Status of the Circular Electron Positron Collider

The 2022 International Workshop on the high energy Circular Electron-Positron Collider October 24-28, 2022

Institute of High Energy Physics Chinese Academy of Sciences

Outline

Introduction to CEPC

- Goals and plans
- CEPC Physics Program
- CEPC Accelerator developments
- Detector R&D developments
- Project global aspects
 - Core team, institutions and internationalization
 - Budget for R&D and construction
 - Timeline
- Summary

Circular Electron Positron Collider (CEPC) Overview

- CEPC is an e⁺e⁻ Higgs factory producing Higgs, W and Z bosons aims at discovering new physics beyond the Standard Model
 - Proposed in 2012 right after the Higgs discovery

Proposed to commence construction in ~2026 and deliver Higgs data in 2030s

CEPC Major Milestones

Public release: November 2018

CEPC CDR Released (2018.11)

CEPC

Conceptual Design Report

Volume I - Accelerator

arXiv: <u>1809.00285</u>

HEP-TH-2018-02

CEPC

Conceptual Design Report

Volume II - Physics & Detector

arXiv: <u>1811.10545</u>

40 foreign) 222

The CEPC Study Group August 2018

The CEPC Study Group October 2018

Editorial Team: 43 people / 22 institutions/ 5 countries

CEPC action plan since CDR

Public release: November 2018

IHEP-CEPC-DR-2018-01 IHEP-AC-2018-01

CEPC

Conceptual Design Report

Volume I - Accelerator

CEPC Conceptual Design Report

Volume II - Physics & Detector

IHEP-CEPC-DR-2018-02

IHEP-EP-2018-01

IHEP-TH-2018-01

arXiv: <u>1809.00285</u>

arXiv: <u>1811.10545</u>

First for a circular eter Higgs factory

The CEPC Study Group August 2018

The CEPC Study Group October 2018

Download from: http://cepc.ihep.ac.cn/

Since 2019

Cement project with R&D towards:

(1) Accelerator TDR, planned for 2023

(2) Detector technologies development and establishment of seeds for International Collaborations

Identify challenges and devise solutions

CEPC Physics Program

Precision Higgs, EW, flavor physics & QCD measurements BSM physics (eg. dark matter, EW phase transition, SUSY, LLP,) up to ~10 TeV scale

CEPC physics studies continued via full simulation and phenomenology studies

+ O(100) journal/arXiv papers

CEPC Higgs White Paper

	$240{ m GeV}$	$V, 20 \text{ ab}^{-1}$	360 (GeV, 1 a	ab^{-1}
	\mathbf{ZH}	vvH	\mathbf{ZH}	vvH	eeH
inclusive	0.26%		1.40%	Ν.	\
$H \rightarrow bb$	0.14%	1.59%	0.90%	1.10%	4.30%
H→cc	2.02%		8.80%	16%	20%
$H \rightarrow gg$	0.81%		3.40%	4.50%	1 2 %
$\mathrm{H}{\rightarrow}\mathrm{W}\mathrm{W}$	0.53%		2.80%	4.40%	6.50%
$H \rightarrow ZZ$	4.17%		20%	21%	
$H \rightarrow \tau \tau$	0.42%		2.10%	4.20%	7.50%
$H ightarrow \gamma \gamma$	3.02%		11%	16%	
$H ightarrow \mu \mu$	6.36%		41%	57%	
$H \rightarrow Z\gamma$	8.50%		35%		
$\operatorname{Br}_{upper}(H \to inv.)$	0.07%				
Γ_H	1.65%		1.10%		

coupling	measurement	(kappa0	fit)
Company B	Therefore same same same same same same same sam	(imbbrao	

Observable	e current precision	CEPC precision (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	2.1 MeV [37-41]	0.1 MeV (0.005 MeV)	Z threshold	E_{bcam}
$\Delta\Gamma_Z$	2.3 MeV [37-41]	0.025 MeV (0.005 MeV)	Z threshold	E_{beam}
Δm_W	9 MeV [42–46]	0.5 MeV (0.35 MeV)	$WW\ {\rm threshold}$	E_{beam}
$\Delta\Gamma_W$	49 MeV [46–49]	$2.0 { m MeV} (1.8 { m MeV})$	$WW\ {\rm threshold}$	E_{beam}
Δm_t	0.76 GeV [50]	$\mathcal{O}(10) \text{ MeV}^{a}$	$t\bar{t}$ threshold	
ΔA_{ϵ}	4.9×10^{-3} [37, 51–55]	$1.5 \times 10^{-5} \ (1.5 \times \ 10^{-5})$	Z pole $(Z\to\tau\tau)$	Stat. Unc.
ΔA_{μ}	0.015 [37, 53]	$3.5 imes 10^{-5} \ (3.0 imes \ 10^{-5})$	Z pole $(Z \to \mu \mu)$	point-to-point Unc
$\Delta A_{ au}$	4.3×10^{-3} [37, 51–55]	$7.0 imes 10^{-5} (1.2 imes 10^{-5})$	Z pole $(Z \to \tau \tau)$	tau decay model
ΔA_b	0.02 [37, 56]	$20 \times 10^{-5} \ (3 \times 10^{-5})$	Z pole	QCD effects
ΔA_c	0.027 [37 , 56]	$30{ imes}10^{-5}~(6{ imes}10^{-5})$	Z pole	QCD effects
$\Delta \sigma_{had}$	37 pb [37–41]	2 pb (0.05 pb)	Z pole	lumiosity
δR_b^0	0.003 [37, 57–61]	$0.0002 (5 \times 10^{-6})$	Z pole	gluon splitting
δR_c^0	$0.017 \ [37, 57, 62-65]$	$0.001~(2{ imes}10^{-5})$	Z pole	gluon splitting
δR_e^0	0.0012 [37-41]	$2{ imes}10^{-4}$ ($3{ imes}10^{-6}$)	Z pole	E_{team} and ${\bf t}$ channel
δR^0_μ	0.002 [37–41]	$1{\times}10^{-4}$ ($3{\times}10^{-6}$)	Z pole	E_{beam}
$\delta R_{ au}^0$	0.017 [37-41]	$1{\times}10^{-4}$ ($3{\times}10^{-6}$)	Z pole	E_{bearn}
δN_{ν}	0.0025 [37, 66]	$2{\times}10^{-4}~(3{\times}10^{-5}$)	ZH run ($\nu\nu\gamma$)	Calo energy scale

Measurement	Current [126]	FCC [115]	Tera-Z Prelim. [127]	Comments
Lifetime [sec]	$\pm5\times10^{-16}$	$\pm 1\times 10^{-18}$		from 3-prong decays, stat. limited
$BR(\tau \rightarrow \ell \nu \bar{\nu})$	$\pm 4 imes 10^{-4}$	$\pm 3\times 10^{-5}$		$0.1\times$ the ALEPH systematics
$m(\tau)$ [MeV]	± 0.12	$\pm 0.004 \pm 0.1$		$\sigma(p_{\rm track})$ limited
$BR(\tau \rightarrow 3\mu)$	$<2.1\times10^{-8}$	$\mathcal{O}(10^{-10})$	same	bkg free
$\mathrm{BR}(\tau \to 3e)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
${\rm BR}(\tau^\pm \to e \mu \mu)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
${\rm BR}(\tau^\pm \to \mu ee)$	$<1.8\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
$BR(\tau \rightarrow \mu \gamma)$	$<4.4\times10^{-8}$	$\sim 2\times 10^{-9}$	$\mathcal{O}(10^{-10})$	$Z \to \tau \tau \gamma$ bkg , $\sigma(p_\gamma)$ limited
$BR(\tau \rightarrow e\gamma)$	$< 3.3 \times 10^{-8}$	$\sim 2\times 10^{-9}$		$Z \to \tau \tau \gamma$ bkg, $\sigma(p_\gamma)$ limited
${ m BR}(Z o au \mu)$	$< 1.2 \times 10^{-5}$	$O(10^{-9})$	same	$\tau \tau$ bkg, $\sigma(p_{\text{track}})$ & $\sigma(E_{\text{beam}})$ limit
${ m BR}(Z o au c)$	$<9.8\times10^{-6}$	$\mathcal{O}(10^{-9})$		$\tau \tau$ bkg, $\sigma(p_{\text{track}})$ & $\sigma(E_{\text{beam}})$ limit
$BR(Z \rightarrow \mu e)$	$<7.5\times10^{-7}$	$10^{-8} - 10^{-10}$	$\mathcal{O}(10^{-9})$	PID limited
${\rm BR}(Z\to\pi^+\pi^-)$			$\mathcal{O}(10^{-10})$	$\sigma(\vec{p}_{\mathrm{track}})$ limited, good PID
${ m BR}(Z o\pi^+\pi^-\pi^0)$			$\mathcal{O}(10^{-9})$	au au bkg
${\rm BR}(Z\to J/\psi\gamma)$	$< 1.4 \times 10^{-6}$		$10^{-9} - 10^{-10}$	$\ell\ell\gamma + \tau\tau\gamma \; { m bkg}$
$BR(Z \rightarrow \rho \gamma)$	$<2.5\times10^{-5}$		$O(10^{-9})$	$\tau \tau \gamma$ bkg, $\sigma(p_{\text{track}})$ limited

 \mathbf{ed}

	$240{ m GeV}$	$V, 20 \text{ ab}^{-1}$	$360{ m GeV},1~{ m ab}^{-1}$		ab^{-1}
	\mathbf{ZH}	vvH	\mathbf{ZH}	vvH	eeH
inclusive	0.26%		1.40%	Ν.	\
H→bb	0.14%	1.59%	0.90%	1.10%	4.30%
$H \rightarrow cc$	2.02%		8.80%	16%	20%
$H \rightarrow gg$	0.81%		3.40%	4.50%	1 2 %
$H \rightarrow WW$	0.53%		2.80%	4.40%	6.50%
H→ZZ	4.17%		20%	21%	
$H \rightarrow \tau \tau$	0.42 %		2.10%	4.20%	7.50%
$H ightarrow \gamma \gamma$	3.02%		11%	16%	
$H ightarrow \mu \mu$	6.36%		41%	57%	
$H \rightarrow Z\gamma$	8.50%		35%		
$\operatorname{Br}_{upper}(H \to inv.)$	0.07%				
Γ_H	1.65%		1.10%		

95% CL reach from SMEFT fit

coupling	measurement	(kappa0	fit)
Company B	Therefore same same same same same same same sam	(imbbrao	

Observable	e current precision	CEPC precision (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	2.1 MeV [37-41]	0.1 MeV (0.005 MeV)	Z threshold	E_{bcam}
$\Delta\Gamma_Z$	2.3 MeV [37-41]	0.025 MeV (0.005 MeV)	Z threshold	E_{beam}
Δm_W	9 MeV [42–46]	0.5 MeV (0.35 MeV)	$WW\ {\rm threshold}$	E_{beam}
$\Delta\Gamma_W$	49 MeV [46–49]	$2.0 { m MeV} (1.8 { m MeV})$	$WW\ {\rm threshold}$	E_{beam}
Δm_t	0.76 GeV [50]	$\mathcal{O}(10) \text{ MeV}^{a}$	$t\bar{t}$ threshold	
ΔA_{ϵ}	4.9×10^{-3} [37, 51–55]	$1.5 \times 10^{-5} \ (1.5 \times \ 10^{-5})$	Z pole $(Z\to\tau\tau)$	Stat. Unc.
ΔA_{μ}	0.015 [37, 53]	$3.5 imes 10^{-5} \ (3.0 imes \ 10^{-5})$	Z pole $(Z \to \mu \mu)$	point-to-point Unc
$\Delta A_{ au}$	4.3×10^{-3} [37, 51–55]	$7.0 imes 10^{-5} (1.2 imes 10^{-5})$	Z pole $(Z \to \tau \tau)$	tau decay model
ΔA_b	0.02 [37, 56]	$20 \times 10^{-5} \ (3 \times 10^{-5})$	Z pole	QCD effects
ΔA_c	0.027 [37 , 56]	$30{ imes}10^{-5}~(6{ imes}10^{-5})$	Z pole	QCD effects
$\Delta \sigma_{had}$	37 pb [37–41]	2 pb (0.05 pb)	Z pole	lumiosity
δR_b^0	0.003 [37, 57–61]	$0.0002 (5 \times 10^{-6})$	Z pole	gluon splitting
δR_c^0	$0.017 \ [37, 57, 62-65]$	$0.001~(2{ imes}10^{-5})$	Z pole	gluon splitting
δR_e^0	0.0012 [37-41]	$2{ imes}10^{-4}$ ($3{ imes}10^{-6}$)	Z pole	E_{team} and ${\bf t}$ channel
δR^0_μ	0.002 [37–41]	$1{\times}10^{-4}$ ($3{\times}10^{-6}$)	Z pole	E_{beam}
$\delta R_{ au}^0$	0.017 [37-41]	$1{\times}10^{-4}$ ($3{\times}10^{-6}$)	Z pole	E_{bearn}
δN_{ν}	0.0025 [37, 66]	$2{\times}10^{-4}~(3{\times}10^{-5}$)	ZH run ($\nu\nu\gamma$)	Calo energy scale

Measurement	Current [126]	FCC [115]	Tera-Z Prelim. [127]	Comments
Lifetime [sec]	$\pm5\times10^{-16}$	$\pm 1\times 10^{-18}$		from 3-prong decays, stat. limited
$BR(\tau \rightarrow \ell \nu \bar{\nu})$	$\pm 4 imes 10^{-4}$	$\pm 3\times 10^{-5}$		$0.1\times$ the ALEPH systematics
$m(\tau)$ [MeV]	± 0.12	$\pm 0.004 \pm 0.1$		$\sigma(p_{\rm track})$ limited
$BR(\tau \rightarrow 3\mu)$	$<2.1\times10^{-8}$	$\mathcal{O}(10^{-10})$	same	bkg free
$\mathrm{BR}(\tau \to 3e)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
${\rm BR}(\tau^\pm \to e \mu \mu)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
${\rm BR}(\tau^\pm \to \mu ee)$	$<1.8\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
$BR(\tau \rightarrow \mu \gamma)$	$<4.4\times10^{-8}$	$\sim 2\times 10^{-9}$	$\mathcal{O}(10^{-10})$	$Z \to \tau \tau \gamma$ bkg , $\sigma(p_\gamma)$ limited
$BR(\tau \rightarrow e\gamma)$	$< 3.3 \times 10^{-8}$	$\sim 2\times 10^{-9}$		$Z \to \tau \tau \gamma$ bkg, $\sigma(p_\gamma)$ limited
${ m BR}(Z o \tau \mu)$	$< 1.2 \times 10^{-5}$	$O(10^{-9})$	same	$\tau \tau$ bkg, $\sigma(p_{\text{track}})$ & $\sigma(E_{\text{beam}})$ limit
${ m BR}(Z o au c)$	$<9.8\times10^{-6}$	$\mathcal{O}(10^{-9})$		$\tau \tau$ bkg, $\sigma(p_{\text{track}})$ & $\sigma(E_{\text{beam}})$ limit
$BR(Z \rightarrow \mu e)$	$<7.5\times10^{-7}$	$10^{-8} - 10^{-10}$	$\mathcal{O}(10^{-9})$	PID limited
${\rm BR}(Z\to\pi^+\pi^-)$			$\mathcal{O}(10^{-10})$	$\sigma(\vec{p}_{\mathrm{track}})$ limited, good PID
${ m BR}(Z o\pi^+\pi^-\pi^0)$			$\mathcal{O}(10^{-9})$	au au bkg
${\rm BR}(Z\to J/\psi\gamma)$	$< 1.4 \times 10^{-6}$		$10^{-9} - 10^{-10}$	$\ell\ell\gamma + \tau\tau\gamma \; { m bkg}$
$BR(Z \rightarrow \rho \gamma)$	$<2.5\times10^{-5}$		$O(10^{-9})$	$\tau \tau \gamma$ bkg, $\sigma(p_{\text{track}})$ limited

 \mathbf{ed}

	$240{ m GeV}$	$V, 20 \text{ ab}^{-1}$	$360{ m GeV},1~{ m ab}^{-1}$		
	\mathbf{ZH}	vvH	\mathbf{ZH}	vvH	eeH
inclusive	0.26%		1.40%	- \	\
H→bb	0.14%	1.59%	0.90%	1.10%	4.30%
H→cc	2.02%		8.80%	16%	20%
$H \rightarrow gg$	0.81%		3.40%	4.50%	12%
$\mathrm{H}{\rightarrow}\mathrm{W}\mathrm{W}$	0.53%		2.80%	4.40%	6.50%
$H \rightarrow ZZ$	4.17%		20%	$\mathbf{21\%}$	
$H \rightarrow \tau \tau$	0.42%		2.10%	4.20%	7.50%
$H o \gamma \gamma$	3.02%		11%	16%	
$H o \mu \mu$	6.36%		41%	57%	
$H \rightarrow Z\gamma$	8.50%		35%		
$\operatorname{Br}_{upper}(H \to inv.)$	0.07%				
Γ_H	1.65%		1.10%		

Observable	current precision	CEPC precision (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	2.1 MeV [37-41]	0.1 MeV (0.005 MeV)	Z threshold	E_{beam}
$\Delta\Gamma_Z$	2.3 MeV [37-41]	0.025 MeV (0.005 MeV)	Z threshold	E_{beam}
Δm_W	9 MeV [42–46]	0.5 MeV (0.35 MeV)	$WW\ {\rm threshold}$	E_{beam}
$\Delta\Gamma_W$	49 MeV [46–49]	$2.0 { m MeV} (1.8 { m MeV})$	$WW\ {\rm threshold}$	E_{beam}
Δm_t	0.76 GeV [50]	$\mathcal{O}(10) \text{ MeV}^{a}$	$t\bar{t}$ threshold	
ΔA_{ϵ}	4.9×10^{-3} [37, 51–55]	$1.5 \times 10^{-5} \ (1.5 \times \ 10^{-5})$	Z pole $(Z \to \tau \tau)$	Stat. Unc.
ΔA_{μ}	0.015 [37, 53]	$3.5{ imes}10^{-5}~(3.0{ imes}~10^{-5})$	Z pole $(Z \rightarrow \mu \mu)$	point-to-point Unc
$\Delta A_{ au}$	4.3×10^{-3} [37, 51–55]	$7.0 imes 10^{-5} (1.2 imes 10^{-5})$	Z pole $(Z \to \tau \tau)$	tau decay model
ΔA_b	0.02 [37, 56]	$20 \times 10^{-5} (3 \times 10^{-5})$	Z pole	QCD effects
ΔA_c	0.027 [37, 56]	$30{ imes}10^{-5}~(6{ imes}10^{-5})$	Z pole	QCD effects
$\Delta \sigma_{had}$	37 pb [37–41]	2 pb (0.05 pb)	Z pole	lumiosity
δR_b^0	0.003 [37, 57–61]	$0.0002 (5 \times 10^{-6})$	Z pole	gluon splitting
δR_c^0	0.017 [37, 57, 62-65]	$0.001~(2 \times 10^{-5})$	Z pole	gluon splitting
δR_e^0	0.0012 [37 - 41]	$2{ imes}10^{-4}$ ($3{ imes}10^{-6}$)	Z pole	E_{tecm} and $\mathfrak t$ channel
δR^0_μ	0.002 [37-41]	$1{\times}10^{-4}$ ($3{\times}10^{-6}$)	Z pole	E_{beam}
$\delta R_{ au}^0$	0.017 [37–41]	$1{\times}10^{-4}$ ($3{\times}10^{-6}$)	Z pole	$E_{bea:n}$
δN_{ν}	0.0025 [37, 66]	$2{\times}10^{-4}~(3{\times}10^{-5}$)	ZH run ($\nu\nu\gamma$)	Calo energy scale

Measurement	Current $[126]$	FCC [115]	Təra-Z Prelim. $[{\bf 127}]$	Comments
Lifetime [sec]	$\pm5\times10^{-16}$	$\pm 1\times 10^{-18}$		from 3-prong decays, stat. limited
$BR(\tau \rightarrow \ell \nu \bar{\nu})$	$\pm 4 imes 10^{-4}$	$\pm 3\times 10^{-5}$		$0.1\times$ the ALEPH systematics
$m(\tau)$ [MeV]	± 0.12	$\pm 0.004 \pm 0.1$		$\sigma(p_{\rm track})$ limited
$BR(\tau \rightarrow 3\mu)$	$<2.1\times10^{-8}$	$O(10^{-10})$	same	bkg free
$\mathrm{BR}(\tau\to 3e)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
${\rm BR}(\tau^\pm \to e \mu \mu)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
${\rm BR}(\tau^\pm \to \mu e e)$	$< 1.8 \times 10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
$BR(\tau \rightarrow \mu \gamma)$	$<4.4\times10^{-8}$	$\sim\!2\times10^{-9}$	$\mathcal{O}(10^{-10})$	$Z \to \tau \tau \gamma$ bkg , $\sigma(p_\gamma)$ limited
$BR(\tau \rightarrow e\gamma)$	$< 3.3 \times 10^{-8}$	$\sim 2\times 10^{-9}$		$Z \to \tau \tau \gamma$ bkg, $\sigma(p_{\gamma})$ limited
$BR(Z \rightarrow \tau \mu)$	$< 1.2 \times 10^{-5}$	$O(10^{-9})$	same	$\tau \tau$ bkg, $\sigma(p_{\text{track}})$ & $\sigma(E_{\text{beam}})$ limit
${ m BR}(Z o au c)$	$<9.8\times10^{-6}$	$O(10^{-9})$		$\tau \tau$ bkg, $\sigma(p_{\text{track}}) \& \sigma(E_{\text{beam}})$ limit
$BR(Z \rightarrow \mu e)$	$<7.5\times10^{-7}$	$10^{-8} - 10^{-10}$	$\mathcal{O}(10^{-9})$	PID limited
${ m BR}(Z o \pi^+\pi^-)$			$\mathcal{O}(10^{-10})$	$\sigma(\vec{p}_{\mathrm{track}})$ limited, good PID
${ m BR}(Z o\pi^+\pi^-\pi^0)$			$O(10^{-9})$	au au bkg
${\rm BR}(Z\to J/\psi\gamma)$	$< 1.4 \times 10^{-6}$		$10^{-9} - 10^{-10}$	$\ell\ell\gamma+ au au\gamma$ bkg
$BR(Z \rightarrow \rho \gamma)$	$<2.5\times10^{-5}$		$O(10^{-9})$	$\tau \tau \gamma$ bkg, $\sigma(p_{\text{track}})$ limited

 \mathbf{ed}

	$240{ m GeV}$	$V, 20 \text{ ab}^{-1}$	360 (GeV, 1 a	ab^{-1}
	\mathbf{ZH}	vvH	\mathbf{ZH}	vvH	eeH
inclusive	0.26%		1.40%	Ν.	Υ.
H→bb	0.14%	1.59%	0.90%	1.10%	4.30%
H→cc	2.02%		8.80%	16%	20%
$H \rightarrow gg$	0.81%		3.40%	4.50%	12%
$\mathrm{H}{\rightarrow}\mathrm{W}\mathrm{W}$	0.53%		2.80%	4.40%	6.50%
$H \rightarrow ZZ$	4.17%		20%	21%	
$H \rightarrow \tau \tau$	0.42 %		2.10%	4.20%	7.50%
$H ightarrow \gamma \gamma$	3.02%		11%	16%	
$H ightarrow \mu \mu$	6.36%		41%	57%	
$H \rightarrow Z\gamma$	8.50%		35%		
$\operatorname{Br}_{upper}(H \to inv.)$	0.07%				
Γ_H	1.	65%		1.10%	

coupling measurement (k	appa0 fit	i)
-------------------------	-----------	----

Observable	current precision	CEPC precision (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	2.1 MeV [37-41]	0.1 MeV (0.005 MeV)	Z threshold	E_{beam}
$\Delta\Gamma_Z$	2.3 MeV [37-41]	0.025 MeV (0.005 MeV)	Z threshold	E_{beam}
Δm_W	9 MeV [42–46]	0.5 MeV (0.35 MeV)	$WW\ {\rm threshold}$	E_{beam}
$\Delta\Gamma_W$	49 MeV [46–49]	$2.0 { m MeV} (1.8 { m MeV})$	$WW\ {\rm threshold}$	E_{beam}
Δm_t	0.76 GeV [50]	$\mathcal{O}(10) \text{ MeV}^{a}$	$t\bar{t}$ threshold	
ΔA_{ϵ}	4.9×10^{-3} [37, 51–55]	$1.5 \times 10^{-5} \ (1.5 \times \ 10^{-5})$	Z pole $(Z \to \tau \tau)$	Stat. Unc.
ΔA_{μ}	0.015 [37, 53]	$3.5 imes 10^{-5} \ (3.0 imes \ 10^{-5})$	Z pole $(Z \rightarrow \mu \mu)$	point-to-point Unc
$\Delta A_{ au}$	4.3×10^{-3} [37, 51–55]	$7.0 imes 10^{-5} (1.2 imes 10^{-5})$	Z pole $(Z \to \tau \tau)$	tau decay model
ΔA_b	0.02 [37, 56]	$20 \times 10^{-5} (3 \times 10^{-5})$	Z pole	QCD effects
ΔA_c	0.027 [37, 56]	$30{ imes}10^{-5}~(6{ imes}10^{-5})$	Z pole	QCD effects
$\Delta \sigma_{had}$	37 pb [37 –41]	2 pb (0.05 pb)	Z pole	lumiosity
δR_b^0	0.003 [37, 57–61]	$0.0002 (5 \times 10^{-6})$	Z pole	gluon splitting
δR_c^0	$0.017 \ [37, 57, 62-65]$	$0.001~(2 \times 10^{-5})$	Z pole	gluon splitting
δR_e^0	0.0012 [37-41]	$2{ imes}10^{-4}$ (3 ${ imes}10^{-6}$)	Z pole	E_{tecm} and $\mathfrak t$ channel
δR^0_μ	0.002 [37–41]	$1{\times}10^{-4}$ ($3{\times}10^{-6}$)	Z pole	E_{beam}
$\delta R_{ au}^0$	0.017 [37–41]	$1{\times}10^{-4}$ ($3{\times}10^{-6}$)	Z pole	E_{beam}
δN_{ν}	0.0025 [37, 66]	$2{\times}10^{-4}~(3{\times}10^{-5}$)	ZH run ($\nu\nu\gamma$)	Calo energy scale

Measurement	Current [126]	FCC [115]	Tera-Z Prelim. [127]	Comments
Lifetime [sec]	$\pm5\times10^{-16}$	$\pm 1\times 10^{-18}$		from 3-prong decays, stat. limited
$BR(\tau \rightarrow \ell \nu \bar{\nu})$	$\pm 4 imes 10^{-4}$	$\pm 3\times 10^{-5}$		$0.1\times$ the ALEPH systematics
$m(\tau)$ [MeV]	± 0.12	$\pm 0.004 \pm 0.1$		$\sigma(p_{\rm track})$ limited
$BR(\tau \rightarrow 3\mu)$	$<2.1\times10^{-8}$	$O(10^{-10})$	same	bkg free
$\mathrm{BR}(\tau\to 3e)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
${\rm BR}(\tau^\pm \to e \mu \mu)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
${\rm BR}(\tau^\pm \to \mu e e)$	$<1.8\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
$BR(\tau \rightarrow \mu \gamma)$	$<4.4\times10^{-8}$	$\sim\!2\times10^{-9}$	$\mathcal{O}(10^{-10})$	$Z \to \tau \tau \gamma$ bkg , $\sigma(p_\gamma)$ limited
$BR(\tau \rightarrow e\gamma)$	$< 3.3 \times 10^{-8}$	$\sim 2\times 10^{-9}$		$Z \to \tau \tau \gamma$ bkg, $\sigma(p_{\gamma})$ limited
$BR(Z \rightarrow \tau \mu)$	$< 1.2 \times 10^{-5}$	$O(10^{-9})$	same	$\tau \tau$ bkg, $\sigma(p_{\text{track}}) \& \sigma(E_{\text{beam}})$ limit
${ m BR}(Z o au c)$	$<9.8\times10^{-6}$	$O(10^{-9})$		$\tau \tau$ bkg, $\sigma(p_{\text{track}})$ & $\sigma(E_{\text{beam}})$ limit
$BR(Z \rightarrow \mu e)$	$<7.5\times10^{-7}$	$10^{-8} - 10^{-10}$	$\mathcal{O}(10^{-9})$	PID limited
${ m BR}(Z o \pi^+\pi^-)$			$\mathcal{O}(10^{-10})$	$\sigma(\vec{p}_{\mathrm{track}})$ limited, good PID
${ m BR}(Z o\pi^+\pi^-\pi^0)$			$O(10^{-9})$	au au bkg
${\rm BR}(Z\to J/\psi\gamma)$	$< 1.4 \times 10^{-6}$		$10^{-9} - 10^{-10}$	$\ell\ell\gamma+ au au\gamma$ bkg
$BR(Z \rightarrow \rho \gamma)$	$<2.5\times10^{-5}$		$O(10^{-9})$	$\tau \tau \gamma$ bkg, $\sigma(p_{\text{track}})$ limited

 \mathbf{ed}

	$240{ m GeV}$	$V, 20 \text{ ab}^{-1}$	360 (GeV, 1 a	ab^{-1}
	\mathbf{ZH}	vvH	\mathbf{ZH}	vvH	eeH
inclusive	0.26%		1.40%	Ν.	Υ.
H→bb	0.14%	1.59%	0.90%	1.10%	4.30%
H→cc	2.02%		8.80%	16%	20%
$H \rightarrow gg$	0.81%		3.40%	4.50%	12%
$\mathrm{H}{\rightarrow}\mathrm{W}\mathrm{W}$	0.53%		2.80%	4.40%	6.50%
$H \rightarrow ZZ$	4.17%		20%	21%	
$H \rightarrow \tau \tau$	0.42%		2.10%	4.20%	7.50%
$H ightarrow \gamma \gamma$	3.02%		11%	16%	
$H ightarrow \mu \mu$	6.36%		41%	57%	
$H \rightarrow Z\gamma$	8.50%		35%		
$\operatorname{Br}_{upper}(H \to inv.)$	0.07%				
Γ_H	1.	65%		1.10%	

and the second s	coupling	measurement	(kappa0 fit)
--	----------	-------------	--------------

Observable	e current precision	CEPC precision (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	2.1 MeV [37-41]	0.1 MeV (0.005 MeV)	Z threshold	E_{beam}
$\Delta \Gamma_Z$	2.3 MeV [37-41]	0.025 MeV (0.005 MeV)	Z threshold	E_{beam}
Δm_W	9 MeV [42–46]	0.5 MeV (0.35 MeV)	$WW\ {\rm threshold}$	E_{beam}
$\Delta \Gamma_W$	49 MeV [46–49]	$2.0 { m MeV} (1.8 { m MeV})$	$WW\ {\rm threshold}$	E_{beam}
Δm_t	0.76 GeV [50]	$\mathcal{O}(10) \text{ MeV}^{a}$	$t\bar{t}$ threshold	
ΔA_{ϵ}	4.9×10^{-3} [37, 51–55]	$1.5 imes 10^{-5} \ (1.5 imes \ 10^{-5})$	Z pole $(Z \to \tau \tau)$	Stat. Unc.
ΔA_{μ}	0.015 [37, 53]	$3.5 imes 10^{-5} \ (3.0 imes \ 10^{-5})$	Z pole $(Z \rightarrow \mu \mu)$	point-to-point Unc
$\Delta A_{ au}$	4.3×10^{-3} [37, 51–55]	$7.0 imes 10^{-5} (1.2 imes 10^{-5})$	Z pole $(Z \to \tau \tau)$	tau decay model
ΔA_b	0.02 [37, 56]	$20 \times 10^{-5} (3 \times 10^{-5})$	Z pole	QCD effects
ΔA_c	0.027 [37 , 56]	$30{ imes}10^{-5}~(6{ imes}10^{-5})$	Z pole	QCD effects
$\Delta \sigma_{had}$	37 pb [37 –41]	2 pb (0.05 pb)	Z pole	lumiosity
δR_b^0	0.003 [37, 57–61]	$0.0002 (5 \times 10^{-6})$	Z pole	gluon splitting
δR_c^0	$0.017 \ [37, 57, 62-65]$	$0.001 \ (2 \times 10^{-5})$	Z pole	gluon splitting
δR_e^0	0.0012 [37-41]	$2{ imes}10^{-4}$ ($3{ imes}10^{-6}$)	Z pole	E_{team} and t channel
δR^0_μ	0.002 [37-41]	$1{\times}10^{-4}$ ($3{\times}10^{-6}$)	Z pole	E_{beam}
$\delta R_{ au}^0$	0.017 [37-41]	$1{\times}10^{-4}$ ($3{\times}10^{-6}$)	Z pole	E_{beam}
δN_{ν}	0.0025 [37, 66]	$2{ imes}10^{-4}~(3{ imes}10^{-5}$)	ZH run ($\nu\nu\gamma$)	Calo energy scale

Measurement	Current [126]	FCC [115]	Təra-Z Prelim. $[127]$	Comments
Lifetime [sec]	$\pm 5\times 10^{-16}$	$\pm 1\times 10^{-18}$		from 3-prong decays, stat. limited
$BR(\tau \rightarrow \ell \nu \bar{\nu})$	$\pm 4 imes 10^{-4}$	$\pm 3\times 10^{-5}$		$0.1\times$ the ALEPH systematics
$m(\tau)$ [MeV]	± 0.12	$\pm 0.004 \pm 0.1$		$\sigma(p_{\rm track})$ limited
$BR(\tau \rightarrow 3\mu)$	$<2.1\times10^{-8}$	$O(10^{-10})$	same	bkg free
$\mathrm{BR}(\tau \to 3e)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
${\rm BR}(\tau^\pm \to e \mu \mu)$	$<2.7\times10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
${\rm BR}(\tau^\pm \to \mu ee)$	$< 1.8 \times 10^{-8}$	$\mathcal{O}(10^{-10})$		bkg free
$BR(\tau \rightarrow \mu \gamma)$	$<4.4\times10^{-8}$	$\sim\!2\times10^{-9}$	$\mathcal{O}(10^{-10})$	$Z \to \tau \tau \gamma$ bkg , $\sigma(p_\gamma)$ limited
$BR(\tau \rightarrow e\gamma)$	$< 3.3 \times 10^{-8}$	$\sim 2\times 10^{-9}$		$Z \to \tau \tau \gamma$ bkg, $\sigma(p_\gamma)$ limited
$BR(Z \rightarrow \tau \mu)$	$< 1.2 \times 10^{-5}$	$O(10^{-9})$	same	$\tau \tau$ bkg, $\sigma(p_{\text{track}})$ & $\sigma(E_{\text{beam}})$ limite
${ m BR}(Z o au c)$	$<9.8\times10^{-6}$	$\mathcal{O}(10^{-9})$		$\tau \tau$ bkg, $\sigma(p_{\text{track}})$ & $\sigma(E_{\text{beam}})$ limite
$BR(Z \rightarrow \mu e)$	$<7.5\times10^{-7}$	$10^{-8} - 10^{-10}$	$\mathcal{O}(10^{-9})$	PID limited
${\rm BR}(Z\to\pi^+\pi^-)$			$\mathcal{O}(10^{-10})$	$\sigma(\vec{p}_{\text{track}})$ limited, good PID
${ m BR}(Z o\pi^+\pi^-\pi^0)$			$\mathcal{O}(10^{-9})$	au au bkg
${ m BR}(Z \to J/\psi \gamma)$	$< 1.4 \times 10^{-6}$		$10^{-9} - 10^{-10}$	$\ell\ell\gamma+ au au\gamma$ bkg
$BR(Z \rightarrow \rho \gamma)$	$<2.5\times10^{-5}$		$O(10^{-9})$	$\tau \tau \gamma$ bkg, $\sigma(p_{\text{track}})$ limited

	$240{ m GeV}$	$V, 20 \text{ ab}^{-1}$	360 (GeV, 1 a	ab^{-1}
	\mathbf{ZH}	vvH	\mathbf{ZH}	vvH	eeH
inclusive	0.26%		1.40%	Ν.	Υ.
H→bb	0.14%	1.59%	0.90%	1.10%	4.30%
H→cc	2.02%		8.80%	16%	20%
$H \rightarrow gg$	0.81%		3.40%	4.50%	12%
$\mathrm{H}{\rightarrow}\mathrm{W}\mathrm{W}$	0.53%		2.80%	4.40%	6.50%
$H \rightarrow ZZ$	4.17%		20%	21%	
$H \rightarrow \tau \tau$	0.42%		2.10%	4.20%	7.50%
$H ightarrow \gamma \gamma$	3.02%		11%	16%	
$H ightarrow \mu \mu$	6.36%		41%	57%	
$H \rightarrow Z\gamma$	8.50%		35%		
$\operatorname{Br}_{upper}(H \to inv.)$	0.07%				
Γ_H	1.	65%		1.10%	

	Observable	current	precision	CEPC precis	sion (Stat. Unc.)	CEPC runs	main systematic
	Δm_Z	2.1 MeV	/ [37–41]	0.1 MeV	(0.005 MeV)	Z threshold	E_{beam}
	$\Delta\Gamma_Z$	2.3 MeV	[37-41]	0.025 MeV	/ (0.005 MeV)	Z threshold	E_{beam}
	Δm_W	$9 { m MeV}$	[42-46]	$0.5 { m MeV}$	(0.35 MeV)	WW threshold	E_{beam}
	$\Delta\Gamma_W$	49 MeV	[46-49]	2.0 Me	/ (1.8 MeV)	WW threshold	E_{beam}
	Δm_t	0.76 G	ev [50]	O(1	0) MeV ^a	$t\bar{t}$ threshold	
	ΔA_{ϵ} 4	$.9 \times 10^{-3}$	[37, 51-55]	$1.5 imes 10^{-3}$	(1.5×10^{-5})	Z pole $(Z \to \tau \tau)$) Stat. Unc.
	ΔA_{μ}	0.015	37, 53	3.5×10^{-3}	5 (3.0× 10 ⁻⁵)	Z pole $(Z \to \mu \mu)$) point-to-point Unc.
	DOI		80478	± 83		SM	
	CDEL		80432	+ 79			
			00102	± 10			
	DELPI	ні	80336	± 67	-	-	
	L3		80270	± 55		-	
	OPAL		80415	± 52			••
	ALEPH	4	80440	± 51		-	•
	D0 II		80376	± 23			
	ATLAS	S	80370	± 19			
	CDF 2	2012	80387	± 19			
	LHCb	1	80354	± 32			
	CDF II		80433	± 9	1	I	•
79	900 8	0000	8010	0 80	200 80	300 804	00 80500
	$BR(Z \rightarrow $	τc) <	9.8×10^{-6}	$O(10^{-9})$		$\tau \tau$ bkg, $\sigma(p_{\rm tra})$	$_{\rm ck}$) & $\sigma(E_{\rm beam})$ limited
	$BR(Z \rightarrow $	µe) <	$7.5 imes 10^{-7}$ 1	$0^{-8} - 10^{-10}$	$O(10^{-9})$	Р	ID limited
	${ m BR}(Z o \pi^{+}$	$^{+}\pi^{-})$			$\mathcal{O}(10^{-10})$	$\sigma(ec{p}_{ ext{track}})$	limited, good PID
	${ m BR}(Z o\pi^+)$	$\pi^{-}\pi^{0}$)			$O(10^{-9})$		$\tau\tau$ bkg
	$BR(Z \rightarrow J/$	$/\psi\gamma)$ <	$1.4 imes 10^{-6}$		$10^{-9} - 10^{-10}$	ll	$\gamma + \tau \tau \gamma \text{ bkg}$
	$BR(Z \rightarrow Z)$	$\rho\gamma) <$	$2.5 imes 10^{-5}$		$O(10^{-9})$	$\tau \tau \gamma$ bkg	$\sigma(p_{\text{track}})$ limited

Discovery Potential for New Physics

Discovery Potential for New Physics

CEPC has significantly better detection sensitivity for dark matter and selected Higgs exotic decays than HL-LHC

Higgs decays into BSM particles, $H \rightarrow X_1X_2$

1						Ξ	Ξ		Ξ	Ξ	Ľ										1								Ē					E.	Ē	Ξ									Ξ	Ξ				Ξ					Ξ		Ē		E	Ξ	Ξ	Ξ		Ē	Ē	i	i			Ē
Đ			_	_	_	E	_	_	_	_	Ŀ									_	ł	l	_	_	_	_							-	E	_	_	_							_	-	_	_			-					_	- 1	ſ	ŀ	Ŧ	L	2	Ē	F	[(Ī					
Į,	ini Th	÷.	_	_	_	Ľ	1	_	1	_	Ľ			Ľ	-	ï					ł	l		_			1					1	_	ŀ.	ļ	1			_						į,					i.					I			7	~	Г	D		7	\overline{a}	5	6	<u>_</u>	۱.	-1'	`
Ļ	ł	Ŀ	 _	_	_	Ŀ	_	_	_	_	L			L	I	l				_	ł	ŀ	_	_	_	_	J		L	_	_		_	Ŀ				_		ŀ			_	-			_		_					_	ł	ŀ	╘	Ì		Е. 	1	Č		(-	2.	Č	a		J)
1	1	E	Ξ	Ξ		Ξ	Ξ	Ξ	Ξ	Ξ	Ŀ				1	E					1	l										1		E	Ē	Ē	Ξ			Ŀ					Ŀ	Ξ									1	Ľ	Ĺ	(2	E	Р	C	27	(5	.(52	ıb)	-)
ŧ	1	ŀ	_	_	_	E	_	_	_	_	Ŀ				l	ŀ				_	1	l	_	_	_	_	1		-			1	_	È.	_	_	_	_		Ŀ					Ŀ	_	_	_						_	1	Ľ			F	_	_	_					_	_		_
t	1	l	 	-		Ŀ	-	-	-	-	Ľ		 	ŀ		l					1	l				-	1		-	-	-	1	-	Ŀ	-	-	-	-		ľ					ŀ	-								-	1	ľ		 -	ŀ	-	-	-					-	-		-
		l				Ξ	Ē		Ξ							l					1	ľ						l					1111	Ē	Ē	Ē				l					l	Ē										l			Ē		1	Ξ						Ξ		
ŧ	1	ŀ	_	-	_	E	-	_	-	-	Ŀ			Ŀ	ł	k					ł	l	_	_	-		1		-			ļ	-	ŀ.	-	-	_			Ŀ					Ŀ	_									ł	Ŀ		-	ŀ		ł	_					-	-		
t	1	l	-			ŀ	-	-	-	-	Ľ			ŀ		l					l	l		-	-		1	l	-			1	-	Ŀ	-	-	-			ľ					h	-								-	1	ľ			ŀ		ľ	-					-	-		-
1		l				Ξ	-		Ξ							l					1												1111		Ξ	Ī				ŀ	L	1			I														E			Ξ						Ξ		
Ŧ	1	ŀ	_	_			ŀ	_	-	-	Ŀ			ŀ	ł	k					ł			F	٦	_	1		-			1	-				F	_				E										ŀ	٦		ł	ŀ		_	F		ł	_					F	_		-
ľ	1	l	 						-	-	Ľ			ľ				ľ	1		1							l	-			1	-				-	-				ľ			I											ŀ			ŀ		L	-					Ľ	_		
				Ē					-	-	F	1																		l	_		1111																										E					1			ŀ	Ī		
Ŧ	1			-	_				-	_				1						-							-						-				-	_				-												-				-	-											
											1					,	_																	-						1						\sim					\sim						1					1	• •					1		

Circular Electron Position Collider (CEPC) - TDR Layout

CEPC as a Higgs Factory: H, W, Z, upgradable to tt-bar, followed by a SppC ~125TeV

CEPC TDR S+C-band 30 GeV linac injector

Common tunnel for booster/collider & SppC

CEPC MDI

CEPC Civil Engineering

Operation	n mode	ZH	Z	W+W-	
		~240	~91.2	158-172	
L / IP	CDR (2018)	3	32	10	
[× 10 ³⁴ cm ⁻² s ⁻¹]	TDR (30MW)	5.0	115	16	

CEPC TDR Parameters (upgrade version)

Cost optimization vs. circumference

D. Wang *et al* 2022 *JINST* **17** P10018

total cost_H/Z/top(100million)

Main Parameters: High luminosity as a Higgs Factory

	Higgs	W	Z						
Number of IPs	2								
Circumference [km]	100.0								
SR power per beam [MW]	50								
Energy [GeV]	120	80	45.5						
Bunch number	415	2161	19918						
Emittance (ɛx/ɛy) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4						
Beam size at IP ($\sigma x/\sigma y$) [um/nm]	15/36	13/42	6/35	,					
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7						
Beam-beam parameters (ξx/ξy)	0.015/0.11	0.012/0.113	0.004/0.127	0.					
RF frequency [MHz]	650								
Luminosity per IP[10 ³⁴ /cm ² /s]	8.3	27	192						

50 MW and 100 km ring a cost effective solution for a higgs, W, Z and top machine

CEPC Physics Program

Physics potential similar to FCC-ee, ILC, CLIC

Large physics samples: ~10⁶ Higgs, ~10¹² Z, ~10⁸ W bosons, ~10⁶ top quarks

ZH	Z	W+W-	ttbar
~ 240	~ 91.2	~ 160	~ 360
7	2	1	_
3	32	10	_
5.6	16	2.6	-
1×10 ⁶	7×10 ¹¹	2×107	-
10	2	1	5
8.3	192	27	0.83
20	96	7	1
4×10 ⁶	4 × 10 ¹²	5×10 ⁷	5×10 ⁵

Consensus in HEP community for an eter Higgs factory

The scientific importance and strategical value of an electron positron Higgs factory is clearly identified.

2013, 2016: the CEPC is the best approach and a major historical opportunity for the national development of accelerator-based high-energy physics program.

An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

In April 2022, the International Committee for Future Accelerators (ICFA) "reconfirmed the international consensus on the importance of a Higgs factory as the highest priority for realizing the scientific goals of particle physics", and expressed support for the above-mentioned Higgs factory proposals. Recently, the United States also proposed a new linear collider concept based on the cool copper collider (C3) technology [31].

Comparison with other international e+e- Higgs factories

CEPC has strong advantages among mature electron-positron Higgs factories (design report delivered)

Versus FCC-ee

- Earlier data: collisions expected in 2030s (vs. ~ 2040s); •
- Larger tunnel cross section (ee, pp coexistence)
- Lower cost: ~1/2 the construction cost with similar luminosity up to 240 GeV

Versus linear colliders

• Higher precision with more Higgs & Z; potential for proton collider upgrade

Accelerator developments

See Gao Jie's talk this morning for details

Innovations and technology breakthroughs in CEPC

Innovative Design	 > 100km Full/Partial C > Switchable operation > Flexible injection me > World's 1st design of
Technical Performance	 High efficiency Klyst High performance S Novel magnets: Weat Prototype)
Major Technology Breakthrough	 Plasma wakefield ad High field supercond

Innovative designs and key technology R&D fulfill the challenging requirement

- **Double Rings**
- on for Higgs, W and Z
- odes to satisfy different energies
- f a high energy/flux gamma-ray synchrotron light (300 MeV)
- tron (aim at highest transfer efficiency)
- **RF cavities (state-of-the-art Q and gradient)**
- ak field dipole, dual aperture magnets (First Qualified
- cceleration for Injector (New Acceleration Principle) ducting magnet (Iron based HTS proposal)

Workable 100km accelerator design for all operation modes – completed

e+e- circular collider as a high lumi. Higgs factory

Switchable operation for Higgs, W, Z and

Top runs

A green machine with a maximum Luminosity

CEPC accelerator technical performance

Key Technology

Status

- High efficiency klystron
- High Q SRF cavity
- Novel magnet
- PWFA injector
- HTS high field magnet

- Current eff.>70%, aim at 80%
- Exceeds CEPC requirement
- CEPC requirement met
- Design positron acceleration scheme, >10GeV beam
- HTS with IBS

Selected Leading Technologie	
------------------------------	--

Table 5.3: Status of key technology R&D for CEPC, in comparison with the status quo of	wo
--	----

accelerator laboratories

Device	Requirement	IHEP	CERN	FNAL	KEK
		status	status	status	status
1.3 GHz	$Q=3 \times 10^{10}$	$\textbf{Q=}4.3\times10^{10}$	Preliminary	Comparable	Comparat
SRF cavity	@24 MV/m	@31 MV/m	progress	to IHEP	to IHEF
650 MHz	$Q=4 \times 10^{10}$	$Q=6 \times 10^{10}$	N/A	Comparable to	N/A
2-cell SRF cavity	@22 MV/m	@22 MV/m		IHEP	
High-efficiency	Efficiency	Efficiency	R&D on Efficiency	N/A	Efficienc
klystron	$\geq 80\%$	$\approx 70\%$	pprox 80%		pprox 60%
High-field	20-24 T	12.5 T achieved	14-16 T	14.5 T	10 T
superconducting		next goal is 16 T			
magnet					

CEPC accelerator key technologies under R&D

Specification Met

Prototype Manufactured

	Accelerator	Cost (billion CNY)	Ratio
✓	Magnets	4.47	27.3%
✓	Vacuum	3.00	18.3%
	RF power source	1.50	9.1%
✓	Mechanics	1.24	7.6%
\checkmark	Magnet power supplies	1.14	7.0%
\checkmark	SCRF	1.16	7.1%
\checkmark	Cryogenics	1.06	6.5%
✓	Linac and sources	0.91	5.5%
\checkmark	Instrumentation	0.87	5.3%
	Control	0.39	2.4%
	Survey and alignment	0.40	2.4%
✓	Radiation protection	0.17	1.0%
	SC magnets	0.07	0.4%
✓	Damping ring	0.04	0.2%

Ta	ble 5.1: Sum	mary of key	y technologies under R&D essential for C	EPC
Device	Accelerator	Quantity	CEPC specification	R&D status
1.3 GHz SRF	Booster	96	Q=3×10 ¹⁰ @ 24 MV/m	Specification met
cavity (9-cell)				
650 MHz SRF	Collider	240	$Q=4\times 10^{10}@22~\mathrm{MV/m}$	Specification met
cavity (2-cell)				
650 MHz	Collider	120	Efficiency: 80%	Prototype
klystron			Power: 800 kW	manufactured
C-band NC	Linac	292	Gradient: 45 MV/m	Prototype
accelerating tube				manufactured
S-band	Linac	35	Peak power gain: 7 dB	Prototype
bunch compressor				manufactured
Positron source	Linac	1	Central peak magnetic	Specification met
flux concentrator			field >6 T	
Dual-aperture	Collider	2384	Field: 140 Gs-560 Gs	Specification met
dipole magnet			aperture: 70 mm	
			length: 28.7 m; harmonic $< 5 \times 10^{-4}$	
			relative field difference < 0.5%	
Dual-aperture	Collider	2392	Gradient: 3.2-12.8 T/m	Specification met
quadrupole magnet			length: 2 m; harmonic $< 5 imes 10^{-4}$	
			aperture: 76 mm	
			relative field difference<0.5%	
Weak field	Booster	16320	Field error	Specification met
dipole			$\leq 10^{-3}@60$ Gs	
Electrostatic	Collider	32	Electric field: 2.0 MV/m	Specification met
separator			field uniformity: 5×10^{-4}	by prototype
			good field region: 46 mm*11 mm	
Cryogenic	Collider/	4	18 kW @ 4.5 K	Collaboration with
refrigerator	Booster			IPC CAS,
				a refrigerator system
				of 2.5 kW @ 4.5 K
				has been developed
Ceramic vacuum	Transport	~ 20	$75\times56\times5\times1200\mathrm{mm}$	Prototype
chamber and	lines			in production
coating				
MDI SCQ	Collider	8	Gradient: 136T/m; length: 2m	Prototype
			Aperture: 40mm; included angle: 33mrad	in manufacture
Visual instrument	All	11	Image accuracy: 5 μ m+(5 μ m/m)	Prototype completed
			horizontal angle: 1.8 arc-second	
			vertical angle: 2.2 arc-second	

Table 5.2: Summary of key technologies in engineering applications essential for CEPC

Device type	Accelerator	Quantity	CEPC specifications
S-band copper	Linac	111	$\sim 30 \text{ MV/m}$
accelerating tube			
vacuum chamber	Collider/	Total length	Length: 6 m
and coating	Booster	200 km	aperture: 56 mm
			vacuum: 3×10^{-10} Torr
			NEG coating pump speed f
			0.5 L/s· cm ²
BPM and	All	~ 5000	Closed orbit
electronics			resolution: 0.6 μ m
kicker & fast pulser	Transport	~ 25	Pulse width <10 ns (strip-li
	line		trapezoidal pulse width <2:
Lambertson septum	Transport line	~ 20	Septum thickness \leq 3.5 mm
			thickness $\leq 2 \text{ mm}$ (in-vacua
Power supply	All	9294	Stability 100-1000 ppm
RF-shielded	Collider	24000	Contact force 125±25 g/fi
bellows	Booster	/12000	
	•		

Figure 12.3: Cost breakdown of the CEPC accelerator technical systems.

for H_2 : ine) 250 ns (slotted-pipe) m (in-air) um) inger Accelerator physics Superconducting RF RF power source Cryogenic system SC magnets in IR Magnet power supplies Vacuum system Instrumentation Control system Mechanical system Radiation protection Survey and alignment Linac and sources

CEPC TDR: R&D Status of Key Technologies

SRF technology

Klystrons Electron **Position Ring** Linac injector jection

Magnets

SC cavities

SC Quadrupole

Vacuum

Kickers

CEPC accelerator critical components

State-of-the-art: Key Components

650MHz SRF cavity

10 1#腔,冷电抛光 中温退火 2#腔: 冷电抛为 2.0 K Power vs. Efficiency

High efficiency klystron

Weak field dipole

100km Acc. Alignment & Installation R&D

Efficient alignment scheme + instrumentation R&D to guarantee the installation within 4 years

IHEP New SCRF Lab (PAPS) in Operation Facility: CEPC SCRF test facility (lab) is located in IHEP Huairou Area of 4500 m²

New SC Lab Design (4500m²)

SC New Lab (PAPS) has been put to operation in June 2021

Vacuum furnace (doping & annealing)

Temperature & X-ray mapping system

- Nb3Sn furnace

Nb/Cu sputtering device

Cavity inspection camera and grinder 9-cell cavity pre-tuning machine

Second sound cavity quench detection system

Helmholtz coil for cavity vertical test

Vertical test dewars

Horizontal test cryostat

CEPC Site Selection: Changsha Site as example

Detector developments

CEPC Detector Concept Designs

The 4th Conceptual Detector Design

Solenoid Magnet (3T / 2T) Between HCAL & ECAL

Advantage: the HCAL absorbers act as part of the magnet return yoke. Det Challenges: thin enough not to affect the jet JadePix resolution (e.g. BMR); stability. ertex Š Arcadia Fransverse Crystal bar ECAL e Pix **Advantage:** better π^0/γ reconstruction. Stiching Challenges: minimum number of readout TPC channels; compatible with PFA calorimeter; PID CEPCPix maintain good jet resolution. õ cke PID DC A Drift chamber Tra LGAD that is optimized for PID Advantage: Work at high luminosity Z runs

Technologies

CEPC R&D: Machine Detector Interface (MDI)

Crossing angle: 33 mrad Focal length: 2.2 m

Final focusing magnets (QD0, QF1) with Segmented Anti-Solenoidal Magnets

Beam Pipe ϕ 28 \rightarrow 20 mm, Be thickness: 0.85 \rightarrow 0.35 mm Vertex Workshop on CEPC Central Beampipe and Beryllium Application May 6, 2022, https://indico.ihep.ac.cn/event/16173/

2021 Workshop on CEPC Detector & MDI Mechanical Design, Oct.22-23 https://indico.ihep.ac.cn/event/14392/

CEPC R&D: Silicon Pixel Sensors

JadePix-3 Pixel size ~ $16 \times 23 \ \mu m^2$

kę.	CALCULATION OF	1.25	2.1.71	11.6	1.00	1 state	10.0	0.00	112Ì.	1000	100		194.0			0.000	- 11	1.4.4	1.4	6.00		10.10		11.	1,000				-			4.04	
		2.1	10.0		EE1		201	14		-	-	1	-	10					-					100	1.1		-	-	10			-	
а.	all				-01		-		199		1.		1,11		ч.	7 1	- 1			18	100	- 0	.11	10.00	1		M'r						
2	10.0		1.1						100				-				7															ALC: N	
В.	CO.		-																													11	
	and the second		9 h																													100	1
			k. 1.													-																12	1.1
4	10,000		i and the second	-	-		me.						÷	-						iner	-					and a		-		-	100	- 20-	
	side de la		į																													<u>, 1</u>	
6	COMPANY																															31	
6	STATISTICS.	1-1						1													н.												
3	TOTAL DATA		1.1			1																									-	1.1	1.5
R.	BORNER																							10								- 88	
	The local division of		1																														
1	THE ST	Т.,																														57	
Ξ.			b			÷.,																										84	
12	1000													2																		1.1	
1	1000	-																			а.											.48	10
							1.11															-										100	
1	122 2																															1.1	6
14	10.00	1.00	-	-	-	-	-	-	-	-		-				-				-			-	-		-	-	-	-	-			-

Tower-Jazz 180nm CiS process Resolution 5 microns, 53mW/cm²

MOST 1

Goal: σ (IP) ~ 5 μ m for high P track

CDR design specifications

- Single point resolution $\sim 3 \mu m$
- Low material $(0.15\% X_0 / layer)$
- Low power (< 50 mW/cm²)
- Radiation hard (1 Mrad/year)

Silicon pixel sensor develops in 5 series: JadePix, TaichuPix, CPV, Arcadia, CEPCPix

TaichuPix-3, FS 2.5x1.5 cm² $25 \times 25 \ \mu m^2$ pixel size

Develop **CEPCPix** for a CEPC tracker based on ATLASPix3 CN/IT/UK/DE

TSI 180 nm HV-CMOS process

CPV4 (SOI-3D), 64×64 array ~21×17 µm² pixel size

Arcadia by Italian groups for IDEA vertex detector LFoundry 110 nm CMOS

CEPC R&D: Vertex Detector Prototype integrated readout electronics Low-mass vertex detectors require sensors with: low power consumption

TaichuPix3 chips at IHEP

Full vertex detector prototype test beam planned for DESY December 2022

Assembly tooling designed

CEPC R&D: Silicon Tracker design

Silicon tracker demonstrator with international partners

HV-CMOS Tracker Demonstrator

International collaboration

China •

- Institute of High Energy Physics, CAS
- Shangdong University
- Tsinghua University
- University of Science and Technology of China
- Northwestern Polytechnical University
- T.D. Lee Institute Shanghai Jiao Tong University
- Harbin Institute of Technology
- University of South China
- Italy
 - INFN Sezione di Milano, Università di Milano e Università dell'Insubria
 - INFN Sezione di Pisa e Università di Pisa
 - INFN Sezione di Torino e Università di Torino

- Germany
 - Karlsruhe Institute of Technology
- UK
 - University of Bristol
 - STFC Daresbury Laboratory
 - University of Edinburgh
 - Lancaster University _
 - University of Liverpool _
 - Queen Mary University of London
 - University of Oxford _
 - University of Sheffield
 - University of Warwick

Test beam at DESY in April 2022

Start by using components developed for other projects

Migrate to a new process: HLMC 55 nm HV-CMOS

CEPC R&D: Particle Identification: Drift Chamber (dN_{cl}/dx) + TOF

Cluster counting potentially a factor ~2 better than dE/dx, but requires fast electronics and good counting algorithms

Work on-going in Italy and IHEP Cluster counting regular meetings, led by Franco G. and Linghui

Calorimeter options

Chinese institutions have been focusing on Particle Flow calorimeters

R&D supported by MOST, NSFC and IHEP seed funding

Some longitudinal granularity

ECAL with Silicon and Tungsten (LLR, France) ECAL with Scintillator+SiPM and Tungsten (IHEP + USTC)

SDHCAL with RPC and Stainless Steel (SJTU + IPNL, France) SDHCAL with ThGEM/GEM and Stainless Steel (IHEP + UCAS + USTC) HCAL with Scintillator+SiPM and Stainless Steel (IHEP + USTC + SJTU)

Crystal Calorimeter (LYSO:Ce + PbWO) **Dual readout** calorimeters (INFN, Italy + Iowa, USA) — RD52

CEPC R&D: Scintillating Calorimeters (ECAL, AHCAL)

Scintillator-W ECAL Prototype

Scintillator + SiPM AHCAL Prototype

CEPC R&D: Scintillating Calorimeters (ECAL, AHCAL)

Combined ScW-ECAL and AHCAL test beam

CEPC R&D: High Granularity Crystal ECAL

New segmented ECAL designs based on crystals

- Long bars: 1 × 40 cm
 - Super-cell: 40 × 40 cm cube
- Double-sided readout
 - Timing at both sides, gives position along bar
- Key concerns:
 - Ambiguities in separation of close showers
 - Impact on Jet Energy Resolution (JER)

Dual Readout Crystal Calorimeter also being consider by USA and Italian colleagues

Crystal Fan Design

- Fine segmentation in Z, ϕ and r
- Resolutions (mm) : Z ~ 1 ; ϕ ~ 2; r ~ 8
- Reduced readout electronics channels

CEPC R&D: High Granularity Crystal ECAL

Goal

- Boson Mass Resolution < 4%
- Better BMR than ScW-ECAL
- Much better sensitivity to γ/e, especially at low energy.

Performance Test

³⁰ ¹³⁷Cs 662keV γ PMT

BGO Crystal

Different crystals investigated
 BGO, PbWO

Bench Test

Full Simulation Studies

+ Optimizing PFA for crystals

Performance with photons

Performance with jets

CEPC Software migration to Key4hep

Key4hep, an international collaboration with CEPC participation

CEPCSW: a first application of Key4hep — Tracking Software

- core software
- CEPC applications for simulation, reconstruction and analysis.
- Gaudi framework: defines interfaces of all the software components and controls the event loop.

 - GeomSvc: DD4hep-based geometry management service.

• DDG4 provides API from xml compact files and DD4hep constructor to Geant4 geometry, DDCore for interface to DD4hep geometry (DetElement, Surface, etc) & Gear geometry

 \checkmark a single source of information for Geometry, materials, visualization, readout, alignment, calibration, reconstruction etc

Architecture of CEPCSW

external libraries

Core software

- EDM4hep: generic event data model.
- FWCore: manages the event data.

is already CEPCSW included in Key4hep software stack.

- Silicon tracks
- TPC
- Drift chamber ightarrow

Project global aspects

Synergies: IHEP experience with large scientific projects

- IHEP is one of the few institutions in the world that can host a project like the CEPC:
 - It has rich management experience and successful constructed many large scientific facilities
 - It has full coverage of all technical disciplines for accelerators and detectors, in particular for the design and construction of circular e+e- colliders (BEPCII) and the detectors (BESIII) It has all needed infrastructure for the construction of large
 - facilities
 - It has successfully hosted international projects such as BESIII, Daya Bay, JUNO, LHAASO, etc.

Funding for CEPC R&D

- CEPC received ~ 260 Million CNY for R&D, from MOST, CAS, NSFC, etc

<section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header>	 High efficiency klystron 650MHz SRF cavities Key components to e+ sour High performance Linac Electrostatic Deflector Cryogenic system
BEPCII / HEPS ~ 40% cost of acc. components	 High precision magnet Stable magnet power source Vacuum chamber with NE Instrumentation, Feedback Traditional RF power source SRF cavities

~10% missing items consist of anticipated challenges in the machine integration, commissioning etc. and the corresponding international contribution

Large amount of key technologies validated in other projects by IHEP: BEPCII, HEPS, ...

	Novel magnets: Weak field dipole, dual aperture magnets
rce	Extremely fast injection/extraction
	> Vacuum chamber tech.
	Survey & Alignment for ultra large Acc.
	> MDI
	> Electron Source, traditional Linac
·ce	Survey & Alignment
EG coating	> Ultra stable mechanics
k system	Radiation protection
rce	> Cryogenic system
	> MDI

Industrial engagement (CIPC)

- the Key technology R&D and prepares for the mass production for the CEPC construction
- CEPC study group is surveying main international suppliers
- CEPC strongly promote these relevant technology development (cost-benefit)

 CIPC, established in 2017, composed of ~ 70 high tech. enterprises, covers Superconducting materials, Superconducting cavities, cryomodules, cryogenics, Klystrons, electronics, power source, vacuum, civil engineering, etc. CIPC actively joins

CEPC team

Table 7.2: Team of Leading and core scientists of the CEPC

Name	Brief introduction	Role in the CEPC team
Yifang Wang	Academician of the CAS, direc-	The leader of CEPC, chair of the SC
	tor of IHEP	
Xinchou Lou	Professor of IHEP	Project manager, member of the SC
Yuanning Gao	Academician of the CAS, head	Chair of the IB, member of the SC
	of physics school of PKU	
Jie Gao	Professor of IHEP	Convener of accelerator group, vice
		chair of the IB, member of the SC
Haijun Yang	Professor of SJTU	Deputy project manager, member of
		the SC
Jianbei Liu	Professor of USTC	Convener of detector group, mem-
		ber of the SC
Mana	gement	on an and grup, member
Shan Jin	Professor of NJU	Member of the SC
Nu Xu	Professor of IMP	Member of the SC
Meng Wang	Professor of SDU	Member of the SC
Qinghong Cao	Professor of PKU	Member of the SC
Wei Lu	Professor of THU	Member of the SC
Joao Guimaraes da Costa	Professor of IHEP	Convener of detector group
Jianchun Wang	Professor of IHEP	Convener of detector group
Yuhui Li	Professor of IHEP	Convener of accelerator group
Chenghui Yu	Professor of IHEP	Convener of accelerator group
Jingyu Tang	Professor of IHEP	Convener of accelerator group
Xiaogang He	Professor of SJTU	Convener of theory group
Jianping Ma	Professor of ITP	Convener of theory group

- Daya Bay, JUNO, ATLAS, CMS, ...

Marchan	Cult metans	Trees (accience to the		Number	Sub-system	Institutions	Team (senior staf
Number	Sub-system	Team (senior staff)		1	Pixel Vertex	CCNU, IFAE, IHEP, NJU,	~ 40
1	Accelerator physics	18			Detector	NWPU, SDU, Strasbourg,	
2	Magnets	12		2	Silicon	IHEP, INFN, KIT, Lan-	~ 60
3	Cryogenic system	11			Tracker	caster, Oxford, Queen Mary,	
5	Cryogenie system	11				RAL, SDU, Tsinghua, Bris-	
4	SC RF system	12				toi, Edinburgh, Livepool,	
5	Beam Instrumentation	7				ZJU,	
6	SC magnets	10		3	Gaseous de-	CEA-Saclay, DESY,	~ 30
-	D I I I I I I I I I I I I I I I I I I I	0			tector	LCTPC Collab., IHEP,	
7	Power supply	9				INFN, NIKHEF, THU	
8 📕	Lin ectan & Colar Col	ator + ~3	υυ αετε	ecte	MagnST	atts curre	ntiy,
9	Mechanical system	4		5	Calorimetry	CALICE Collab., IHEP,	~ 40
10	~ 400 from	h BEPC/B	ESIII/JU	INC)/HE	EDISHER IN CONTICE	
10	vacuum system						
11	Control system	6	annrow	ord	Physics	IHEP, FDU, SJTU,	~ 80
12	Linac injector	13	appiov	eu	-		
13	Radiation protection	3		8	Software	IHEP. SDU. FDU	~ 20
		117	_				
							~300

Institution Board: 32 institutes, top universities/institutes in China Management team: comprehensive management experience at construction projects of BEPCII/CSNS/HEPS, and international projects of BESIII/Daya Bay/JUNO/... Accelerator team: fully over all disciplines with rich experiences at **BEPCII**, **HEPS**... Physics and Detector team: fully over all disciplines with rich experiences at **BESIII**,

International Committees

Tatsuya Nakada Steinar Stapnes Rohini Godbole Michelangelo Manga Michael Davier Lucie Linssen Luciano Maiani Joe Lykken lan Shipsey Hitoshi Murayama Geoffrey Taylor Eugene Levichev David Gross Brian Foster Marcel Demarteau Barry Barish Maria Enrica Biagini Yuan-Hann Chang Akira Yamamoto Hongwei Zhao Andrew Cohen Karl Jakobs Beate Heinemann

Name

IAC: global renowned scientists and top laboratory or project leaders who have ample experience in project management, planning, and execution of strategies, **operating since 2015** IARC & IDRC: leading experts of this field, provide guide to the project director

-		-	International Accelerator Review Commit
	Affiliation	Country	
	EPFL	Japan	 Phillip Bambade, LAL
	CERN	Norway	 Marica Enrica Biagini (Chair), INFN Brian Faster, DESY/University of Ugenburg 8
	CHEP, Bangalore	India	 Brian Foster, Destruniversity of Hamburg & University
ano	CERN	Switzerland	 In-Soo Ko, POSTTECH
	LAL	France	 Eugene Levichev, BINP
	CERN	Holland	 Katsunobu Oide, CERN & KEK
	U. Rome	San Marino	Anatolii Sidorin, JINR Staingr Stannes, CERN
	Fermilab	U.S.	 Makoto Tobiyama, KEK
	Oxford/DESY	U.K.	 Zhentang Zhao, SINAP
	IPMU/UC Berkeley	Japan	 Norihito Ohuchi, KEK
	U. Melbourne	Australia	 Carlo Pagani, INFN-Milano
	BINP	Russia	International Detector R&D Review Committee
	UC Santa Barbara	U.S.	
	Oxford	U.K	 JIM Brau, USA, Oregon Valter Bonvicini, Italy, Trieste
	ORNL	USA	 Ariella Cattai, CERN, CERN
	Caltech	USA	 Cristinel Diaconu, France, Marseille
	INFN Frascati	Italy	Brian Foster, UK, Oxford Liang Han, Ching, USTC
	IPAS	Taiwan, China	 Dave Newbold, UK, RAL (chair)
	КЕК	Japan	 Andreas Schopper, CERN, CERN
	Institute of Modern Physics, CAS	China	Abe Seiden, USA, UCSC
	University of Science and Techbnology	Hong Kong, China	 Laurent Serin, France, LAL Steinar Stapnes, CERN, CERN
	University of Freiburg/CERN	Germany	 Roberto Tenchini, Italy, INFN
	DESY	Germany	 Ivan Villa Alvarez, Spain, Santader
			 Hitoshi Yamamoto, Japan, Tohoku

Budget for CEPC construction

CEPC Cost estimation from CDR

Tier I	Tier II	Amount (100
	Collider	99.2
	Booster	39.2
	Linac and sources	9.1
Appalarator	Damping ring	0.44
Accelerator	Common: Cryogenics	10.6
	Survey & alignment	4
	Radiation protection	1.7
Conventional facilities	-	102
Detectors	-	40
γ -ray beam lines	-	3
Project management (1%)	-	3
Contingency (15%)	-	46
Total	-	358

Cost estimated with two indpendent methods, agrees at 10% level

- CEPC design relies on well studied, or mature tech. reducing uncertainties on cost estimation
- **Cost estimation for TDR phase is in progress**

H	1	J	K	L	N	N
Verb Breakdown Structure (WBS) - Accelerator						
other						
WBS Element Title	Type	Unit	Number	price (10,00,0.3	Total Price (10,000 Yuan)	WBS Element De
	v	Ψ.	~	7	v	
TOTAL (accelerator)					1641673	
Accelerator Physics					1000	
Analytic and simulation studies						
Code development						
Computing hardware						
Computing software						$\sim \lambda v^{*}$
Publication						
Collider (Ch 4) Collider ring					991767	
Superconducting RF System (Ch 4.3.1)					95200	
Cavity	650 MHz 2-cell nicbium	one	240	180	Ø.	
Cryomodule	2 K, for 6 cavities	one	40	200		5
Input coupler	650 MHz, single window, va	one	240	40		1º
HOM coupler	coaxial, detachable	one	400	15	LOV	
HOM absorber	room temperature	one	80	40		
Tuner	end lever with piezo	one	240	31	× × 200	
Vacuum, valve, cables, tooling, assembly, etc.		one	40		16800	
RF Power Source (Ch 4.3.2)					.00	
Klystron	650MHz/800kW	SET			36000	
PSM source	120kV/16A	SET		2	42000	
Distulator and dummy load	800kW	81	- 0	250	30000	
LLRF				25	3000	
Wavequide	800kW			100	12000	
)			
		\mathbf{V}				
	<u>ر</u>	× _				
Magnete (Ch. 4, 8, 8)	$+$ \wedge $-$				304986	
Dincles					173192	
Dual apertura dipole		000	2384	69	184496	
Colls (main & trim)		m	28.7	0.1	2.87	
Lamination	~	m	58.7	0.6	17.22	
Stainlase steel	Y	m	28.7	0.0	11.43	
			20.7	0.4	6.74	
			20./	0.4	2.14 3.97	
Other materials		m	20./	0.1	2.07	Water engine in mountur -
Accessores		891		0.72	0.72	water cooling, temperature a
Toolings		one	1	1.2	1.2	vinging tormer, casting mould, punch
Machining & assembly		one	1	15	10	
Inspection & test		one	1	0.1	0.1	
Package & delivery		one	1	D.5	0.5	
Overhead		one	1	1.5	1.5	
Tax		one	1	7	7	

	_
Description	
	7
	T
	1
	+
	+
	+
	+
	-+
	-+
	_
	1
	+
	+
	+
	+
	-+
	_
	_
	-†
	+
	+
	+
	-+
	_
	T
	1
Aluminu	m
Steel - J	23
Support and structure	re
Dediation ability	
Radiation shieldi	19
Epoxy, paint, e	10.
swith, electric connectors, e	tc.
ching die, stacking tooling, e	to.
	-†
	┥
	+
	\rightarrow

CEPC Financial Model

Total required funding: 36 Billion RMB (5 Billion CHF at today's exchange rate)

Funding Sources	Funding Model #1 (B RMB)	Funding Model #2 (B RMB)
	05	
Central Government	25	10
Local Government	5	20
International contributions	6	6
Donations	0-3.5	0-3.5

governments (leading contributors)

Funding model: Iteration and interaction with relevant entities, especially Local

CEPC Project Timeline

Technical Design Report (TDR)

Engineering Design Report (EDR) R&D of a series of key technologies Prepare for mass production of devices though CIPC

Civil engineering, campus construction

Construction and installation of accelerator

New detector system design & Technical Design Report (TDR)

Detector

Accelerator

Detector construction, installation & joint commissioning with accelerator

Experiments operation

na o Internatior Cooperation

Further strengthen international cooperation in the filed of Physics, detector and collider design

Sign formal agreements, establish at least two international experiment collaborations, finalize details of international contributions in accelerator

Final remarks

CEPC accelerator R&D efforts progressing well towards TDR

CEPC R&D goals common to FCC-ee

Welcome to join the CEPC effort, or both CEPC and FCC-ee where synergies are plentiful

Next milestone: TDR in 2023

Engineering Design Report (EDR) Phase: Jan. 2023-Dec. 2025

EDR document completed for government's approval of starting construction around 2026 (the starting of the "15th five year plan" of China)

Key detector technologies R&D continues and many are put to prototyping

Several CEPC R&D detector projects reaching a successful conclusion others are starting

International collaboration continues to be a main goal of the CEPC

The End

Extra Slides

Accelerator Design, R&D and Maturity

Funding breakdown for Accelerator R&D

Accelerator	Cost (billion CNY)	Ratio	CEPC R&D	BEPCII/HEPS
Magnets	4.47	27.3%	20.0%	7.0%
Vacuum	3.00	18.3%	10.0%	8.0%
RF power source	1.50	9.1%	5.0%	2.0%
Mechanics	1.24	7.6%	N.A	6.6%
Magnet power supplies	1.14	7.0%	0.5%	6.5%
SCRF	1.16	7.1%	5.1%	2.0%
Cryogenics	1.06	6.5%	3.0%	2.5%
Linac and sources	0.91	5.5%	2.0%	2.5%
Instrumentation	0.87	5.3%	2.3%	3.0%
Control	0.39	2.4%	0.1%	0.5%
Survey and alignment	0.40	2.4%	1.4%	1.0%
Radiation protection	0.17	1.0%	0.1%	0.2%
SC magnets	0.07	0.4%	0.2%	0.1%
Damping ring	0.04	0.2%	N.A.	N.A.
Total			49.7%	41.9%

CEPC TDR Parameters (upgrade version)

	Higgs	w	Z	ttbar
Number of IPs			2	
Circumference [km]			100.0	
SR power per beam [MW]			50	
Half crossing angle at IP [mrad]			16.5	
Bending radius [km]			10.7	
Energy [GeV]	120	80	45.5	180
Energy loss per turn [GeV]	1.8	0.357	0.037	9.1
Piwinski angle	5.94	6.08	24.68	1.21
Bunch number	415	2162	19918	58
Bunch spacing [ns]	385	154	15(10% gap)	2640
Bunch population [10 ¹⁰]	14	13.5	14	20
Beam current [mA]	27.8	140.2	1339.2	5.5
Momentum compaction [10-5]	0.71	1.43	1.43	0.71
Phase advance of arc FODOs [degree]	90	60	60	90
Beta functions at IP (bx/by) [m/mm]	0.33/1	0.21/1	0.13/0.9	1.04/2.7
Emittance (ex/ey) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7
Beam size at IP (sx/sy) [um/nm]	15/36	13/42	6/35	39/113
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9
Energy spread (SR/total) [%]	0.10/0.17	0.07/0.14	0.04/0.13	0.15/0.20
Energy acceptance (DA/RF) [%]	1.7/2.2	1.2/2.5	1.3/1.7	2.3/2.6
Beam-beam parameters (xx/xy)	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1
RF voltage [GV]	2.2 (2cell)	0.7 (2cell)	0.12 (1cell)	10 (5cell)
RF frequency [MHz]	650			
Beam lifetime [min]	20	55	80	18
Luminosity per IP[10 ³⁴ /cm ² /s]	8.3	26.6	191.7	0.8

Higher SR power of 50MW: Luminosity increase ~66%.

CEPC accelerator white paper for Snowmass21, arXiv:2203.09451

2019/08: Changsha update

1) Qinhuangdao, Hebei Province (Completed in 2014) 2) Huangling, Shanxi Province (Completed in 2017) 3) Shenshan, Guangdong Province (Completed in 2016) 4) Huzhou, Zhejiang Province (Started in March 2018) 5) Chuangchun, Jilin Province (Started in May 2018) 6) Changsha, Hunan Province (Started in Dec 2018)

中国(长沙)环形正负电子对撞机暨国际 科学城项目论证报告

July 5, 2021: Changsha Bureau of S&T entrusted Hunan U. to conduct a feasibility study.

Sept 4, 2021: Hunan U. organized a review by a committee of experts from multiple disciplines. The committee evaluated scientific potential of CEPC, feasibility of a new science city based on CEPC, and overall impact on Changsha. The overall conclusion is very positive. The local government is interested and very supportive to the CEPC project.

Other projects

CEPC Team (*a*) **LHC upgrade**

LHC upgrade Project	Contribution	IHEP member Leadership
ATLAS high granularity timing detector (HGTD)	~34% modules and sensors (~2700 modules, sensor by Chinese foundry)	Project leader Coordinators in Sensors/ modules
LHCb UT tracker upgrade	System design, test and integration	Deputy project leader
ATLAS ITK strip detector upgrade	~10% modules in Barrel (100 modules)	Coordinator in China/UK cluster
CMS HGcal	~ 20% modules (~100 m ² area) silicon module	
High luminosity LHC upgrade	Contributing 13 CCT magnetic	

ATLAS ITK strip upgrade Module prototyping

ATLAS HGTD Sensor developed by IHEP

CMS HGcal module prototyping

HL-LHC accelerator CCT magnet

China-CERN HL-LHC CCT Project

China will provide 12+1 units CCT superconducting magnets for the HL-LHC project

130

- > A first set of CCT superconducting magnets MCBRD01 with satisfactory field strength and field quality were shipped to Europe in October, 2021.
- Assembly of a 2nd set of HL-LHC CCT superconducting magnets was finished in Jan, 2022. The magnet is being tested at IMP.
- > Full size prototype magnet MCBRDP2 was completed in May, 2020. Both apertures reached the ultimate current.

Large-Scale Acc. Facilities: High Energy Photon Source

beam energy 6 GeV, 1.36KM, ≤ 0.06nm·rad, 14 beam lines

Carried out by IHEP, to be completed in 2025 Great training and preparation for CEPC: validate significant part of CEPC technologies

Device type	Accelerator	Quantity	CEPC specifications
S-band copper	Linac	111	$\sim 30 \text{ MV/m}$
accelerating tube			
vacuum chamber	Collider/	Total length	Length: 6 m
and coating	Booster	200 km	aperture: 56 mm
			vacuum: 3×10^{-10} Torr
			NEG coating pump speed for H_2 :
			0.5 L/s· cm ²
BPM and	A11	~ 5000	Closed orbit
electronics			resolution: 0.6 μ m
kicker & fast pulser	Transport	~25	Pulse width <10 ns (strip-line)
	line		trapezoidal pulse width <250 ns (s
Lambertson septum	Transport line	~ 20	Septum thickness \leq 3.5 mm (in-ai
			thickness $\leq 2 \text{ mm}$ (in-vacuum)
Power supply	All	9294	Stability 100-1000 ppm
RF-shielded	Collider	24000	Contact force 125±25 g/finger
bellows	Booster	/12000	

Support by Platform of Advanced Photon Source (PAPS)

Support Key Technology R&D:

Mechanical system & Alignment > e- gun

New SC Lab Design (4500m^2)

Crygenic system hall in Jan. 16, 2020

SRF \succ Magnet \succ Vacuum \succ Klystron \succ Electric Power Source \succ Cryogenic System

Facility: CEPC SCRF test facility (lab) is located in IHEP Huairong Area of 4500m^2

(scuum furnace (doping & annealing)

Temperature & X-ray mapping system

Nb3Sin furnace

Second sound cavity

quench detection system

Heimholtz coil for

cavity vertical test

New SC Lab will be fully functional in 2021

Nb/Cu sputtering device Cavity inspection camera and grinder

9-cell cavity pre-tuning machine

Vertical test dewars

Horizontal test cryostat

Large-Scale Acc. Facilities: China Spallation Neutron Source

- **One of the four pulsed Spallation Neutron Sources** in the world
- **Construction completed in 2018**

Detector

CEPC R&D: New HCAL with Scintillating Glass Tiles

Full simulation studies

Tiles for AHCAL (30x30x3mm)

"SiPM-on-Tile" design for HCAL

 $ZH(Z \rightarrow \nu\nu, H \rightarrow gg)$ at 240 GeV

rgy Resolution 7141, 2014, 201 L 40 420 a 2.68%, y²/edi/18.00 3, 18%, y²/68/28.87 15F sThics=0122278A, + 1075 @ 246%, y/ind=68.8

Performance study with jets

Goal

Better hadronic energy resolution Further improve BMR

Scintillating Glass R&D

Projects overview: R&D schedule

PBS	Task Name
	CEPC Detector R&D Project
1	Vertex
1.1	Vertex Prototype
1.2	ARCADIA CMOS MAPS
2	Tracker
2.1	TPC Module and Prototype
2.2	Silicon Tracker Prototype
2.3	Drift Chamber Activities
3	Calorimetry
3.1	ECAL Calorimeter
3.1.1	Crystal Calorimeter
3.1.2	PFA Sci-ECAL Prototype
3.2	HCAL Calorimeter
3.2.1	PFA Digital Hadronic Calorimeter
3.2.2	PFA Sci-AHCAL Prototype
3.3	Dual-readout Calorimeter
4	Muon Detector
4.1	Scintillator-based Muon Detector Prototype
4.2	Muon and pre-shower µRWELL-based detecte
5	Solenoid
5.1	LTS solenoid magnet
5.2	HTS solenoid magnet
6	MDI
6.1	LumiCal Prototype
6.2	Interaction Region Mechanics
8	Software and Computing

Total of 103 sub-tasks identified Summarized in 81-page document for the International Detector R&D Committee

Similar slide in Franco's talk

Projects overview: R&D schedule

PBS	Task Name	Start	Finish	Duration	2020	2021		2022	20)23	2024	:	2025	2026	2027	202	8
					H1 H2	H1	H2	H1	H2 H	1 H2	H1	H2	H1 H2	H1 H2	H1	H2 H1	H
	CEPC Detector R&D Project	2020/5/7	2026/12/31	1736 days												Detecto	r Kö
1	Vertex	2020/5/7	2023/12/29	952 days							1 Vert	ex					
1.1	Vertex Prototype	2020/5/7	2023/12/29	952 days							Vert	ex Pro	totype				
1. 2	ARCADIA CMOS MAPS	2020/5/7	2023/12/29	952 days							ARCA	ADIA (CMOS M	APS			
2	Tracker	2020/5/7	2024/12/31	1214 days	I								Tracker				
2.1	TPC Module and Prototype	2020/5/7	2021/12/31	432 days				ТРС	Module	and Pro	ototyp	e					
2.2	Silicon Tracker Prototype	2020/5/7	2023/10/31	909 days							Silicon	Track	er Proto	type			
2.3	Drift Chamber Activities	2020/5/7	2024/12/31	1214 days									Drift Cha	amber Activ	vities		
3	Calorimetry	2020/5/7	2024/12/31	1214 days									Calorim	etry			
3.1	ECAL Calorimeter	2020/5/7	2024/12/31	1214 days	1								ECAL Ca	lorimeter			
3 .1.1	Crystal Calorimeter	2020/5/7	2021/12/31	432 days				Cryst	al Calo	rimeter							
3.1.2	PFA Sci-ECAL Prototype	2020/5/7	2024/12/31	1214 days									PFA Sci-	ECAL Proto	type		
3.2	HCAL Calorimeter	2020/5/7	2023/4/28	777 days	I					- HCAL	. Calor	imete	r				
3.2. 1	PFA Digital Hadronic Calorimeter	2020/5/7	2022/12/30	692 days					P	FA Digit	al Hadronic Calorimeter						
3.2.2	PFA Sci-AHCAL Prototype	2020/5/7	2023/4/28	777 days						PFA S	ci-AHC	AL Pr	ototype				
3.3	Dual-readout Calorimeter	2020/5/7	2024/12/31	1214 days									Dual-rea	dout Calor	imeter		
4	Muon Detector	2020/5/7	2024/12/31	1214 days	I								Muon D	etector			
4.1	Scintillator-based Muon Detector Prototype	2020/5/7	2023/12/29	952 days							Scint	illato	r-based N	/luon Dete	ctor Prot	totype	
4.2	Muon and pre-shower µRWELL-based detecto	2020/5/7	2024/12/31	1214 days									Muon ar	nd pre-show	wer µRV	VELL-base	ed d
5	Solenoid	2020/5/7	2026/12/31	1736 days	1										– Soler	noid	
5.1	LTS solenoid magnet	2020/5/7	2025/12/31	1475 days										LTS sole	no <mark>id m</mark> a	gnet	
5.2	HTS solenoid magnet	2020/5/7	2026/12/31	1736 days											HTS s	olenoid r	mag
6	MDI	2020/5/7	2023/12/29	952 days	1						1 MDI						
6.1	LumiCal Prototype	2020/5/7	2021/12/1	410 days				Lum	Cal Prot	otype							
6.2	Interaction Region Mechanics	2020/5/7	2023/12/29	952 days							Inter	action	n Region	Mechanics			
8	Software and Computing	2020/5/7	2024/12/31	1214 days	1							1	Softwar	e and Com	puting		

Projects overview: FTE

PBS	Task Name	Team					
	CEPC Detector R&D Project						
1	Vertex						
1.1	Vertex Prototype	China+ international collaborators					
1.2	ARCADIA CMOS MAPS	INFN					
2	Tracker						
2.1	TPC Module and Prototype	IHEP, Tsinghua					
2.2	Silicon Tracker Prototype	China, UK, INFN					
2.3	Drift Chamber Activities	INFN, Novosibirsk					
3	Calorimetry						
3.1	ECAL Calorimeter						
3.1.1	Crystal Calorimeter	IHEP, USA, INFN					
3.1.2	PFA Sci-ECAL Prototype	USTC, IHEP					
3.2	HCAL Calorimeter						
3.2.1	PFA Digital Hadronic Calorimeter	SJTU, IPNL, Weizmann, IIT, USTC					
3.2.2	PFA Sci-AHCAL Prototype	USTC, IHEP, SJTU					
3.3	Dual-readout Calorimeter	INFN, Sussex, Zagreb, South Korea					
4	Muon Detector						
4.1	Scintillator-based Muon Detector	Fudan, SJTU					
4.2	Muon and pre-shower µRWELL-	INFN, LNF					
5	Solenoid						
5.1	LTS solenoid magnet	IHEP+Industry					
5.2	HTS solenoid magnet	IHEP+Industry					
6	MDI						
6.1	LumiCal Prototype	AC, IHEP					
6.2	Interaction Region Mechanics	IHEP					
8	Software and Computing	IHEP, SDU, CERN, INFN					

