

Status of low power FEE ASIC for TPC

Wei Liu^{1,2}, Canwen Liu^{1,2}, Tong Wei^{1,2}, **Zhi Deng^{1,2}**, Huirong Qi³

¹ Department of Engineering Physics, Tsinghua University, Beijing, China
 ²Key Laboratory of Particle & Radiation Imaging, Ministry of Education, Beijing, China
 ³Institute of High Energy Physics, Chinese Academy of Science, Beijing, China

The 2022 International Workshop on CEPC Nanjing, Oct.24-28, 2022

Outlines

- Introduction
- Progress of the WASA chip Development
- R&D on Macro-pixel TPC readout
- > Summary

Introduction

end-plate (readout modules) 9 de tric field 9 de tric field	Momentum resolution (B=3.5T)	$\delta(1/p_t \approx 10^{-4}/GeV/c)$
	δ_{point} in $r\Phi$	<100 µm
	δ_{point} in rz	0.4-1.4 mm
	Inner radius	329 mm
	Outer radius	1800 mm
	Drift length	2350 mm
	TPC material budget	$\approx 0.05 X_0$ incl. field cage < $0.25 X_0$ for readout endcap
	Pad pitch/no. padrows	$\approx 1 \text{ mm} \times (4 \sim 10 \text{ mm}) / \approx 200$
	2-hit resolution	$\approx 2 \text{ mm}$
	Efficiency	>97% for TPC only ($p_t > 1GeV$) >99% all tracking ($p_t > 1GeV$)

- TPC can provide large-volume high-precision 3D track measurement with stringent material budget
- In order to achieve high spatial resolution, small pads (e.g. 1 mm x 6mm) are needed, resulting in ~1 million channel of readout electronics
- Need low power consumption readout electronics working at continuous mode

Requirements for TPC Pad Readout

• Pad readout needs waveform sampling

Parameters	SPECs
No. of channels	2×10^{6}
Power Consumption	<10 mW/ch
SNR	~20 @10 pF
Dynamic Range	120 fC
Noise	900 e@10 pF
Peaking time	~160 ns
Sampling Rate	20-40 MS/s
Sampling resolution	8-10 bit

How to save power...

- In order to reduce the power consumption:
 - Using more advanced 65 nm CMOS process favoring digital logics

On Detector

DSP/Zero Supp.

> Event Buffer

Front-End

ADC

AFE

MPGD Readout

Off Detector

DAQ

High-Speed Serial Link

data

Trigger/CLK/ Slow Control

- Less analog circuits:
 - ADC structure : pipeline \rightarrow SAR (Successive Approximation Register)
 - $CR-(RC)^n \rightarrow CR-RC$, moving high order shaping to digital domain

Progress on the WASA chip Development

WASA: WAveform SAmpling ASIC for TPC

- Analog Front-End: Preamplifier + CR-RC shaper + Fully differential output
- SAR ADC: contributed by Fule Li's group @ Tsinghua
- Digital signal processing:
 - Two stage baseline corrections (learnt from SAMPA)
 - Digital trapezoidal filter, to make pulse shape symmetric and shorter
- Control logics: Trigger + data buffer (ring buffer and event buffer)

WASA: analog front-end

- Low power supply design: 1.2 V
 - Fully differential output
- Power optimization orientated, instead of noise optimization orientated

Parameters	SPECs	Simulation	
Shaper	CR-RC	CR-RC	
Shaping time	160 ns	160 ns	
Gain	10 mV/fC	10 mV/fC	
Dynamic Range	120 fC	120 fC	
INL	<1 %	<1 %	
ENC	500 e @ 10 pF	306 e @10 pF	
Crosstalk	<1 %	0.12 %	
Power	<2.5 mW/ch	1.4 mW/ch	

WASA: digital trapezoid filter

Valentin T. Jordanov, Unfolding-synthesis technique for digital pulse processing. Part 1: Unfolding, NIMA Vol 805, 2016, 63-71

• Transient Outputs

WASA: chip layout

- Layout floor plan:
 - The die size: 3783 μ m x 2243 μ m
 - Separated power supply:
 - Analog Front-End
 - SAR ADC
 - Digital Logics
 - LVDS driver
 - Guarding ring insert between
- ASIC submitted in Jan, 2022 and received in March, 2022

• Test Setup

WASA

- Power consumption = 4.94 mW/ch @ 40 MHz
 - AFE: 1.38 mW/ch
 - ADC: 0.83 mW/ch
 - Digital logics: 2.73 mW/ch
- Power consumption = 3.42 mW/ch @ 20 MHz

• Transient Waveforms of internal signal processing nodes

• Non-Linearity: INL< 0.28%

- Noise @ 10mV/fC:
 - ENC = 569 e+14.8 e/pF @ rising time = 0.6 μ s and flat top time = 0.2 μ s

Input capacitance(pF)

- CFD Timing @ Vth = 0.4 Vp
 - CR-RC shaping time = 160 ns
 - $T_r = 600 \text{ ns}, T_{flat} = 200 \text{ ns}$
 - Time jitter < 3 ns
 - Time walk < 15 ns

• Compare to current TPC FEE ASICs

	PASA+ALTRO	Super-ALTRO	SAMPA	WASA_v1
TPC	ALICE	ILC	ALICE upgrade	CEPC
Pad Size	$4x7.5 \text{ mm}^2$	1x6 mm ²	$4x7.5 \text{ mm}^2$	1x6 mm ²
No. of Channels	5.7×10^{5}	$1-2 \times 10^{6}$	5.7×10^{5}	$2 \text{ x} \times 10^{6}$
Readout Detector	MWPC	GEM/MicroMegas	GEM	GEM/MicroMegas
Gain	12 mV/fC	12-27 mV/fC	20/30 mV/fC	10-40 mV/fC
Shaper	CR-(RC) ⁴	CR-(RC) ⁴	CR-(RC) ⁴	CR-RC
Peaking time	200 ns	30-120 ns	80/160 ns	160-400 ns
ENC	370+14.6 e/pF	520 e	246+36 e/pF	569+14.8 e/pF
Waveform Sampler	Pipeline ADC	Pipeline ADC	SAR ADC	SAR ADC
Sampling Rate	10 MHz	40 MHz	10 MHz	10-100 MHz
Sampling Resolution	10 bit	10 bit	10 bit	10 bit
Power: AFE	11.7 mW/ch	10.3 mW/ch	9 mW/ch	1.4 mW/ch
Power: ADC	12.5 mW/ch	33 mW/ch	1.5 mW/ch	0.8 mW/ch@40 MHz
Power: Digital Logics	7.5 mW/ch	4.0 mW/ch	6.5 mW/ch	2.7 mW/ch@40 MHz
Total Power	31.7 mW/ch@10MHz	47.3 mW/ch@40 MHz	17 mW/ch@10 MHz	4.9 mW/ch@40 MHz
CMOS Process	250 nm	130 nm	130 nm	65 nm

R&D on Macro-Pixel TPC Readout

- Large Pixel Readout
 - 1 mm x 6 mm \rightarrow 0.5 mm pixel
 - Higher precision, higher rate
 - Potential for dN/dx
- Concept Design
 - ROIC +Interposer PCB as RDL
 - High metal coverage, 4-side buttable
 - Low power Energy/Timing measurement ASIC
 - ~100 e noise
 - 5 ns drift time resolution
 - <100 mW/cm² (GOAL, not first version)

Readout ASIC Design

- Charge Sensitive Preamplifier(CSA)
- CDS amplifier provides additional gain and noise shaping
- 14-bit Wilkinson type ADC each pixel
- Timing discriminator with14-bit TOA (Time of Arrival) information

2.2mm

5.6mm

Readout ASIC Design

• Specifications

Channel No.	128	Integration Time	≥90% Frame Cycle
Frame Rate	10 kfps	Noise(simulated)	~100 e(ENC@0.5 pF Input)
Gain	40 mV/fC 6 mV/fC	Resolution	Energy:14 bit Time:14 bit(5ns bin)
Memory Depth	4 events/pixel/frame	Power Consumption	1.36 mW/pixel 531mW/cm2
Input Range	18.75 fC 125 fC	Trigger Mode	 Local Self Trigger Global Self Trigger Global External Trigger
Count Rate	40 kcps/pixel	Technology	180 nm CMOS

Readout Module

- PCB interposer as RDL:
 - Pixel size: 0.5 mm x 0.5 mm
 - Pixel array per module: 32 x 32 (1024 channels)
 - Chips per module: 8

Summary

- A 16 channel low power readout ASIC WASA has been successfully developed and evaluated
 - The power consumption is 4.94 mW/ch @ 40 MHz
 - P_{AFE}=1. 38 mW/ch
 - $P_{ADC} = 0.83 \text{ mW/ch}$
 - $P_{\text{Digital}} = 2.73 \text{ mW/ch}$

- ENC = 569 e+14.8 e/pF @ gain=10 mV/fC with on-chip digital trapezoidal filter
- Next step: BGA package 16 x 11 (11.05 mm x 7.8 mm)
- R&D on macro-pixel TPC has been started
 - The first version ROIC has been received and under test
 - RDL PCB substrate has been designed and module assembly tested
 - Next step: ROIC and module test

Thank You