FirstOrderElectro\WeakPhase I ransition
& CEPC Astro Summary

[Contain Slides adapted from Huber,
CEPC workshop talks, CEPC white paper, etc.]



%

‘ « We are surrounded by a constant Higgs field

@, This fieldWas not present at high temperatures in th&arly universe
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The strength of the PT

Thermal potential:

[V(H, T) — mQ(T)HQ . E(T)HS + )\(T)HAI_} p T=>T .
i /

/ \\w
e Boson loops: /\ _T-T,
()
SM: gauge bosons
gaug S~ o

strong PT. m,<40 GeV (no top)

never (with realistic top mass)
Lattice: crossover for m,>80 GeV — no phase transition in the SM

Kajantie, Laine, Rummukainen, Shaposhnikov 1996

Csikor, Fodor, Heitger 1998



The strength of the PT

Thermal potential:

[V(H, T) = m2(T)H? — E(T)H> 4+ X(T)H* } , T
_ /

/ \v/
e Boson loops: /\ _T=T,

M)
SM: gauge bosons \ .
T,
SUSY: light stops
2HDM: extra Higgses

e tree-level: exira singlets: ASH2, NMSSM, etc.

e replace H* by HS, etc.



3T —I—3MML]

2 2
mi(p)T [1693 (§ log 2 — 1 CB) + 9h? sin? (% log 2 — CB)‘ (22)

6472 3 2




FOEWPT can create vacuum bubbles and mediate baryogenesis.
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Figure 2. Baryon production in front of the bubble walls.
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Higgs mass

Temperature

The phase diagram of the Standard model.
Higgs masses of mu< 75 GeV (excluded) the
Standard Model undergoes a FOEWPT
(figure from 2008.09136 )



SM:

SM Higgs mass too low

for FOPT. (<70 GeV)
Bochkarev and M. E. Shaposhnikov, 1987

Even w FOPT, SM’s CKM

insufficient for baryogenesis
see hep-ph/9312215, /9404302,/9406289

BSM:

Must exist in abundance
around transition Tc
( -> close to EW scale)

Moderately (at least) coupled
to the SM
(-> coupled sectors)

» 2HDM: mn>~300 (transport by tops)

»SM with a dim-6 Higgs potential for
M<800 GeV
(EDMs similar to 2HDM)

»MSSM: light stop for the phase transition
(very constrained now!)

transport by the charginos (instead of tops)
severe constraints from EDMs

»Singlet models (NMSSM): many
possiblities

cubic terms in the tree-level potential
induce a strong phase transition

EDM constraints somewhat relaxed (or
totally absent for transitional CP)

bonus -> GW from FOEWPT



Real Scalar Singlet Model

A Very Inert (Z,) Example: 1]
SM + real singlet scalar f current
BSM singlet carries odd parity =N0.100},, o
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New charged doublet/fermions

Loop correction to Higgs
branching into diphotons.

. Heavy Chiral Fermi_on Model
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Higgs diphoton decay: 'h,yy / (Mhsyy)sm



Summary from workshop:

Astro/GW connection

The total Gravitational Wave: R2Qaw =~ h2Q, + h2Qq, + R2Qum
Three sources of energy

(1) Bubble collision
(2) Sound wave in plasma

(3) Magetic Turbulence



SFOEWPT & Gravitational Wave Signal

- : _ _ See talks from
Radiative Classical Scale Invariance Breaking by Dark Matter: Ligong Bian

Lagfanglan L= ES./V‘|)\:(].[IZU + 1\’.5‘(‘(11(17' o= Vsr'ular & ‘]Iang Zhu
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GW - CEPC

CEPC can probe BSM
sk potentials that yield

—_— 0

N £ SFOEWPT,

N —e w precision Higgs
) measurements.
W Can cross-test with

Mo — Ao GW experiments.

ete™ — Zhh Channel:

Modified Higgs cubic and quartic couplings.



Doublet + Trip|et Higgs Model (W/O 22) See Tran’s talk at CEPC workshop

Friedrich, MJRM, Tenkanen, Tran 2203.05889

Hypothetical set of measurements:

8y = —0.132 ﬂ) 015,, :
my;, = (200 + 5) GeV

FCC-ee

B BMA (20

71 BMA’ (20) d
Bl LISA sensitivity

BMA’ : BMA + BR(2° - Z27)
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mxs; (GGV)

+* GW-collider overlapped 2 model is responsible to both GW and collider signals
¢ If collider observed triplet scalar but the collider regions don’t overlap with LISA

region 2 model is not responsible to GW signal 2 need another BSM




A neutrino connection: CEPC’s complementary measurement of

Modification of matter potential

SM
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Berezhiania, Rossi, Phys.Lett.B 535 (2002)
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NSI@CEPC
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Jiajun Liao

Jiajun Liao :

NSI@CEPC

CEPC can probe NSI to 103
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combined constraints

In mass plane and Yukawa coupling plane Yellow region : exlusion region
Ao | ospFDM — OSM | solid black lines : exlusion region(~0.5% )
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Linging Gao’s talk: CEPC sensitive to 102 GeV Weak multiplet DM

via combined fit to ee->WW,Zh,ZZ,2y, u |
cross-sections @ one-(DM)-loop level



CEPC can probe asymmetric composite dark
matter via displaced lepton jet

See Mengchao Zhang’s talk

Scalar mediator ® helps to generate DM (dark baryon) and Baryon simultaneously:

LD K,(I)@E] quark LD R@@Blepton

rk rk
ar?(?f}_(l%ug‘ék%m dark quark _ ~.-2104.06988

Step 1: generate the asymmetry of mediator ¢ . For example, CPV&
out of equilibrium decav of heavv neutral particle:

LDk Yi®N; + h.c.
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Ve ’
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Step 2: mediator ¢ decay to “dark quark™ and SM quark, and thus generate
“dark baryon” and baryon asymmetry simultaneously:

\quark (or lepton, +subsequent L->B)



Final result:

Pheno @ CEPC
production via colored scalar

—— 20 exclusion limits @ CEPC / k=1.0
—— 20 exclusion limits @ CEPC / k=0.5

104

-> dark jets & dark pions
->Invisibles
-> displayed dark pion decays

me [Gevimediator mass

10 v - . v
10! 102 10° 104

c7p [mm)]

dark pion decay length
BKG estimation: BKG free! (thanks to Manqi)

TABLE II. Physical size and spatial resolution of different
detectors on CEPC. Here R;,, Ry, 65y, and &, are inner radius,
outer radius, transverse spatial resolution, and longitudinal spatial
resolution of different detectors respectively.

Detector R, R, Oy o,

Vertex detector 16 mm 60 mm (2.8 ~6) ym (2.8 ~6) ym
Silicon tracker 0015m 181 m 7.2 um 86.6 um
Hadron calorimeter 2.30 m 3.34 m 30 mm 30 mm
Muon system 440m 608 m 2.0cm 1.5 cm

displaced lepton jet tagging efficiency estimation



