

A brief review of the CMS Tracker at the LHC & Prototype qualification of silicon modules for the CMS Outer Tracker upgrade at the HL-LHC

LHC/HL-LHC schedule

CERN Yellow Reports

Luminosity

Year

Physics motivation

- Benefits from HL-LHC CMS:
 - Achieve percent level precision for Higgs couplings
 - Allow exploring more weak vector boson scatterings
 - Enhance the searches for SUSY and extra dimensions

The current tracker of the CMS detector

I'm in the center of the CMS I'm responsible for tracking particle trajectories

CMS Phase-1 pixel detector

- Pixel endcap:
 - 3 disks with 2 concentric rings
 - Array of blades (modules in each blade panel)

A bit basic knowledge about silicon strip detector...

- 20µm wide strip
- 50 100 μm interstrip distance

- Silicon sensor is based on P-N junction
 A depletion zone is formed at the junction
- A bias voltage makes the depletion zone enlarged

- Bias voltage is influenced:
 - Silicon thickness
 - Electric permittivity of silicon
 - Mobility of electrons (holes) in n-type (p-type)
 - Bulk resistivity

A bit basic knowledge about silicon pixel detector...

A bit about silicon detector leakage current ...

- When the silicon is in bias (reversed) voltage, there is still a small bunch of electrons (holes) penetrating the depletion region (quantum tunneling effect), which forms a leakage current
- When particles traversing through the silicon body, they can damage the silicon lattice structure, which result in more electrons (holes) could escape from depletion

Pixel barrel module leakage current evolution (measurement)

• Leakage current increased gradually due to accumulated radiation dose through the year

- Closer to beam spot -> more accumulated radiation dose -> higher leakage current (layer 1 > layer 2 > layer 3 > layer 4)
- Leakage current drop during MD/TS/YETS: annealing or changed high voltage settings

Then what shall we do for our silicon detector if it's damaged by radiation?

You should be careful and save our money...

CMS Tracker upgrade layout

• key features:

- High granularity with relatively low budget
- Contributes to the L1 trigger, using p_T of tracks to reduce data volume
- Radiation hardness (total ionization dose):
 - Innermost layer: 1.2 Grad
 - Outer layers: 100 Mrad
- Operation at -35°C

Outer Tracker Mechanics

Modules of Outer Tracker

My past representative contributions @CERN

- Assembly of latest four 2S modules
- Electric readout test of the 2S modules
- Analyze the noise behaviors of the 2S modules
- Built a customized module test setup from scratch
- Design an automated control interface with LabVIEW
- Conduct thermal cycle tests on the latest modules

2S module assembly technique

2S module assembly procedure @CERN

1. Gluing: Polyamide HV isolator & HV sensor tails

2. Wire-bond & encapsulation of HV tails

4. Glue electronics hybrids on AI-CF bridges

5. Wire-bond & encapsulation

2S module prototype

JINST 17 C05019 (2022)

2S module reliability test @CERN

- Thermal tests for the robustness of the design of 2S modules in a **cold box**:
 - Far beyond the number of the cycles normally expected in module lifetime (~100)
 - Module noise measurement
- Perform systematic visual inspection to check for mechanical failures
- Test more modules in the similar condition to gain statistics

Cold box setup with grounding configuration

Module test setup & LabView control system

- I designed a LabVIEW virtual machine to control the hardware devices running thermal cycles automatically
- The current interface can be also operated manually for each individual device
- The DAQ readout will be executed periodically during thermal cycles

Noise Readout VS temperature

- First checked if mechanics and electronics behave in varied temperatures:
 - Ranging from 20°C to -30°C (manual controlled thermal cycle)
 - Channel noise decreases when the temperature goes down as expected

Automatic thermal cycle tests

• Our 2S module prototypes are consistently functional in automatic thermal cycles

Module noise measurement

No additional broken channel observed after 135 thermal cycles

Summary & outlook

- At CERN, we performed:
 - A step-by-step process assembly evaluation
 - 2S module prototype reliability tests
- Modules survived 135 thermal cycles between 20°C and -35°C
- Valuable feedback and input were provided to the CMS outer tracker collaboration

Silicon tracker (pixel + strip) performed well during the LHC operation

- While also damaged significantly by the accumulated radiation
- A new robust CMS tracker will be constructed for HL-LHC
 - Module pre-production will start in April 2023; mass production will begin from 2024

Backup

Frontend electronics of outer tracker modules

2S module variants

• More materials will be added into the new generation of AI-CF bridges

4192

2992

Total nominal quantity

Source

424

Systematic I-V curve measurements

Module leakage current could increase over assembly caused by:

- Original strip silicon sensor quality not good
- Glue quality degrade
- Sanitization measure failure
- Non-precise controlled assembly procedure
- High environment humidity

2S module noise vs efficiency

• Plot taken from Alexander Dierlamm's talk

Vibration study of a 2S module on its carrier

- An observed problem: wire damage observed after transport and handling of an 8CBC3 2S module shipped from KIT to CERN (encapsulated at KIT)
- Could transport vibration damage modules?

- We investigated the movements of:
 - Sensors
 - Hybrids
 - Support structure
- We performed the resonance test and evaluated the resonance frequency through:
 - 5 1000 Hz sine wave sweep at low amplitude with few accelerometers attached to the modules was performed to find the resonances

Thanks to CERN QART lab for the facilities

Vibration frequency test result

- A slow sweep of the resonances using the stroboscope running just off the resonance frequency
- Measure the magnitude and directional movements of the various parts of the module
- Resonant peaks at lower frequencies observed for encapsulated module: ~250Hz

- Transportation suggestions:
 - One should always encapsulated the wire bonds, for their protection and it makes the modules more robust (especially the hybrids)
 - The hybrids should not be free to "flap" during transport, they should be secured on their outside edges (this has been done in the latest module carrier)

Transport vibration test

Thanks to CERN QART lab for the facilities

- The 8CBC3 module was packed in the index order
- The package was subjected to a typical vibration spectrum for transport
- Accelerometers were placed on the nonencapsulated FEH to see the energy reaching it

Transport vibration test result

- Packaging dampened the resonance
- Observed resonance at lower frequencies peaks showed lower displacement compared to bare module vibration test
- Unencapsulated (and possibly encapsulated) bond wires could still be damaged at these frequencies from the displacement of hybrids creating stress at the bond foot heel
- These area around 200 Hz were the cause for concern, if this occurs during transport then it may have stressed the wires