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Snowmass frontiers:

and

With this year-long study, 
the Snowmass output will

provide inputs for the prioritization of 
the research directions of the field 

in the decade to come: the “P5” process
(Particle Physics Project Prioritization Panel). 

https://snowmass21.org

The P5 chair:
Prof. Hitoshi 
Murayama
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• Already ~ O(140 fb-1) @ ATLAS/CMS
• Run 3 up-coming: 300 fb-1

• HL-LHC: 3000 fb-1

à lead the energy/precision frontier!
Further searches at the LHC will be limited by
• Backgrounds
• Systematics  
• New physics threshold

LHC will continue at the energy frontier
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* Snowmass Energy Frontier:  https://snowmass21.org 
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Future Colliders under Discussions*
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ILC (International Linear Collider) 
as a Higgs Factory & beyond

Ecm = 250 GeV / 2 ab-1 /yr: a Higgs factory
= 500 GeV / 4 ab-1 /yr: a top-quark factory
= 1000 GeV / 8 ab-1 /yr: new particle threshold

Under serious consideration in Japan
https://arxiv.org/abs/1901.09829
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FCC (future circular collider): CERN

S. Su 11

HE-LHC 
27 km, 20T

33 TeV

 FCC-hh
80 /100 km, 16/20T 

100 TeV

FCC-ee
80/100 km

90 - 400 GeV

S. Su 11

HE-LHC 
27 km, 20T

33 TeV

 FCC-hh
80 /100 km, 16/20T 

100 TeV

FCC-ee
80/100 km

90 - 400 GeV

Open new energy frontier!

1012 Z; 106 Higgs bosons;
106 top quark pairs

https://arxiv.org/abs/1607.01831,  https://arxiv.org/abs/1606.00947; 
Arkani-Hamed, TH, Mangano, LT Wang, Phys. Rept. 1511.06495.

H

H

H ?
H

H

H

LHC 100 TeV pp

mass reach of new physics

https://arxiv.org/abs/1606.00947


CEPC (Circular e-e+) / SppC (Super pp), China

Similar physics goals to FCC-ee, FCC-hh !
https://arxiv.org/abs/1811.10545
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µ Collider
Proton Driver Acceleration Collider Ring

Accelerators:    
Linacs, RLA or FFAG, RCS

Cooling
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Positron
Ring

AccelerationLow EMmittance Muon 
Accelerator (LEMMA): 
1011 µ pairs/sec from 

e+e− interactions.  The small 
production emittance allows lower 
overall charge in the collider rings 
– hence, lower backgrounds in a 

collider detector and a higher 
potential CoM energy due to 

neutrino radiation.

J. P. Delahaye et al., arXiv:1901.06150

Muon Accelerator Program
map.fnal.gov

Low EMittance Muon Accelerator
web.infn.it/LEMMA

New results on µ cooling by MICE collaboration
Nature 508(2020)53
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6 / 38e+e- (at rest) à !+!- (at threshold)

Proton-Driver:

LEMMA:

J.P. Delahauge et al.,  arXiv:1901.06150

Recent technological breakthroughs:

45 GeV e+

e- at rest
!±
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Fermilab on site:

Daniel Schulte; Mark Palmer; Katsuya Yonehara talk, March 2022

https://muoncollider.web.cern.ch

https://muoncollider.web.cern.ch/


Muon collider on FNAL site:
It may reach ~ mh – 10 TeV

(Curtesy of Pushpa Bhat)
Snowmass Day: https://indico.fnal.gov/event/50538
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ILC: Ecm = 250 (500) GeV,  250 (500) fb-1

• Model-independent measurement: 
ΓH ~ 6%,    ΔmH ~ 30 MeV, ΔkW,Z < 1%
(HL-LHC: assume SM, ΓH~ 5-8%,  ΔmH ~ 50 MeV)

• Higgs Factory: 106 Higgs: ΓH ~ 1%, ΔmH ~ 5 MeV.

Precision Higgs Physics: (v/Λ)2 < 6%

21

Physics Potential @ Future Colliders

• FCC-hh / SPPC:
ΔkHHH ~ 5%

• 14 TeV muon collider: 
ΔkHHH ~ 3%,   ΔkW,Z < 0.5%,  Y! ~ 1%

ILC: arXiv:1710.07621; TLEP Report: 1308.6176; 
FCC: Arkani-Hamed, TH, Mangano, LT Wang, 1511.06495;
muC: TH, D. Liu, I. Low, X. Wang, arXiv:2008.12204.

Critically important to test 
the EW phase transition!



Pushing the “Naturalness” limit

Top quark partners searches:
The Higgs mass fine-tune: δmH/mH ~ 1% (1 TeV/Λ)2

Thus, mstop > 8 TeV à 10-4 fine-tune!

24

Pushing the “Naturalness” limit

The Higgs mass fine-tune: δmH/mH ~ 1% (1 TeV/Λ)2

Thus, mstop > 8 TeV à 10-4 fine-tune!

Stop like T’ search at hadron collider

- Larger production rate than the stop. 

- Studied quite a bit back then, as a “counter 
example” of SUSY.
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Figure 2: Cross-sections at 14 TeV (left) and 100 TeV (right).
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Figure 3: Search significance as computed in [1] for fermions (left) and scalar (right).
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Figure 4: Ratio of scalar cross-section to fermion cross-section.

4

Meade and Reece,  
Han, Mabhubani, Walker and LTW, etc 

Wednesday, April 23, 14

11

contours of the two di↵erent search strategies.

The searches proposed here also have good discriminating power away from the massless

neutralino limit. A 1.5 TeV stop could be discovered in the compressed region of parameter

space. It is possible to exclude neutralino masses up to 2 TeV in most of the parameter

space.

All of the results presented here have been obtained with very minimal cut-flows that do

not rely on b-tagging or jet substructure techniques. Additional refinements should increase

the search sensitivity, at the price of making assumptions on the future detector design.

FIG. 5: Projected discovery potential [left] and exclusion limits [right] for 3000 fb�1 of total
integrated luminosity. At each signal point, the significance is obtained by taking the smaller CLs

between the heavy stop and compressed spectra search strategies, and converting CLs to number
of �’s. The blue and black contours (dotted) are the expected (±1�) exclusions/discovery contours
using the heavy stop and compressed spectra searches.

D. Di↵erent Luminosities

An open question in the design for the 100 TeV proton-proton collider is the luminosity

that is necessary to take full advantage of the high center of mass energy. As cross sections fall

with increased center of mass energy, one should expect that higher energy colliders require

more integrated luminosity to fulfill their potential. The necessary luminosity typically

scales quadratically with the center of mass energy, meaning that one should expect that

the 100 TeV proton-proton collider would need roughly 50 times the luminosity of the LHC

at 14 TeV.

This section shows the scaling of our search strategy as a function of the number of

collected events. As the luminosity changes, we re-optimize the /ET cut. For integrated

T.Cohen et al.: 1406.4512 
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FCC-hh Muon collider

FCC: Arkani-Hamed, TH, Mangano, LT Wang, 1511.06495;
muC: The Muon Smasher's Guide, https://arxiv.org/abs/2103.14043



-

From LUX collaboration

DM Searches  

GeV low mass:
DD difficult;
Collider complementary

100 GeV or higher mass:
DD + ID + HE Collider

23



WIMP DM: 
mass bounded by the thermal relicwith � / g4

e↵/M2
DM. This leads us to a limit on the dark matter mass of

MDM < 1.8 TeV

✓
g2
e↵

0.3

◆
. (18)

As has been long appreciated, it is quite remarkable that the TeV scale
emerges so naturally in this way, assuming dark matter couplings comparable
in strength to the electroweak gauge interactions. This gives a strong, direct
argument for new physics at the TeV scale, independent of any theoretical
notions of naturalness.

Compellingly, dark matter often falls out of theories of physics beyond
the SM without being put in by hand. Indeed, if the SM is augmented by
new physics, not even necessarily close to the weak scale, but far beneath
the GUT scale, the interactions with new states should respect baryon and
lepton number to a very high degree. Since all SM particles are neutral under
the discrete symmetry (�1)B+L+2S, any new particles that are odd under
this symmetry will be exactly stable. This is the reason for the ubiquitous
presence of dark matter candidates in BSM physics. It is thus quite plausible
that the dark matter is just one part of a more complete sector of TeV-
scale physics; this has long been a canonical expectation, with the dark
matter identified as e.g. the lightest neutralino in a theory with TeV-scale
supersymmetry. The dominant SUSY processes at hadron colliders are of
course the production of colored particles—the squarks and gluinos—which
then decay, often in a long cascade of processes, to SM particles and the
lightest supersymmetric particle (LSP), resulting in the well known missing
energy signals at hadron colliders. This indirect production of dark matter
dominates, by far, the direct production of dark matter particles through
electroweak processes.

However, as emphasized in our discussion of naturalness, it is also worth
preparing for the possibility of a much more sparse spectrum of new particles
at the TeV scale. Indeed, if the idea of naturalness fails even slightly, the
motivation for a very rich set of new states at the hundreds-of-GeV scale
evaporates, while the motivation for WIMP dark matter at the TeV scale
still remains. This is for instance part of the philosophy leading to models
of split SUSY: in the minimal incarnation, the scalars and the second Higgs
doublet of the MSSM are pushed to ⇠ 102

� 103 TeV, but the gauginos (and
perhaps the higgsinos) are much lighter, protected by an R-symmetry. The
scalars are not so heavy as to obviate the need for R-parity, so the LSP is

40
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Figure 20: Left: The mass reach for the pure wino in the monojet channel with L =
3000 fb�1 for the 14 TeV LHC (blue) and at 100 TeV (red). The bands are generated by
varying the background systematics between 1�2% and the signal systematic uncertainty
is set to 10% [65]. Right: The mass reach in the pure wino scenario in the disappearing
track channel with L = 3000 fb�1 for the 14 TeV LHC (blue) and at 100 TeV (red). The
bands are generated by varying the background normalization between 20� 500% [65].

background, which is varied between 1�2%, generating the bands in the plot.
Naively scaling by total event rates the systematics from current ATLAS
studies [66] (see Ref. [67] for the CMS study) would yield 0.5% for 3000 fb�1,
but this is clearly overly optimistic. Choosing the systematic error ⇠ 1� 2%
as we have done may also be optimistic, but it sets a reasonable benchmark,
and underscores that minimizing these systematics should be a crucial factor
taken into account in the design of the 100 TeV detectors. Given the same
integrated luminosity, the monojet search increases the reach relative to the
LHC by nearly a factor of 5, as shown in the left panel of Fig. 20 .

Due to the tiny mass splitting �m = 166 MeV between the chargino and
the neutralino, the decay lifetime can be long. The resulting disappearing

46
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The mass reach for minimal WIMP DM:
Model-independent EW multiplets @ muC

Summary: the reach

With inclusive signal: ECM ≈ 14 TeV enough to cover n≤3 multiplets. 
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Figure 16: Summary of the exclusion (upper panel) and discovery (lower panel) reaches of
various muon collider running scenarios. The thick bars represent the combined reach from
missing mass searches through mono-photon, mono-muon, and VBF di-muon channels. The
thin and faint bars represent our estimates of the mono-photon plus one disappearing track
search. The burgundy vertical bars represent the thermal target for a given EW-multiplet
model.

thermal relic abundance is saturated by the EW multiplets DM under consideration. When
combining the inclusive (missing mass) channels, the overall reach is less than the kinematical
limit mχ ∼

√
s/2, especially for EW multiplets with n ≤ 3 due to the low signal-to-background

– 26 –

Higher energy needed to cover higher multiplets.

With disappearing track: potential to reach almost m! ≈ 1/2 ECM
TH, Z. Liu, L.T. Wang, X. Wang: arXiv:2009.11287



Electroweak Resonances: Z’,W’ Colored Resonances:

New Particle Searches 

~ 6x over LHC

Excited Quark
Black 100 TeV
Red 14 TeV
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M ~ 40 – 50 TeV!
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