

THU ATLAS Report for TeV physics

Mingming Xia

HEPSummerDay PKU, 15/07, 2022

Outline

- A search for heavy Higgs bosons decaying into vector bosons in same-sign two-lepton final states with the ATLAS detector (<u>ATLAS-CONF-2022-033</u>)
 - Analysis contact, reported at LHCP2022
- Search for FCNC interactions of the top quark and the Higgs boson in ditau final states with the ATLAS detector (<u>ATLAS-CONF-2022-014</u>)
 - Analysis contact, reported at ICHEP2022
- Observation of di-charmonium excess in the four-muon final state with the ATLAS detector
 (ATLAS-CONF-2022-040)
 - Analysis contact, reported at ICHEP2022
- Summary

Generic Heavy Higgs—Motivation

- No hint of existence of CP even heavy Higgs bosons from previous searches with specific models <u>PRD.98.052008</u>.
- (New Ideas!) Model-independent search for a Generic Heavy Higgs boson (H) having both dim-4 and dim-6 interactions with SM particles
 - Phenomenology study (PLB 804 (2020) 135358): same-sign di-lepton final state (SS2L) of associated production with vector boson (VH) channel dominates the sensitivity

$$\mathcal{L}_{HVV}^{(6)} = \sum_{n} \frac{f_{n}}{\Lambda^{2}} \mathcal{O}_{n}, \quad \Lambda = 5TeV$$

$$\overset{\text{Light Higgs}}{\mathcal{L}_{hWW}^{(4)}} = \rho_{h}gm_{W}hW^{\mu}W_{\mu}$$

$$\mathcal{L}_{hZZ}^{(4)} = \rho_{h}\frac{gm_{W}}{2cos^{2}\theta_{W}}hZ^{\mu}Z_{\mu}$$

$$\mathcal{L}_{HWW}^{(4)} = \rho_{H}gm_{W}HW^{\mu}W_{\mu}$$

$$\mathcal{L}_{HZZ}^{(4)} = \rho_{H}\frac{gm_{W}}{2cos^{2}\theta_{W}}HZ^{\mu}Z_{\mu}$$

$$\overset{\text{heavy Higgs}}{\mathcal{L}_{HZZ}^{(4)}} -\rho_{H}hm_{W}\frac{c^{4}f_{WW} + s^{4}f_{BB}}{2c^{2}\Lambda^{2}}Z_{\mu\nu}Z^{\mu\nu}H}$$

 $f_B = f_{BB} = 0,$ $\rho_h = 1, \ \rho_H = 0.05$

Only f_W, f_{WW}, m_H are free parameters

Generic Heavy Higgs—Analysis strategy

- Signal signature: two same-sign leptons (e or μ) in association with one large-R jet (J) or two small-R jets (j), and E_T^{miss} .
- **Boosted SR**: leading large-R jet passing LCTopo W-tagger
- Resolved SR: invariant mass of two leading small-R jets consistent with a hadronically decaying W-boson
- Dominant Backgrounds:
 - WZ and same-sign WW (ssWW): MC driven with normalisation from data using dedicated CRs.
 - W/W/W: MC driven
 - Non-prompt: data driven

Selections	Boosted SR	Resolved SR	ssWW CR	Boosted WZ CR	Resolved WZ CR		
Trigger	Single lepton						
	two same-sign leptons with			three leptons with			
Lantono	$p_{\rm T} > 27, 20 \; {\rm GeV}$			$p_{\rm T} > 27, 20, 20 { m ~GeV}$			
Leptons				at least one SFOS lepton pair			
	zero additional veto leptons						
$m_{\ell\ell}$	> 100 GeV			-			
$m_{\ell\ell\ell}$	-			> 100 GeV			
<i>b</i> -jets	zero b-tagged small-R jets						
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 80 GeV	> 60 GeV		> 40 GeV			
Large- <i>R</i> jets	at least one large-R jet with	zero large- R jets with		at least one large- <i>R</i> jet with	zero large-R jets with		
	$p_{\rm T} > 200 \text{ GeV}, \ \eta < 2.0$	$p_{\rm T} > 200 \text{ GeV}, \ \eta < 2.0$		$p_{\rm T} > 200 \text{ GeV}, \ \eta < 2.0$	$p_{\rm T} > 200 \text{ GeV}, \ \eta < 2.0$		
	$50 \text{ GeV} < m_J < 200 \text{ GeV}$	$50 \text{ GeV} < m_J < 200 \text{ GeV}$		$50 \text{ GeV} < m_J < 200 \text{ GeV}$	$50 \text{ GeV} < m_J < 200 \text{ GeV}$		
	and pass 80% W-tagger WP			and pass 80% W-tagger WP			
Small_R jets	-	at least two small- R jets with		-	at least two small-R jets with		
Sman-K jets		$p_{\mathrm{T}} > 20 \text{ GeV} \text{ and } \eta < 2.5$			$p_{\rm T}$ > 20 GeV and $ \eta $ < 2.5		
m_{jj}	-	$50 \text{ GeV} < m_{jj} < 110 \text{ GeV}$ > 200 GeV		-	-		

Mingming Xia, THU

Generic Heavy Higgs—Fits

- Post-fit distributions for boosted SR and resolved SR with background-only fit
- Good agreement between data and background
- Theoretical systematics have the largest impact in boosted SR, while systematics
 of non-prompt background estimation have the largest impact in resolved SR
- No obvious excess is observed

Uncertainty of channel	Boosted SR	Resolved SR	
Total systematic uncertainties	10.0%	4.1%	
Data driven non-prompt	1.3%	3.3%	
Theoretical uncertainties	8.9%	2.6%	
MC statistical uncertainties	3.0%	1.9%	
Floating normalizations	3.5%	1.2%	
Small- <i>R</i> jet	-	1.1%	
Data driven photon conversion	0.2%	0.9%	
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.2%	0.7%	
<i>b</i> -tagging	0.8%	0.5%	
Data driven charge-flip	0.1%	0.3%	
Electron	0.5%	0.2%	
Muon	0.6%	0.2%	
Pile-up reweighting	0.2%	0.2%	
Large- <i>R</i> jet	1.1%	0.2%	
W-tagger	3.7%	-	

Mingming Xia, THU

Generic Heavy Higgs-Results

TLAS Preliminar

 $(f_{1}, f_{1}) = (0, 6200)$

200

160

140

120 100

80

60 40

20⊑ 0[⊑] 300

ВЛ

o(pp

180[

Observed limit

Expected limit

Expected $\pm 1\sigma$

Expected ± 2σ

Theory

400 500 600 700 800 900 1000 1100 120

Mingming Xia,THU

- Observed and expected exclusion contours at 95% confidence level in $(\frac{\rho_H f_W}{\Lambda^2}, \frac{\rho_H f_{WW}}{\Lambda^2})$ parameter space.
 - With $m_H = 300 \text{ GeV}$, $|\frac{\rho_H f_W}{\Lambda^2}| > 2.7 \text{ TeV}^{-2}$ and $|\frac{\rho_H f_{WW}}{\Lambda^2}| > 10 \text{ TeV}^{-2}$ can be excluded.
 - With $m_H = 600 \text{ GeV}$, $|\frac{\rho_H f_W}{\Lambda^2}| > 2.5 \text{ TeV}^{-2}$ and $|\frac{\rho_H f_{WW}}{\Lambda^2}| > 12 \text{ TeV}^{-2}$ can be excluded.
 - With $m_H = 900 \text{ GeV}$, $|\frac{\rho_H f_W}{\Lambda^2}| > 2.9 \text{ TeV}^{-2}$ and $|\frac{\rho_H f_{WW}}{\Lambda^2}| > 15 \text{ TeV}^{-2}$ can be excluded.
- Upper limit on heavy Higgs production (pp->VH) cross section as a function of m_H at 95% confidence level with 2 set of fixed (f_W , f_{WW}): (0, 6200) and (1350, 0).
 - With $(f_W, f_{WW}) = (0, 6200)$, heavy Higgs with mass up to **700** GeV can be excluded,
 - with $(f_W, f_{WW}) = (1350, 0)$, heavy Higgs with mass up to 900 GeV can be excluded.

FCNC tqH—Motivation

Flavor-changing neutral currents (FCNC) decays

- are forbidden at tree level
- occur at one-loop level but are strongly suppressed by the **GIM mechanism**
- significantly enhanced in BSM extensions (maximum up to ~10⁻³)
- Any observation of top FCNC = BSM physics

Process	SM	2HDM(FV)	2HDM(FC)	MSSM	RPV	RS	
$t \to Z u$	7×10^{-17}	—	_	$\leq 10^{-7}$	$\leq 10^{-6}$		
$t \to Z c$	1×10^{-14}	$\leq 10^{-6}$	$\leq 10^{-10}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-5}$	
$t \to g u$	4×10^{-14}	—	—	$\leq 10^{-7}$	$\leq 10^{-6}$	_	
$t \to gc$	$5 imes 10^{-12}$	$\leq 10^{-4}$	$\leq 10^{-8}$	$\leq 10^{-7}$	$\leq 10^{-6}$	$\leq 10^{-10}$	
$t\to \gamma u$	$4 imes 10^{-16}$	—	—	$\leq 10^{-8}$	$\leq 10^{-9}$	—	
$t\to \gamma c$	$5 imes 10^{-14}$	$\leq 10^{-7}$	$\leq 10^{-9}$	$\leq 10^{-8}$	$\leq 10^{-9}$	$\leq 10^{-9}$	
$t \to h u$	$2 imes 10^{-17}$	$6 imes 10^{-6}$	_	$\leq 10^{-5}$	$\leq 10^{-9}$	_	1011 000
$t \to hc$	$3 imes 10^{-15}$	$2 imes 10^{-3}$	$\leq 10^{-5}$	$\leq 10^{-5}$	$\leq 10^{-9}$	$\leq 10^{-4}$	1311.202

FCNC tqH—Analysis strategy

- 7 SRs are defined based on:
 - # of leptons, (b-)jet multiplicities, tau decay mode, W decay mode
 - $t_{\ell}(t_h)$: W from SM top decays leptonically (hadronically)
 - $\tau_{lep}(\tau_{had})$: tau lepton decays leptonically (hadronically)
- Lep channel: data-MC scale factors from tt CRs (2 b-tags or 2 leptons)
- Had channel: events with looser τ ID multiplied with fake factors (from W+jets CR)

Requirement	leptonic channel			hadronic channel
	$t_h \tau_{\text{lep}} \tau_{\text{had}}$ $t_l \tau_{\text{had}} \tau_{\text{had}}$ $t_l \tau_{\text{had}}$		$t_h \tau_{had} \tau_{had}$	
Trigger		single-lepton trigger		di- τ trigger
Leptons	=1 isolated e or μ			no isolated e or μ
$ au_{ m had}$	=1 $ au_{\rm had}$	$2 au_{ m had}$	=1 τ_{had}	$2 au_{ m had}$
Electric charge (Q)	$Q_\ell imes Q_{ au_{ ext{had},1}} < 0$	$Q_{\tau_{\mathrm{had},1}} \times Q_{\tau_{\mathrm{had},2}} < 0$	$Q_{\ell} \times Q_{\tau_{\mathrm{had},1}} > 0$	$Q_{ au_{\mathrm{had},1}} imes Q_{ au_{\mathrm{had},2}} < 0$
Jets	$3, \ge 4$ jets	≥ 1 jets	2, ≥3 jets	$3, \geq 4$ jets
<i>b</i> -tagging		=1 b -tagged jets		=1 b-tagged jets

Mingming Xia, THU

HEPSummerDay

FCNC tqH—Fits

- Separation of both signal modes from background using GBDT method
- Train BDT separately for decay and production processes, tcH and tuH, but it gives similar sensitivity.
 - One BDT per signal region with 12-17 kinematic input features
- BDT output score as an input to the profile-likelihood fit to data
- Small excess of data are observed with significance of 2.3 σ , mainly in tlep+2hadtau

FCNC tqH—Results

- Comparison between previous (36fb⁻¹ <u>JHEP05(2019)123</u>) and current observed limits show a significant improvement using the full Run-2 dataset with:
 - a factor of ~5 (2.5) for expected (observed) upper limit
 - The statistical uncertainty is the dominant contribution

Mingming Xia, THU

Observation of di-charmonium excess in the four-muon final state with the ATLAS detector NEW

Using $\mathcal{L} = 139 \text{ fb}^{-1}$ of 13 TeV of ATLAS Run-2 data collected in 2015 to 2018

Search in the 4μ final state through the di- J/ψ and $J/\psi+\psi(2{
m S})$ channels

 ${\rm di}{\rm -}\psi(2{\rm S}) \rightarrow 4\mu$ statistically not accessible with Run-2 data

Signal simulated with JHU: TQ mass = 6.9 GeV, width = 0.1 GeV, spin = 0

Background processes (simulated with Pythia8):

prompt di- J/ψ : Single Parton Scattering (SPS) and Double Parton Scattering (DPS) non prompt di- J/ψ : $b\bar{b} \rightarrow J/\psi J/\psi$

"Others" background: single (prompt or non prompt) charmonium plus fake muons, non-peaking background containing no real charmonium candidates

(CRs defined in sidebands and by requiring one charmonium containing a non muon track)

					
	Signal region	SPS/DPS control region	non-prompt region		
	Di-muon or tri-muon triggers, Opposite charged muons from the same J/ψ or $\psi(2S)$ vertex.				
	Loose muon ID, $p_{\rm T}^{1,2,3,4} > 4, 4, 3, 3$ GeV and $ \eta_{1,2,3,4} < 2.5$ for the four muons $m_{J/\psi} \in \{2.94, 3.25\}$ GeV, or $m_{\psi(2S)} \in \{3.56, 3.80\}$ GeV, Loose vertex cuts $\chi^2_{4\mu}/N < 40$ and $\chi^2_{{\rm di}-\mu}/N < 100$,				
w.r.t primary v	N = 5 Vert vertex closest in z $L_{xy}^{4\mu} < 0.2$ r	Vertex $\chi^2_{4\mu}/N > 6$,			
	$m_{4\mu} < 7.5$ GeV, $\Delta R < 0.25$ between charmonic	7.5 GeV < $m_{4\mu}$ < 12.0 GeV (SPS) 14.0 GeV < $m_{4\mu}$ < 25.0 GeV (DPS)	$ L_{xy}^{{ m di-}\mu} > 0.4 \ { m mm}$		

Event selection and signal and control regions:

Cite Evelina's talk at ICHEP2022

Mingming Xia, THU

HEPSummerDay

9

Observation of di-charmonium excess in the four-muon final state with the ATLAS detector

Fit Models

Unbinned maximum likelihood fits on the four-muon mass spectra < 11 GeV, no ΔR cut fit signal region $\Delta R < 0.25$, fit control region $\Delta R \ge 0.25$, with transfer factors for background yields from MC or data driven methods

The signal probability density function (PDF) consists of several interfering S-wave Breit-Wigner resonances, convoluted with a mass resolution function $R(\alpha)$

$$f_s(x) = \left| \sum_{i=0}^2 \frac{z_i}{x^2 - m_i^2 + im_i\Gamma_i} \right|^2 \sqrt{1 - \frac{4m_{J/\psi}^2}{x^2}} \otimes R(\alpha) \qquad \begin{array}{c} z_i : \text{complex numbers} \\ \text{representing the amplitudes} \\ z_1 \text{ fixed to unity with zero phase} \end{array} \right|^2$$

no interference with NRSPS (LHCb model)

Mingming Xia, THU

di- J/ψ channel:

models with different numbers of resonances (2 or 3) are compared in terms of χ^2 or toy MC distributions

 $J/\psi + \psi(2S)$ channel:

Model A: same resonances as in di- J/ψ , plus a 4th standalone resonance

$$f_s(x) = \left(\left| \sum_{i=0}^2 \frac{z_i}{x^2 - m_i^2 + im_i \Gamma_i} \right|^2 + \left| \frac{z_3}{x^2 - m_3^2 + im_3 \Gamma_3} \right|^2 \right) \sqrt{1 - \left(\frac{m_{J/\psi} + m_{\psi(2S)}}{x} \right)^2} \otimes R(\alpha)$$

Model B: a single resonance

Observation of di-charmonium excess in the four-muon final state with the ATLAS detector

Results in di- J/ψ channel

6.9 GeV resonance confirmed, best fit with 3 interfering resonances, other explanations possible

Ge/

Events / 0.10

500

400

300

200

100

Data/Pred.

6

Observation of di-charmonium excess in the four-muon final state with the ATLAS detector

Results in $J/\psi + \psi(2S)$ channel 4μ mass distribution from data and fitted mass in SR (Model A and Model B) background predictions before fit GeV GeV 50 Events / 0.10 GeV ATLAS Preliminar ATLAS Preliminary 60 **ATLAS** Preliminarv Data Data $\sqrt{s} = 13 \text{ TeV}$. 139 fb⁻ √s = 13 TeV, 139 fb⁻¹ $\sqrt{s} = 13 \text{ TeV}, 139 \text{ fb}^{-1}$ ß S 50 J/ψ+ψ(2S) Sig.+Bkg. Sig.+Bkg. 0.07 Events / 0.07 DPS _J/ψ+ψ(2S) J/ψ+ψ(2S) **40**ŀ 40 Background Background bb→J/ψ+ψ(2S)+Χ Signal Signal 40 Events / 30 30 30 20F 20 20 10F 10 Data/Pred. 10 0.5 0 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 7.5 8 8.5 9 7.5 8.5 7 7 8 9 m_{4µ}^{con} [GeV] m_{4u}^{con} [GeV] m_{4u}^{con} [GeV] Fitted masses and widths significance Model A: 4.6σ (GeV) Γ_3 m_3 second resonance (7.2 GeV): 3.2σ (hint for a 7.2 GeV resonance in LHCb data) $0.10\substack{+0.13+0.06\\-0.07-0.05}$ $7.22 \pm 0.03 \substack{+0.02 \\ -0.03}$ model A $J/\psi + \psi(2S)$ significance Model B: 4.3σ $6.78 \pm 0.36^{+0.35}_{-0.54}$ $0.39 \pm 0.11^{+0.11}_{-0.07}$ model B

Evidence for an enhancement at 6.9 GeV and a resonance at 7.2 GeV, other explanations possible

FCNC decay via other bosons

Mingming Xia,THU

FCNC $t \rightarrow q\gamma$ <u>2205.02537</u>

- Analysis Strategy:
 - optimize for FCNC production & decay
 - One SR: 1γ + 1lep + missing Et >30GeV + 1 b-jet + >= 1jet
 - Control regions for main background processes with prompt photons
 - CR $t\bar{t} + \gamma$
 - CR $W + \gamma + jets$
 - Normalization of $t\overline{t} + \gamma$ and $W + \gamma + jets$ free-floating in the fit
 - Other main background: photon fakes (data-driven estimate of $e \rightarrow \gamma$ and $h \rightarrow \gamma$ fakes)

FCNC $t \rightarrow q\gamma$ 2205.02537

- Multi-class neural network (NN): for separation of both signal modes from background
 - ~ 30% better than binary classification
 - separate network for up & charm (2 NNs)
 - for classification of prod, decay, bkg (three output class, multinomial classifier)
 - $\overrightarrow{y} = (y_{prod}, y_{de}, y_{bkg})$
- Signal outputs combined in likelihood ratio: $a * \dot{y}_{prod} + (1 - a) * y_{dec}$ $D = \ln -$ Ybkg
- background model in agreement with data
- NN output distribution used for a profile-likelihood fit to data $t \rightarrow u\gamma LH$
 - Factors 3.3 5.4 better than 81fb⁻¹ analysis (1908.08461) $t \rightarrow u\gamma RH$
 - adding events with more than one jet
 - Statistical uncertainties dominate
 - All systematics together worsen limits by $t \rightarrow c_{\gamma RH}$ ~20% ($tu\gamma$) or ~40% ($tc\gamma$)

10

10³

10²

-3 -2 -1 0

Data / Bkg.

0.08

BR 95% CL limits

0.1

2

NN discriminar

0.02

0.04

0.06

t→cγ LH

ATLAS

FCNC $t \rightarrow qZ$ <u>ATLAS-CONF-2021-049</u>

- Analysis Strategy
 - $Z \to \ell \ell$ with $\ell = e, \mu$ isolated leptons and $m_{\ell \ell} \sim m_Z$, 1b-jet, W decay leptonically
 - **2 SRs**: SR1 (FCNC decay) SR2 (FCNC production)
 - 4 CRs: ttbar CR, ttbarZ CR, Side-band CRs (mass of SM top and FCNC top)
 - χ^2 minimization to

$$\chi_{t\bar{t}}^{2} = \frac{(m_{j_{a}\ell'\ell'}^{reco} - m_{t_{FCNC}})^{2}}{\sigma_{t_{FCNC}}^{2}} + \frac{(m_{j_{b}\ell'_{W}\nu}^{reco} - m_{t_{SM}})^{2}}{\sigma_{t_{SM}}^{2}} + \frac{(m_{\ell'_{W}\nu}^{reco} - m_{W})^{2}}{\sigma_{W}^{2}}$$

- Central value of masses and widths are taken from fit to reconstructed FCNC decay signal events.
- Select FCNC jet (for FCNC decay only, for FCNC production, χ^2_{tZ} is constructed.)
- Fit $P_z(\nu)$

FCNC $t \rightarrow qZ$ <u>ATLAS-CONF-2021-049</u>

- Signal separation:
 - GBDTs were built in each SR
 - Applying 5-fold Cross-Validation
 - Training BDTs for:
 - FCNC decay
 - FCNC production via up quark
 - FCNC production/decay with charm
- Upper limits on Branching ratio and Wilson coefficient are extracted from profile-likelihood fit to BDT scores.
- Comparison between previous (36fb⁻¹) and current observed limits show a significant improvement using the full Run-2 dataset with:
 - a factor of ~3 for tZu ~2 for tZc coupling
 - 36 fb⁻¹ result: decay mode only
 - The statistical uncertainty is the dominant contribution

	SRs+CRs			
$\mathcal{B}(t \to Z q) \ [10^{-5}]$	tZu	LH	6.2	$4.9^{+2.1}_{-1.4}$
$\mathcal{B}(t \to Z q) \ [10^{-5}]$	tZu	$\mathbf{R}\mathbf{H}$	6.6	$5.1^{+2.1}_{-1.4}$
$\mathcal{B}(t \to Z q) \ [10^{-5}]$	tZc	LH	13	11^{+5}_{-3}
$\mathcal{B}(t \to Z q) \ [10^{-5}]$	tZc	\mathbf{RH}	12	10^{+4}_{-3}
$ C_{uW}^{(13)*} $ and $ C_{uB}^{(13)*} $	tZu	LH	0.15	$0.13\substack{+0.03\\-0.02}$
$ C_{uW}^{(31)} $ and $ C_{uB}^{(31)} $	tZu	$\mathbf{R}\mathbf{H}$	0.16	$0.14_{-0.02}^{+0.03}$
$ C_{uW}^{(23)*} $ and $ C_{uB}^{(23)*} $	tZc	LH	0.22	$0.20\substack{+0.04\\-0.03}$
$ C_{uW}^{(32)} $ and $ C_{uB}^{(32)} $	tZc	$\mathbf{R}\mathbf{H}$	0.21	$0.19\substack{+0.04\\-0.03}$

FCNC $t \rightarrow qg$ Eur.Phys.J.C82(2022)334

- Analysis Strategy:
 - 1 b-jet + high- P_T leptons (e or μ) + large missing Et
 - Consider production ONLY
 - decay mode contains a jet initiating gluon, indistinguishable with QCD bkg.
 - Top quark can be constructed using 4-momentum conservation (W on-shell)
 - Fake rate determined in a data-driven way for multi-jet estimation (jets fake leptons)
 - Custom very tight b-tag to suppress light-jets

Mingming Xia,THU

FCNC $t \rightarrow qg$ Eur.Phys.J.C82(2022)334

- Train artificial neural networks to obtain discriminants separating signal and background
 - 2 NNs: **D1** for $\bar{u}g\bar{t}, cgt, \bar{c}g\bar{t}$ **D2** for ugt
 - three-layer feed forward NN with transformation of 12/9 input variables
- Profile maximum-likelihood fit to the NN discriminant
- Factors of 1.5 2 better than run-1 analysis, main systematics: bkg modelling, jet/METrelated
 - BR($t \rightarrow ug$) < 0.61 x 10⁻⁴ (expected: BR($t \rightarrow ug$)< 0.49 x 10⁻⁴)
 - BR($t \rightarrow cg$) < 3.7 x 10⁻⁴ (expected: BR($t \rightarrow cg$)< 2.0 x 10⁻⁴)

21

Mingming Xia, THU

ICHEP2022

- THU-ATLAS team:
 - 1 staff, 1 postdoc, 5 PhD student (5 ATLAS author)
 - obtained fruitful physics results on searches for TeV physics (still going-on)
 - Generic Heavy Higgs, FCNC tqH(tautau), low mass resonance, FCNC tqH(combination), Generic ZX resonance, LFV ...
 - Run-3 expects more exciting opportunities