Search for new physics with leptons, jets and missing transverse momentum at the LHC

Xingguo Li McGill University

The Standard Model

The three fundamental forces have been tested with high precision

We all believe SM is not the end of the story

Large Hadron Collider

CERN Distanti

Detector and data

- Excellent data taking efficiency and excellent data quality
- Good for physics
 - 2011: 4.6 *f b*⁻¹ of 7 TeV data
 - 2012: 20.3 *f b*⁻¹ of 8 TeV data
 - 2015+2016: 36.1 *fb*⁻¹ of 13 TeV data
 - 2015+2016+2017: 80 *f b*⁻¹ of 13 TeV data
 - 2015+2016+2017+2018: 149 fb^{-1} of 13 TeV data

- General purpose detectors with 4π coverage
- Sub-detector systems used to identify and reconstruct the physics objects:
 - Charged leptons
 - Photons
 - Jets
 - Missing transverse momentum (neutrinos)

Introduction

- The discovery of the Higgs boson opens a new portal to search for new physics, led to the 2013 Nobel Prize
 - Subsequent property measurements look for deviations from the SM
 - Top-Yukawa is one of the most interesting places to search for new physics
 - The Higgs self-coupling measurement is the only way to experimentally reconstruct Higgs potential
 - Same-sign lepton processes are typically rare but can significantly suppress backgrounds
 - > can be used to probe the fundamental constants above
- Recent evidence of Lepton Flavour Violation from LHCb in $b \rightarrow sl^+l^-$ can be explained by the presence of heavy Z' and Leptoquarks

Wr McGill

1.5

0.5

Common fake lepton backgrounds in same-sign signatures

- Fakes are usually the dominant backgrounds in the same-sign signatures
 - Charge misidentification \sim data-driven using the $Z \rightarrow e^+e^-$ peak
 - Non-prompt leptons \sim dedicated control regions for different fake origins

Search for *hh* → *WW*^{*}*WW*^{*}

- The Higgs self-coupling measurement is the only way to experimentally reconstruct the Higgs potential
 - Vacuum structure
 - EW phase transition and EW baryogenesis
 - The fate of the universe
 - Probe new physics (is the Higgs boson alone?)
- Small SM cross section $\sigma = 33.41$ (10.15) pb at 13 (8) TeV due to the destructive interference between processes involving Higgs-self coupling and the box diagram with two tth vertices

Search for *hh* → *WW*^{*}*WW*^{*}

- Rare decay channel of WW*WW* for di-Higgs production
 - branching ratio ~4.6%
 - First time we search for di-Higgs decaying to WW*WW*
- Production rates can be enhanced by BSM models
 - Non-resonant and resonant hh production (h represents SM Higgs, X represents the heavy Higgs in 2HDM)

 $> m_X = 260, 300, 400, 500 \text{ GeV}$

 First time we test X → SS model (S denotes a new Higgslike scalar)

 $> m_X = 340 \text{ GeV}, m_S = 135, 145, 155, 165 \text{ GeV}$ $> m_S = 135 \text{ GeV}, m_X = 280, 300, 320, 340 \text{ GeV}$

W McGill

Analysis Strategy

- Three channels based on the number of light flavour leptons (e, μ) with b veto
 - Two same-sign leptons, missing transverse momentum and at least two jets
 - $ightarrow e^{\pm}e^{\pm}$, $\mu^{\pm}\mu^{\pm}$, $e^{\pm}\mu^{\pm}$
 - Three leptons, with a total charge of ± 1 , missing energy and at least two jets
 - > SFOS12: eee, eeμ, μμe, μμμ
 - > SFOS0: *eμμ*, μee
 - Four leptons, with a total charge of 0
 - > SFOS01: $(e\mu + e\mu)$, $(ee + e\mu)$, $(\mu\mu + e\mu)$
 - ➢ SFOS2: (4*e*), (4μ), (2μ+2*e*)
- Optimise selections based on S/\sqrt{B} for each channel and for each mass point
 - Cut and count analysis

Optimisation

- Optimisation strategy
 - Two leptons and three leptons
 - Prompt lepton backgrounds originate from VV, tV, ttV, VVV
 - MET > 10 (30) GeV for two (three) leptons
 - Rank and select four observables for further optimization using TMVA
 - Four lepton
 - Prompt lepton backgrounds dominated by ZZ
 - \succ Use $m_{4l} < 180$ and $m_{4l} > 180$ GeV to improve sensitivity

Systematics dominated by JES/JER and fake lepton estimation

JHEP 05 (2019) 124

Phys. Lett. B 800 (2020) 135103

- No significant excess above the SM background
- Combined limit on the non-resonant di-Higgs cross-section: 160 (110) x SM cross section
- Room for improvement
 - Use Advanced machine learning techniques to improve sensitivity
 - Explore hadronic τ channels

Resonant results

• Higher sensitivity to $X \rightarrow SS$ model as $m_S \rightarrow 2m_W$

JHEP 05 (2019) 124

Evidence for $t\bar{t}t\bar{t}$

- The most massive final state ~ 700 GeV
- A rare process sensitive to the magnitude and CP nature of top-Higgs coupling
 - $\sigma_{t\bar{t}t\bar{t}} = 12 \pm 2.4$ fb at 13 TeV NLO QCD+EW
- Sensitive to new physics e.g., two Higgs doublet model
- Both 1LOS and SSML have been explored at LHC
 - Clean signature with high (b-) jet multiplicity and hadronic activities

1085

- 1LOS: large branching ratio; large background from $t\bar{t}$ +heavy/light jets
- SSML: ~12% branching ratio; small background from $t\bar{t}V$, non-prompt leptons and wrong charge assignment

2 OS leptons

SSML

2 SS leptons

Analysis strategy in SSML

- Targets at least two of the W bosons decay leptonically
- Baseline selection
 - \geq 6 jets
 - ≥ 2 b-tagged jets
 - $H_T > 500 \text{ GeV}$

MI

- \succ H_T is the sum of the transverse momenta of leptons and jets
- Backgrounds dominated by the irreducible and reducible backgrounds
 - Irreducible backgrounds from simulation except ttW
 - ttW, ttZ, ttH and smaller background (VV, VVV, tV, tVV, ttWW, ttt)
 - Reducible backgrounds: non-prompt leptons and charge mis-ID (QmisID)
 - \succ Electrons/muons from heavy flavour decay HF μ (e)
 - **Electrons from** γ conversion in detector Mat Conv
 - > A virtual photon leading to an e^+e^- pair Low Mee

Template fit method

- Use template fit method to estimate major backgrounds
 - Background shapes taken from MC
 - Normalisation is allowed to float in the fit
 - Dedicated control regions to constrain the normalization factors

Validation regions to test modellings

Template fit results

- Apart from $t\bar{t}W$, all the other normalisation factor (NF) is consistent with 1
 - Compatible with the already published ttH multilepton results, <u>ATLAS-CONF-</u> <u>2019-045</u>
 - Validation region is defined using $t\bar{t}W$ charge asymmetry
 - $\succ t\bar{t}W^+$: $t\bar{t}W^- \sim 2:1$
 - Difference removes charge symmetric processes
 - Precision dominated by tt
 W +>=7 jets, 125%(300%) t
 W for 7 (>=8) jets, as well as t
 W + additional b jets (50%)

Signal optimisation

- Use advanced machine learning techniques by combining b-tagging and kinematics of leptons and jets into a single BDT score
- Check modellings of all inputs are reasonable

Evidence for $t\bar{t}t\bar{t}$

- Eur. Phys. J. C 80 (2020) 1085 JHEP 11 (2021) 118
- First evidence of $t\bar{t}t\bar{t}$ production in SSML at ATLAS, observed (expected)

significance 4.3(2.4) σ , $\sigma_{t\bar{t}t\bar{t}}^{measured} = 24^{+7}_{-6}$ fb

Systematic dominated by signal modelling and ttW modelling at high (b-)jet multiplicity

1LOS+SSML: 4.7 (2.6) σ observed (expected)

CMS SSML results: 2.6(2.7) σ observed(expected)

Lepton universality tests

- The more recent Lepton Universality tests in $b \rightarrow sl^+l^-$ by LHCb shows 3.1 standard deviations from SM prediction
- Possible explanations involve tree-level new physics competing with SM loop and box diagrams

Lepton universality tests

- The recent evidence lepton flavour violation has prompted relevant tests in ATLAS and CMS
- Presence of heavy neural boson Z' or Leptoquarks have implementations at high- p_T tail in the Drell-Yan process

Currently the

corresponding

ATLAS analysis

contacts/editors

Jet reconstruction and calibration at ATLAS

- 60% of ATLAS publications have jets in the final state including the above three publications
- Jets are reconstructed using anti- k_t algorithm with radius 0.4 or 1
 - Inputs are built from energy deposits in the calorimeter and the tracks in the inner detector
 - Led the calibration efforts for both small- and large-R jets
 - Provided the consolidated jet calibration that has been widely used in Run II analysis

Inner tracker upgrade at ATLAS

- The Goal of ITk upgrade is to have similar performance as the current detector but in harsher environment
 - All silicon

cGill

- Precision charged particle trajectories and vertex reconstruction
- $|\eta|$ range extended to 4 (current 2.5)
- Pixel: 5 barrel layers+ ring disks
- Strip: 4 barrel layers+ 6 endcap rings

Expected performance of the Itk

- Itk upgrade is expected to improve
 - Pile-up rejection and hence MET resolution
 - Light jet-rejection in b-tagging
 - Forward pile-up/b tagging due to extended coverage

Further improvement in forward region can brought by the timing information from High Granularity Timing Detector (HGTD)

Looking forward

- The discovery of the Higgs boson in 2012 opens a new portal to search for new physics
- No significant excess over the SM prediction has been observed yet
 - Precision measurement of the Higgs properties is still the best chance we got to search for new physics
 - Hints of new physics may come from lepton flavour universality tests

Inner tracker upgrade at ATLAS

- DESY is committed to building the endcap ITk
- Recently helped investigate the sources of adhesive oozing out of numerous bond pad top Kapton openings (cover layer openings) during co-curing process
 - Examine the bustape under the micro-tape to check which openings are covered with adhesive
 - Electrical tests of the petal core circuits using a robot

RIDA

