@SPeOial4Nouag. 17 August. 2022

未来で中微子望远镜的新物理前景

黄国远 (Guo-yuan Huang)

基于**JCAP02(2022)038, arXiv:2204.10347**, GYH, S. Jana, M. Lindner and W. Rodejohann; arXiv:2207.02222, GYH

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

■ GZK 中微子的产生

- 未来的实验提案
- 新物理前景
- 灵敏度
- 其他可能性

<u>F</u>P (B) -

©F. Halzen

超高能中微子产生

CAK P (R) P R H

宇宙线和微波背景碰撞产生 GZK 中微子

- $p + \gamma_{\text{CMB}} \rightarrow p \text{ (or } n) + n\pi$ Very efficient for $E_p \gtrsim 50 \text{ EeV} (p_p + p_{\gamma})^2 > (M_n + M_{\pi})^2$
- $p + \gamma_{\text{CMB}} \rightarrow \Delta^+(1232) \rightarrow p + \pi^0 (\text{or } n + \pi^+)$
- $\pi \rightarrow \nu + \dots E_{\nu} \approx \mathcal{O}(1 \text{ EeV})$

CR+CMB (CIB) = 非常有保障的 EeV 中微子源

V. S. Berezinsky, G. T. Zatsepin, PLB 28 (1969) 423

此过程质心系能量只有 1 GeV, 因此这里的截面计算非常标准。

LU LE LE LE LE VOD (E VOUN L

TeV 到 PeV 超高能中微子实验

TeV 到 PeV 超高能中微子致疑

下一代冰基和水基的 Cherenkov

GVD, Lake-Baikal

IC-GEN2, South Pole

KM3NET, Mediterranean

海铃TRIDENT, South China Sea

KM3NeT

TeV 到 PeV 超高能中微子致疑

Technique	Approx. time of proposal or detection					
冰基或水基的 Cherenkov	Markov, ICHEP 60 (1960) 578					
声学	Askaryan, Sov. JAE 3 (1957) 921					
荧光	Greisen et. al., e.g. Proc. 9thICCR (1965) 609					
簇射粒子直接探测	Linsley et. al., PRL 6 (1961) 485					
大气 Cherenkov	Galbraith and Jelley, Nature 171 (1953) 349					
Askaryan 效应	Askaryan, Sov.Phys.JETP 14 (1962) 441					
大气射电探测	Jelley, Il Nuovo Cimento 8 (1958) 578					
雷达回波	Blackett and Lovell, Proc. Roy. Soc., 177 (1941) 183					
UHE CR and gamma detect	tions					
Auger	LHAASO H.E.S.S. and more					

man and the

A ALLAND

ALL BERGER STADE

Geve Fiber Sve

ALL REPUBLICADE

ALL BERGER STADE

Telescope	Geography	Technique	Energy	ν flavor	$E_{\nu}^{2}\Phi_{\nu}$	Assumed time
EUSO-SPB2 [134–136]	Balloon	Atm-Cher, Fluo	$> 10 { m ~EeV}$	$ u_{ au}$	2.1×10^{-7}	100 d
PUEO [137,138]	Balloon	Atm-radio, Aska	$> 0.4 { m ~EeV}$	$\nu_\tau,\nu_{e,\mu,\tau}$	6.3×10^{-9}	100 d
POEMMA-Limb [109]	Satellite	Atm-Cher	$> 10 {\rm ~PeV}$	$ u_{ au}$	3.2×10^{-9}	$5 \mathrm{yr}$
POEMMA-Stereo $[109]$	Satellite	Fluo	$> 20 { m ~EeV}$	$ u_{ au}$	1.6×10^{-9}	$5 \mathrm{yr}$
GRAND [103, 104]	Mtn-val	Atm-radio	$> 50 { m PeV}$	$ u_{ au}$	1.3×10^{-10}	$10 { m yr}$
TAMBO [139]	Mtn-val	Atm-Cher	$> 3 { m PeV}$	$ u_{ au}$	4.6×10^{-10}	$10 { m yr}$
Ashra-NTA $[140]$	Mtn-val	Atm-Cher, Fluo	$> 1 { m PeV}$	$ u_{ au}$	5.5×10^{-10}	$10 { m yr}$
Trinity $[105-108]$	Mtn-top	Atm-Cher	$> 1 { m PeV}$	$ u_{ au}$	5.9×10^{-10}	$10 { m yr}$
BEACON [141, 142]	Mtn-top	Atm-radio	$> 10 {\rm ~PeV}$	$ u_{ au}$	1.9×10^{-10}	$10 { m yr}$
IC-Gen2 Radio [143,144]	In-ice	Aska	$> 30 { m PeV}$	$ u_{e,\mu, au}$	1.2×10^{-10}	$10 { m yr}$
RNO-G [145, 146]	In-ice	Aska	$> 30 { m PeV}$	$ u_{e,\mu, au}$	2.4×10^{-9}	$10 { m yr}$
ARA [147]	In-ice	Aska	$> 30 { m PeV}$	$ u_{e,\mu, au}$	4.3×10^{-9}	by 2022
ARIANNA-200 [148]	In-ice	Aska	$> 10 {\rm ~PeV}$	$ u_{e,\mu, au}$	1.8×10^{-9}	$10 { m yr}$
RET-N [149–151]	In-ice	Radar echo	$> 8 { m PeV}$	$\nu_{e,\mu,\tau}$	4.0×10^{-10}	$5 \mathrm{yr}$

这里只列出了对 EeV 中微子敏感的实验

Askaryan 效应和雷达回波可以用来探测所有味道的中微子。 其他的手段基本上只对 r 中微子敏感,这是因为 r 在 EeV 时的衰变长度大概是 50 km。 而 e 在产生后立即发生电磁簇射, μ 的衰变长度过长。

Geven fi berefetere

■ GZK 中微子的探测对于多信使天文学很重要。

- ✓ 提升我们对于宇宙线加速机制的理解
- ✔ 宇宙线的组分

74 (2011) 046902

✔ 宇宙再电离的历史

GZK 中微子望远镜可以看作是一个粒子对撞机。我们有免费的超高能中微子束流和地球物质进行对撞,在宇宙线本底之上有非常于净的信号。

- ✓ 对于 v-N 对撞, 质心系能量可以高达约 43 TeV。
- ✓ LHC 有类似的 v-N 碰撞过程,比如 FASERv 只有 43 GeV。

✔ 很适合用来研究更小尺度的中微子相关新物理。

國民不到望到低不完整

• B physics anomalies.

- Muon g-2.
- CDF W mass
- Neutron lifetime.
- Beryllium decay.
- Short-baseline anomaly.
- ANITA
- Lithium-7 abundance
- Hubble tension
- Small-scale structure etc...

Muonphilic new degrees of freedom? What about tau?

Decay into dark matter?

Sterile neutrino at eV scale? Long-lived new degrees of freedom?

 Challenging the Standard ACDM paradigm

不过有些反常正在消失

量小節物理程型

能用 τ 中微子望远镜做什么?限制中微子散射强度。 我们假设除了标准模型粒子之外没有其他轻的费米子。 新的中介粒子寿命很短,活跃的自由度只包含标准模型粒子。

存在理论预言寿命较长的新粒子,比如惰性中微子和暗物质,可以参考 40+ ANITA 文章。

我们的束流: neutrino + electron, quark, gluon

Leptoquark $y_{i\alpha}^{\mathrm{QL}} \overline{Q^{\mathrm{c}}}^{i} (\epsilon \sigma^{a}) L^{\alpha} S_{3}^{a}$ **Charged/neutral Higgs** $y_{\alpha\beta}^{l}h^{-}\overline{l}_{\alpha}v_{\beta}^{c}+y_{\alpha\beta}^{q}h^{-}\overline{D}_{\alpha}U_{\beta}$ W' $\frac{g'}{2\sqrt{2}}W'_{\mu}\overline{f}^{i}\gamma^{\mu}(1\pm\gamma_{5})f^{j}$ Ζ' $\frac{g'}{2\sqrt{2}}Z'_{\mu}\bar{f}^{i}\gamma^{\mu}(1\pm\gamma_{5})f^{i}$ **Leptophilic forces** $y^{\prime}\phi\overline{l}l + y^{\nu}\phi\overline{\nu}\nu$

信留方程

$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}\Phi_{\nu}}{\mathrm{d}E_{\nu}} \right) = - N_{\mathrm{A}} \rho \left(\sigma_{\mathrm{SM}}^{\mathrm{cc}} + \sigma_{\mathrm{SM}}^{\mathrm{nc}} + \sigma_{\mathrm{NP}} \right) \frac{\mathrm{d}\Phi_{\nu}}{\mathrm{d}E_{\nu}}$	- attenuation
$+ \left. N_{\rm A} \rho \int \mathrm{d}E'_{\nu} \frac{\mathrm{d}\Phi_{\nu}}{\mathrm{d}E'_{\nu}} \frac{1}{E'_{\nu}} \left(\frac{\mathrm{d}\sigma^{\rm nc}_{\rm SM}}{\mathrm{d}z} + \frac{\mathrm{d}\sigma^{\rm nc}_{\rm NP}}{\mathrm{d}z} \right) \right _{z=\frac{E_{\nu}}{E'_{\nu}}}$	neutral-current regeneration
$+ \int \mathrm{d}E_{\tau}^{\prime} \frac{\mathrm{d}\Phi_{\tau}}{\mathrm{d}E_{\tau}^{\prime}} \frac{1}{E_{\tau}^{\prime}} \frac{\mathrm{d}\Gamma_{\tau}}{\Gamma_{\tau} \mathrm{d}z} \;,$	— tau regeneration
$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\mathrm{d}\Phi_{\tau}}{\mathrm{d}E_{\tau}} \right) = - \Gamma_{\tau} \frac{\mathrm{d}\Phi_{\tau}}{\mathrm{d}E_{\tau}} - N_{\mathrm{A}} \frac{\rho}{A} \left[\sigma_{\mathrm{pp}} + \sigma_{\mathrm{pn}} \right] \frac{\mathrm{d}\Phi_{\tau}}{\mathrm{d}E_{\tau}}$	tau decay and hard energy loss
$+ \left. N_{\rm A} \frac{\rho}{A} \int \mathrm{d}E_{\tau}' \frac{\mathrm{d}\Phi_{\tau}}{\mathrm{d}E_{\tau}'} \frac{1}{E_{\tau}'} \left(\frac{\mathrm{d}\sigma_{\rm pp}}{\mathrm{d}z} + \frac{\mathrm{d}\sigma_{\rm pn}}{\mathrm{d}z} \right) \right _{z=\frac{E_{\tau}}{E_{\tau}'}}$	regeneration from hard scattering
$+ \ \rho \frac{\partial}{\partial E_{\tau}} \left[\left(\beta_{\rm pp} + \beta_{\rm pn} + \beta_{\rm brems} \right) E_{\tau} \frac{\mathrm{d}\Phi_{\tau}}{\mathrm{d}E_{\tau}} \right]$	$\underline{}_{loss}^{continuous\ energy}$
$+ \left. N_{\rm A} \rho \int \mathrm{d} E_{\nu}^{\prime} \frac{\mathrm{d} \Phi_{\nu}}{\mathrm{d} E_{\nu}^{\prime}} \frac{1}{E_{\nu}^{\prime}} \left(\frac{\mathrm{d} \sigma_{\rm SM}^{\rm cc}}{\mathrm{d} z} + \frac{\mathrm{d} \sigma_{\rm NP}}{\mathrm{d} z} \right) \right _{z=\frac{E_{\tau}}{E_{\nu}^{\prime}}} \; ,$	$\underline{} tau \ conversion from neutrinos$

$$\begin{split} N_{\rm P} &= \int \mathrm{d}E_{\tau} \int \mathrm{d}\cos\theta_{\oplus} \int \mathrm{d}\cos\theta_{\rm tr} \int \mathrm{d}\phi_{\rm tr} \; \frac{\mathrm{d}\Phi_{\tau}}{\mathrm{d}E_{\tau}\mathrm{d}\Omega_{\rm tr}} \cos\theta_{\rm tr} \; 2\pi R_{\oplus}^2 \; P_{\rm det} \; T \\ P_{\rm det} &= \int \mathrm{d}s \; p_{\rm decay}(E_{\tau},s) \; p_{\rm det}(E_{\tau},\theta_{\oplus},\theta_{\rm tr},\phi_{\rm tr},s) \end{split}$$

Pairproduction

10¹³

Energy [MeV]

10¹⁴

Decay

10¹²

10¹¹

10¹⁰

10⁹

10⁸

10⁸≣

10⁷

10⁶

10⁵

104

10³ 10² 10

10

10⁻²

10-3

10-4

10-5 10-6

10⁴

10⁵

10⁶

107

[MeV/(g cm²)]

Energy losses

不过注意这里初始的中微子束流是固定的。 但实验分析中,我们并不清楚 GZK 中微子具体的束流分布

对撞机上已有的限制

- LHC pair production process sets a lower limit
- *t*-channel leptoquark exchange at LHC
- LEP Drell-Yan production

τ 中微子望远镜的潜力

For the couplings, we highlight the sensitivity to second and third families
 The combination of different telescopes is very useful

主要限制还是不可去除的标准模型本底。

Telescopes	Single τ	Double τ	Triple τ	Sphaleron $n\tau$
Ashra-NTA [33]	19	0.2	0.007	0.7~(0.5)
BEACON [30, 31]	137	1.6	0.062	7.1(5)
GRAND [20]	178	2.1	0.082	10(7)
Trinity [21, 22]	16	0.2	0.006	0.6~(0.4)
TAMBO [29]	> 7	> 0.1	> 0.002	> 0.11 (0.08)

▶ Lorentz 对称性破坏,量子引力

S. Coleman and S. L. Glashow, PLB 405 (1997) 249; C. A. Argüelles, T. Katori and J. Salvado, PRL 115 (2015) 161303 M.C. Gonzalez-Garcia, F. Halzen and M. Maltoni, PRD 71 (2005) 093010; J. Liao and D. Marfatia, PRD 97 (2018) 041302 K. Murase, PRL 103 (2009) 081102; P. W. Gorham et al., PRD 86 (2012) 103006; IceCube, Nature Physic, 14 (2018) 961; IceCube, arXiv:2111.04654

▶ 等效原理的检测

A. Esmaili et al. PRD 89 (2014) 1130003; Z.-Y. Wang, R.-Y. Liu and X.-Y. Wang, PRL 116 (2016) 151101; D.F.G. Fiorillo et al., JCAP 04 (2021) 079; M. Chianese et al., Symmetry 13 (2021) 1353

▶ 第五种力 (fifth force)

M. Bustamante and S. K. Agarwalla, PRL 122 (2019) 061103

▶ 幺正性

X.-J. Xu, H.-J. He and W. Rodejohann, JCAP 12 (2014) 039; M. Ahlers, M. Bustamante and S. Mu, PRD 98 (2018) 123023; P. B. Denton and J. Gehrlein, arXiv:2109.14575

Y. Uehara, PTP 107 (2002) 621; J. Alvarez-Muniz et al., PRD 65 (2002) 124015;

S. I. Dutta, M. H. Reno and I. Sarcevic, PRD 66 (2002) 033002; M. Kowalski, A. Ringwald and H. Tu, PLB 529 (2002) 1; P. Jain et al., PRD 66 (2002) 065018; D. Stojkovic, G. D. Starkman and D.-C. Dai, PRL 96 (2006) 041303; and many more....

MAYBE MORE

优点

- ✓ Tau中微子望远镜可看作是一个中微子-核子(电子)对撞机,它的 质心系能量可以高达 43(1) TeV。
- ✓ 在相关的能标处,第二代和第三代夸克的PDFs不再受到很强的压低,跟第一代u和d夸克相当。
- ✓ 原则上对于和中微子相关的新物理非常灵敏。

缺点

- ✓ 初始的束流能量分布不集中, 而且不受控制。
- ✓ 标准模型的带电流与中性流过程是很难去除的本底。
- ✓ 根据它的探测原理,事例的种类很有限。这可以通过加入双爆和 多爆事例的寻找得到一些改善。

THANK YOU VERY MUCH!