Di-b-jet as a probe for new physics and phase-2 upgrade of the ATLAS pixel detector

Binbin Dong - Michigan State University

SYSU - PKU Collider Physics Forum For Young Scientists

July 13, 2022

EXPERIMENT

Motivation

• The discovery of the Higgs boson is a great victory of the Standard Model (SM), however there are many questions remain unaddressed

- states
 - Created by quarks/gluons -> decay to quarks/gluons
 - Large statistics
- quarks
 - resonance decays to be tagged as originating from a b-quark

Many extensions to the SM have been proposed and a variety of searches targeting those models have been conducted. One of the most popular signatures at ATLAS: dijet final

• For some beyond the SM models predict an enhanced coupling to the third-generation

Sensitivity to such models can be dramatically improved by requiring the jets from the

Di-b-jet Search

Limits setting on the BSM models if no significant deviation found

Analysis Selection

- Full Run-2 dataset collected by the ATLAS detector used
- Pre-selection
 - Single, small-radius jet trigger used: HLT-j420
 - To improve searching sensitivity:
 - Background: mainly 2-2 scattering in QCD; dominate in t-channel
 - Upper bound on jet rapidity difference placed: $|y^*| = \frac{1}{2}|y_1 y_2|$
 - B-tagger: DLIr tagger at 77% selected
 - Smoothness of the invariant mass distribution
 - Sensitivity

b-tag efficiency 🕂 DL1 ATLAS Simulation Internal 0.9 DL1mu √s = 13 TeV DL1rnn 0.8 MV2c10 MV2c10mu MV2c10rnn 0.6 0.5 0.4 0.3 0.2 0. 3000 1000 2000 4000 5000 0 p_{_} [GeV]

Search Result

• The SM background of the m_{jj} spectrum is determined by a functional fit to data:

 $f(x) = p_1(1-x)^{p_2} x^{p_3+p_4x}$, where $x = m_{jj}/\sqrt{s}$

- Sliding Window Fit (SWiFt) instead of global fit employ:
 - Sliding localized fit on smaller m_{jj} range
 - Background in each mass bin is predicted by fitting in a mass window around that bin

Invariant Mass

No significant deviations observed.

m_{ii} [TeV]

Limit & Improvement

- Stringent limit on models with heavy resonances in hadronic final states
- Comparing to previous di-b-jet analysis:
 - A factor within 1.2 and 3.5 improvement seen, maximum at 4 TeV
 - systematic uncertainties

- Benefits from substantial improvement in the b-jet tagging algorithm and associated

B-jet Identification ... in ATLAS

- **B-tagging reply on B-hadron properties:**
 - Relatively long lifetime
 - Introduce a displaced vertex
 - Decay products tend to have higher transverse momentum - Semi-leptonic decay with a soft muon
 - Have higher multiplicities

B-jet Identification ... in ATLAS

Neural Network-based taggers outperform BDTbased tagger with increased statistics

- Tagger performance is better
- Less time consuming
- DLIr outperform DLI tagger
 - Benefits from RNNIP: take correlations between tracks into account

New b-taggers for Run 3

New b-taggers for Run 3 are being developed

- New machine learning techniques applied: deep sets, graph neural network
- Great improvements have been observed

DIPS:

- Solves the same task as RNNIP
- Deep sets algorithm applied instead of **RNN**
- Treat tracks in jet: unordered, variablesized \Rightarrow b-hadron decay products do not exhibit any intrinsic sequential ordering

New b-taggers for Run 3

New b-taggers for Run 3 are being developed

- New machine learning techniques applied: deep sets, graph neural network
- Great improvements have been observed

GNI: predict jet flavour without the need for intermediate low-level algorithms

Calibration

- For both BDT and NN-based taggers
 - Calibration obtained in the forms of data-to-simulation scale factors (SFs)
 - Uncertainties are added to the SFs
 - Data-based uncertainty at $p_T \le 400 \text{ GeV}$
 - Data-based + extrapolation uncertainty at $p_T > 400$ GeV

Calibration

- For both BDT and NN-based taggers
 - Calibration obtained in the forms of data-to-simulation scale factors (SFs)
 - Uncertainties are added to the SFs
 - Data-based uncertainty at $p_T \le 400 \text{ GeV}$
 - Data-based + extrapolation uncertainty et

NN Uncertainty Quantification

- Deep neural network model:
 - What do the output "probabilities" tell us?
 - How to tell if the model is making sensible prediction or giving random answers?
 - Does the model know what it doesn't know?
- Uncertainty quantification (UQ) can help answer the questions:
 - Bayesian Neural Network (BNN): offers a mathematically grounded way, however
 - Difficult to use
 - Hard to choose a good prior
 - Slow to train and computationally expensive
 - Dropout Uncertainty Quantification (DUQ):
 - Proposed by Y. Gal in 2016
 - Claims by enabling Dropout during evaluation provide an approximation of the network's posterior probability distribution

Monte - Carlo Dropout

- Dropout:
 - A standard technique for training neural networks
 - Avoids over-fitting by randomly deactivating connections between nodes of neural network during the training process

Training steps

- - Proposed a method to fully validate the method
 - Novel application to b-tagging

(a) Standard Neural Net

(b) After applying dropout.

 \propto

Apply dropout in prediction steps

Uncertainty estimation

• As amazing as Y. Gal's claim sounds, it is not rigorously justified nor systematically evaluated

DUQ Method Workflow

Evaluate multiple times with DL1r model with

Dropout enabled

DL1r Distribution for each jet

• Calculate the significance for each jet

 $significance = \frac{DL1_{median} - cut}{\sqrt{(DL1_{median} - CI_j)^2}}$

• The probability that a jet's significance will correspond to a correct categorization is calculated using a normal distribution's CDF

Validation

Jet-level closure test:

- Predicted probability vs jet accuracy
- The difference between each is mainly within 1%

	Accuracy* (w/o Dropout)	Accuracy (w Dropout)
	72.55	74.2
extended Z'	36.9	35.I

* ~100k jets used to perform sample closure test on both $t\bar{t}$ and Z' samples, statical uncertainty roughly ~1%

Sample-level closure test:

- Predicted probability vs sample accuracy
- Less than 2% difference noticed
 - Mainly covered by the statistical uncertainty

Uncertainty vs. pT

- Apply DUQ method on nominal samples, captures the NN uncertainty
 - Small uncertainty noticed as expected

Would without binning be an option?

Entering into HL-LHC

- LHC will enter high-luminosity phase in 2025
 - An integrated luminosity of 3000 fb⁻¹ will be expected
- To cope with the harsh radiation environment, detector occupancy and bandwidth saturation, ATLAS Inner Detector will be replaced by an all-silicon detector, Inner Tracker (ITk)

Entering into HL-LHC

Design goal: ITk should have the same or be harsher environment of the HL-LHC

• Design goal: ITk should have the same or better performance as the current detector but in the

Module

Module, as the basic unit of pixel detector, needs to be tested.

- Consists of a silicon sensor bump-bonded to a front-end (FE) chip glued to a flexible PCB

RD53A chip:

Module

a flexible PCB

um by 50µm

Module Testing

- To develop the necessary testing infrastructure for the electrical qualification of each assembled module, a phased approach has been adopted across the collaboration to achieve these different testing capabilities:
 - Basic electrical tests
 - Turn on module at 20°C
 - Module tuning
 - Full QC test
 - Thermal cycling
 - 1 extreme cycle from -55°C to 60°C
 - 10 cycles from 45°C to 45°C
 - Source scan at 20°C (around 10 hours
 - Burn-in test at -15°C for at least 8 ho

Argonne Pixel Telescope at Fermilab

- As part of the R&D programs towards the val are required to evaluate the module designs
- An Argonne Pixel Telescope installed to perform such studies
 - 6 telescope planes installed with FEI4B quad modules
 - pixel size 50 x 250 $\mu m2$ and 200 μm in thickness
 - YARR and FELIX setup as DAQ system

As part of the R&D programs towards the validation of a new detector technology, beam tests

orm such studies ad modules

Argonne Pixel Telescope at Fermilab

- As part of the R&D programs towards the validation of a new detector technology, beam tests are required to evaluate the module designs
- An Argonne Pixel Telescope installed to perform such studies
 - 6 telescope pla
 - pixel size 50
 - HitOR t

Hit occupancy with different beam profile

Telescope Performance

- Proteus software used to reconstruct the test beam data
 - Clustering
 - Alignment
 - Track reconstruction
- ► Test beam scenario simulated using AllPix² simulation software to validate the performance of the telescope

arxiv: <u>2202.05315</u>

Summary

- Di-b-jet analysis performed to search for new heavy resonances
 - No significant deviations found from the SM background
 - Great improvement thanks to the amazing b-tagger
- New machine learning techniques are being applied to develop new, more powerful b-taggers
- For HL-LHC, ITk potentially helps to improve b-tagging performance
 - Test performed on basic detector unit
 - Fine tracking resolution from Argonne Pixel Telescope

ਕੂ 10⁻ Phys. Rev. D 98, 032016 (36.1 fb⁻¹) Phys. Rev. D 98, 032016 (Scaled to 139 fb⁻¹) $\in \mathsf{x}$ BR Current Result (139 fb⁻¹) A× 10⁻² х ь 10⁻³ ATLAS √s = 13 TeV DM mediator Z'($b\overline{b}$), $g_{a} = 0.25$, 2 b-tag 10^{-4} 2.5 3.5

