EXPERIMENTAL PHYSICS DIVISION SEMINAR INSTITUTE OF HIGH ENERGY PHYSICS, CAS

Measurement of ¹³⁶Xe DBD Half-life with PandaX-4T

Ke Han (SJTU) For the PandaX Collaboration

Arxiv:2205.12809

Majorana neutrino and Double beta decay

NLDBD probes the nature of neutrinos

- Majorana or Dirac
- Lepton number violation
- Measures effective Majorana mass: relate $0\nu\beta\beta$ to the neutrino oscillation physics

10³

10²

 10^{1}

10⁰

 10^{-1}

Detection of double beta decay

- Measure energies of emitted electrons
- Electron tracks are a huge plus
- Daughter nuclei identification

Simulated track of $0\nu\beta\beta$ in high pressure Xe

Measuring the DBD half-life

- Precision measurement of DBD is a major first step for any NLDBD experiment
- Understand better the background for more rare searches

 Searching for possible shape distortion for new BSM physics

Detector techniques

phonon CUORE AMORE CUPID **GERDA** Majorana KamLAND-Zen EXO/nEXO SNO+ COBRA NEXT CDEX CANDLES **SuperNEMO JUNO-**ββ PandaX photon ionization

Giuliani, TAUP 2021

T_{1/2} > 1.8×10²⁶ y GERDA Phys. Rev. Lett. 125, 252502 (2020) T_{1/2} > 1.07×10²⁶ y KamLAND-Zen 400 Phys. Rev. Lett. 117, 082503 (2016) $T_{1/2} > 3.5 \times 10^{25} \text{ y}$ **EXO-200** Phys. Rev. Lett. 123, 161802 (2019) T_{1/2} > 2.7×10²⁵ y MAJORANA dem. Phys. Rev. C 100, 025501 T_{1/2} > 2.2×10²⁵ y CUORE arXiv:1907.09376 T_{1/2} > 4.7×10²⁴ y CUPID-0 L. Pagnanini, this conference T_{1/2} > 1.8×10²⁴ y CUPID-Mo B. Welliver, this conference T_{1/2} > 1.1×10²⁴ v NEMO-3 Phys. Rev. D 92, 072011 (2015)

The big four

CJPL: Deepest underground lab

- Deepest (6800 m.w.e): < 0.2 muons/m²/day
- Horizontal access with ~9 km long tunnel: large truck can drive in.
- National key science research facility for dark matter searches, neutrino physics, and astroparticle physics, etc.

CJPL-II: much enlarged underground lab space

Expected DBD experiments at CJPL-II

DBD half-life with PandaX-4T

Ke Han, SJTU

PandaX Collaboration

• Particle and Astrophysical Xenon Experiment; started in 2009; now ~80 authors

PandaX detectors

DBD half-life with PandaX-4T

12

NLDBD search at PandaX-II

- 580 kg natural xenon; ~50 kg of ¹³⁶Xe.
- 403.1 day of dark matter physics data
- Null results; Lower limit for decay half-life:
 2.4×10²³ yr at 90% CL
- Effective Majorana mass upper limit: 1.3-3.5 eV.
- First NLDBD result reported from a dual-phase xenon experiment
- Proof of Principle

arXiv:1906.11457; Chinese Physics C 43, 113001 (2019)

NLDBD searches at XENON1T

 $Q^{^{136} ext{Xe}}_{etaeta}$

²¹⁴Bi, TPC

Fit

Materials

- Data between 2300 and 2600 keV
- ۲
- •

The multi-physics game is on

T. Wolf, Neutrino2022

上海交通大学PandaX暗物质与中微子实验平台

PandaX-4T Commissioning onsite

DBD half-life with PandaX-4T

Stable data taking during commissioning runs: 94.9 days for DBD analysis

1-5: Commissioning data taking subset

- **B:** Circulation pump replacement
- Nov. 28, 2020 to Apr. 16, 2021

External calibration sources for high energy detector response: ²³²Th (loops), ¹²⁷Cs, and ⁶⁰Co (DD tunnel)

Extending DM detector response to MeV range

- MeV gamma events are mostly multiple-scattering events; while signals (DBD) are mostly single site (SS)
- Identifying Multi-Site (MS) events with PMT waveforms
- Width of waveforms dominated by Z (electron diffusion)

DBD half-life with PandaX-4T

Data-driven diffusion width as input for simulation

FWHM mean vs dt vs qS2

• Used for simualtion of waveforms after Geant4 output

PMT pulse saturation and desaturation

- PMT bases suffer serious saturation for MeV range events.
- Match the rising slope of the saturated to the non-saturated templates in the same events → True charge collected
- For events in the energy range of 1 to 3 MeV, the average correction factor is ~3.0 for the top PMT array

Validation with bench tests and improvement of PMT bases

- Desaturation algorithm validated with a bench measurement
 - PMTs illuminated by high intensity photons with S2 timing profiles
- Newly designed PMT bases can improvement the linear dynamic range by >30

Data-driven detector response and correction

- Gaseous ^{83m}Kr feed into the TPC \rightarrow uniformly distributed 41.5 keV events \rightarrow 3D detector response
- S1 (3D) and S2 (2D) signals are corrected respectively; E-lifetime correction done for S2 before this
- Also validated with higher energy peaks (164 keV and even 2615 keV)

Position reconstruction improvement with desaturation

- Position reconstruction based on PAF (photon acceptance function) methods devloped in DM analysis
- Reconstruction at HE is significantly improved with desaturation
- Removed the band structure in R² distribution

Energy reconstruction

- Energy reconstruction: $E = 13.7 \text{ eV} \times (S1/PDE + \frac{S2_b}{(EEE \times SEG_b))}$
- High energy peak positions off by ~10% with inputs from DM analysis
- Further tune S1 and S2_b vs. energy and position → deviations of peak positions to the percent level.

PDE: photon detection efficiency for S1

EEE: electron extraction efficiency

SEG_b: single-electron gain for S2_b

Background peaks

- Resolution of background data: 1.9% at 2615 keV; 3.0% at 236 keV
- Resolutions from different peaks as input for simulated spectrum

2200 2300 2400 2500 2600 2700 2800 2900

Energy [keV]

DBD half-life with PandaX-4T

Signal Efficiencies

- SS efficiency: 97.4% for DBD events > 440 keV
- DBD events generated with DECAY0 package and went through PandaX-4T simulation and data processing chain.

- (Very mild) Data quality cut efficiencies: (99.4 ± 0.4)%
 - S1, S2, S1/S2: remove non-electron recoil and alpha events
 - Top and bottom S1 charge asymmetry vs. drift time: reject accidental coincidence events and events originating from the gate electrode.
 - Calculated by region
- Calculated from 9.6 days of physics data; validated with full data
- Validated with 164 and 236 keV peaks

Fiducial Volume: emphasis on systematics, not statistics

- Compare the number of events of ^{83m}Kr and ²²⁰Rn with geometric volume; the non-linearity between the two <0.5% defines the cut in R direction
- Z direction: smaller background rate
- Outer (dashed) region for cross-validation

- Grouped detector components into three categories: top bottom and side, based on weight and relative contribution to background counts in the ROI
- Input values based on HPGe assay results and high energy alpha events

Detector part	Contamination	Expected counts
	$^{238}\mathrm{U}$	334 ± 127
Top	232 Th	397 ± 131
төр	60 Co	322 ± 137
	40 K	296 ± 155
Bottom	²³⁸ U	143 ± 52
	232 Th	240 ± 120
	60 Co	161 ± 97
	40 K	90 ± 85
Side	²³⁸ U	469 ± 697
	232 Th	777 ± 945
	60 Co	1227 ± 938
	40 K	1498 ± 822
LXe	222 Rn	8951 ± 186

Simultaneous binned likelihood fit in four regi

Energy [keV]

¹³⁶Xe fit results: 17468±243; 2.27 ± 0.03(stat.) ± 0.09(syst.) × 10²¹ year half-life

Cross check with RooFit likelihood fit

Energy [keV]

´500

Ke Han, SJTU

Тор

Bottom

Side

• Compatible and more precise results from PandaX-4T than HPGe

• ²¹⁴Pb is only (78.2 ± 1.7)% of the input value of ²²²Rn, as measured by high energy alphas: depeletion

Cross validation in the outer region

systematic source	Uncertainty [%]		
Quality cut	0.39		
FV cut	0.99		
SS cut	1.75		
LXe density	0.13		
Pb214 spectrum correction	2.03		
Bin size	0.05		
Xe136 abundance	1.92		
Energy range	1.23		
Region difference	1.58		
resolution	0.58		
shift MC spectrum	0.26		
total	4.05		

systematic source	Uncertainty [%]		
Quality cut	0.39		
FV cut	0.99		
SS cut	1.75		
LXe density	0.13		
Pb214 spectrum correction	2.03		
Bin size	0.05		
Xe136 abundance	1.92		
Energy range	1.23		
Region difference	1.58		
resolution	0.58		
shift MC spectrum	0.26		
total	4.05		

- ¹³⁶Xe IA: 8.79% if ionization efficiencies not corrected; 9.03% if corrected with NIST values
- Taken nominal value 8.86% as input and difference to our measurement as uncertainties

Final results

- ¹³⁶Xe DBD half-life measured by PandaX-4T: 2.27 \pm 0.03(stat.) \pm 0.09(syst.) \times 10²¹ year
- Comparable precision with leading results
- First such measurement from a DM detector with natural xenon
- 440 keV 2800 keV range is the widest ROI

PandaX-4T for more neutrino physics

- Double beta decay to excited states of daughter nuclei
- Dual-electron + Gamma emission: clearer signature •
- ${}^{136}Xe \rightarrow {}^{136}Ba^*$ to be discovered; half-life measurement would help understand the nuclear physics of DBD

Z-axis (mm)

80

70

60F 50F

40F

30F

20

10

0 20

PandaX-4T for more neutrino physics

- (Neutrinoless) Double electron capture (DEC) is an equivalent 2ndorder weak process
- XENON1T recently reported the first observation of DEC of ¹²⁴Xe: very nice bonus feature for natural xenon detectors
- Neutrinoless DEC can be enhanced if mass difference between intial and intermediate states. (Admittedly still very long half-life)

XENON1T

Comparison with other LXe TPC

	Bkg rate (/keV/ton/y)	Energy resolution	FV mass (kg)	Run time	Sensitivity/Limit (90% CL, year)
PandaX-II	~200	4.2%	219	403.1 days	2.4 ×10 ²³
PandaX-4T	9	1.9%	649.7 ± 6.5	94.9 days	> 10 ²⁴
XENON1T	~20	0.8%	741 ± 9	202.7 days	1.2×10^{24}
XENONnT	~2	0.8%	1128	1000 days	2.1×10^{25}
LZ	~0.1	1%	967	1000 days	1.06×10^{26}
DARWIN	~0.004	0.8%	5000	10 years	2.4×10^{27}

Upgrade of PandaX-4T with improved PMT bases is planned

- Better energy resolution
- Better SS/MS discrimination

Major advantages of natural xenon measurement

- Fiducialization (and MS/SS discrimination) to suppress background.
- Robust determination of background throughout the FV
- Extremely versatile physics program (DM/neutrino/exotics)
- \Rightarrow A very appealing interim solution.

DBD half-life with PandaX-4T

40 Ton

Possible isotope seperation/enrichment

A separation of even/odd nucleus would already have huge advantage (beam on-off experiment)

- SI/SD dark matter interaction, combating neutrino floor
- Significant boost in NLDBD

DBD half-life with PandaX-4T

Stay tuned for multi-physics program with PandaX!

