telescope at Fermilab

Hit occupancy with difterent beam profile
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Telescope Performance

arxiv: 2202.05315

» Proteus software used to reconstruct the test beam data
- Clustering
- Alignment
- Track reconstruction

» Test beam scenario simulated using AllPix2 simulation

software to validate the performance of the telescope
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https://link.springer.com/article/10.1007/JHEP03(2020)145
https://arxiv.org/abs/2202.05316

Summary

» Di-b-jet analysis performed to search for new heavy resonances 5 1oL __ o6 rev. D o8, 032016 @6.1 o) -
. . . . o e Phys. Rev. D 98, 032016 (Scaled to 139 fb™ ') =
- No significant deviations found from the SM background @ — Current Result (139 fb") :
° o LU B -
- Great improvement thanks to the amazing b-tagger X102E E
5 | :
» New machine learning techniques are being applied to develop  10°F E
- ATLAS \\\ -
new, more powetrful b-taggers - (s=13TeV T
10-4— DM mediator Z’(bb), g, = 0.25, 2 b-tag _
el b by b b b by b by o
1 15 2 25 3 35 4 45 5
» For HL-LHC, I'Tk potentially helps to improve b-tagging Mow mediator z [T€V]

performance
- Test performed on basic detector unit

- Fine tracking resolution from Argonne Pixel Telescope

Thank You!
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