

ent Progress on **leory/Physics** 195 ('WHY?' and 'HOW?')

2022 CEPC Workshop

Oct. 28, 2022

Christophe Grojean

DESY (Hamburg) Humboldt University (Berlin)

(christophe.grojean@desy.de)

Theory/Physics and CEPC

O(50) talks in 5 parallel sessions BSM, QCD, EW-top, Flavour, Higgs

— What does CEPC need theory/physics for? —

* WHY? Sharpen the physics case and convince the world (politicians, funding agencies, scientists in general, linear collider colleagues...) that CEPC is worth building * **HOW?** Exploit the wealth of data that will be collected

What can CEPC do for theory/physics? —

Better knowledge of SM

Exploration of BSM scenarios

Theory/Physics and CEPC

O(50) talks in 5 parallel sessions BSM, QCD, EW-top, Flavour, Higgs

— What does CEPC need theory/physics for? —

* WHY? Sharpen the physics case and convince the world (politicians, funding agencies, scientists in general, linear collider colleagues...) that CEPC is worth building * **HOW?** Exploit the wealth of data that will be collected

What can CEPC do for theory/physics? —

Better knowledge of SM

Exploration of BSM scenarios

We are not shooting in the dark.

Let's move away from "The SM is incomplete" and "we need to search everywhere" Instead, we might say

We have made the following discoveries, which will enlarge our model of the Universe once we figure out how it fits into what we already know.

> Highlights and Messages from the Snowmass Summer Study. Prisca Cushman

Christophe Grojean

CEPC/FCC-ee has a unique opportunity to refine our "model" of the Universe

LHC: driving cultural change forward

Absence (so far) of new physics where it was expected (TeV) & progresses in string theory/quantum gravity (swampland, no global symmetries) question our description of Nature in terms of effective quantum field theories (non-locality, IR/UV correlation)

EW scale

Higgs cutoff

"Intensity frontier" is not only about precise measurements but it could reveal light and weakly coupled structures as solution to the main open HEP questions.

"Intensity frontier" is not only about precise measurements but it could reveal light and weakly coupled structures as solution to the main open HEP questions.

This makes CEPC valuable on its own and not only through the synergy with SppC.

Christophe Grojean

; the cos $\mu |H|^2 \to g\Lambda \phi |H|^2$

Indirect sensitivity to New Physics (see quantitative concrete examples later)

$\frac{c}{\Lambda^2} < 10^{-3}\Delta$ i.e. improve bounds by A factor 1000 on c

Indirect sensitivity to New Physics (see quantitative concrete examples later)

Indirect sensitivity to New Physics (see quantitative concrete examples later)

 $m_{e_i}m_{u_i}m_d \leftrightarrow Higgs couplings$

nuclei stability

Indirect sensitivity to New Physics (see quantitative concrete examples later)

 $m_{e_i}m_{u_i}m_d \leftrightarrow Higgs couplings$

nuclei stability

The values of the EFT interactions among SM fields will reveal the "selection" rules" of the SM, with intimate links to new structure/symmetries

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + \sum_i$$

 $\sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{c_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \cdots$

relevant experiment energy

Under what conditions does it faithfully describe some BSM at low-energy? When is it justified to truncate the EFT expansion at dimension-6? Exceptio

The values of the EFT interactions among SM fields will reveal the "selection" rules" of the SM, with intimate links to new structure/symmetries

Examples of symmetries leading to different selection rules

Operator	Naive (maximal) scaling with g_*	Symmetry/Selection Rule and corresponding suppression	i
$O_{y_{\psi}} = H ^2 \bar{\psi}_L H \psi_R$	g_*^3	Chiral: y_f/g_*	Dimensional
$O_T = (1/2) \left(H^{\dagger} \overleftrightarrow{D}_{\mu} H \right)^2$	g_*^2	Custodial: $(g'/g_*)^2, y_t^2/16\pi^2$	(D) $(a \operatorname{coupling}) n_i - 2$
$O_{GG} = H ^2 G^a_{\mu\nu} G^{a\mu\nu}$ $O_{BB} = H ^2 B_{\mu\nu} B^{\mu\nu}$	g_*^2	Shift symmetry: $(y_t/g_*)^2$ Elementary Vectors: $(g_s/g_*)^2$ (for O_{GG}) $(g'/g_*)^2$ (for O_{BB})	Nhy EFT? Motivation for
$O_6 = H ^6$	g_*^4	Minimal Coupling: $g_*^2/16\pi^2$ Shift symmetry: λ/g_*^2	but there might exist ^e

 $\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{c_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \cdots$

relevant experiment energy

Under what conditions does it faithfully describe some BSM at low-energy? When is it justified to truncate the EFT expansion at dimension-6? Exceptio

The values of the EFT interactions among SM fields will reveal the "selection" rules" of the SM, with intimate links to new structure/symmetries

Examples of symmetries leading to different selection rules

Operator	Naive (maximal) scaling with g_*	Symmetry/Selection Rule and corresponding suppression	i
$O_{y_{\psi}} = H ^2 \bar{\psi}_L H \psi_R$	g_*^3	Chiral: y_f/g_*	Dimensional
$O_T = (1/2) \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^2$	g_*^2	Custodial: $(g'/g_*)^2, y_t^2/16\pi^2$	(D) $(12) n_i - 2$
$O_{GG} = H ^2 G^a_{\mu\nu} G^{a\mu\nu}$ $O_{BB} = H ^2 B_{\mu\nu} B^{\mu\nu}$	g_*^2	Shift symmetry: $(y_t/g_*)^2$ Elementary Vectors: $(g_s/g_*)^2$ (for O_{GG}) $(g'/g_*)^2$ (for O_{BB}) Minimal Coupling: $g_*^2/16\pi^2$	Nhy EFT? Motivation for generically, (coupling)
$O_6 = H ^6$	g_*^4	Shift symmetry: λ/g_*^2	but there might exist "

Precision physics exp. (EDMs, g-2...) usually constrains one operator. Need a collider to have accessing for the source of the s then understand the underlying structure.

 $\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \sum_{i} \frac{c_j^{(8)}}{\Lambda^4} \mathcal{O}_j^{(8)} + \cdots$

r 'precision tests: SM test → New Physics Search 1g ~ g*) coupling of New Physics to SM 1 F/A expansion 3 hierarchy between departures f selection rules that lead to other scaling **Perturbativity** $(E/\Lambda, \text{coupling} \times v/$

ee Higgs Factory Luminosity

Linear collider can achieve Z-pole programme (10⁶ Z) via radiative return or dedicated low luminosity run (10⁹ Z). Circular collider can collect 10¹² Z in only a few years.

Christophe Grojean

CEPC Run Plan

LEP data accumulated in first 3 mn. Then exciting & diverse programme with different priorities every few years. (order of the different stages still subject to discussion/optimisation)

in each detector: 10⁵ Z/sec, 10⁴ W/hour, 1500 Higgs/day, 1500 top/day

ZH	Z	W+W-	ttbar			
~ 240	~ 91.2	~ 160	~ 360			
7	2	1	-			
3	32	10	-			
5.6	5.6 16		-			
1×10 ⁶	7×10 ¹¹	2×107	-			
10	2	1	5			
8.3	192	27	0.83			
20	96	7	1			
4×10 ⁶	4×10 ¹²	5×10 ⁷	5×10 ⁵			

João Guimarães @ CEPC22

Theory/Physics Progress, Oct. 28, 2022

Christophe Grojean

Christophe Grojean

Christophe Grojean

IDEA concept (also proposed for FCC-ee)

Preshower (µ-RWELL)

Dual-readout calorimeter

Yoke + Muon (µ-RWELL)

The 4th Concept

New

PFA HCAL Partially Yoke

Magnet (3T/2T)

PID (DC+ToF)

Crystal ECAL (Transverse bar)

Snowmass 2021 Higgs Factory Considerations

P1	P2	P3	P4	P5	P6	P7
Precision Higgs	Measurements	Sensitivity to	New Physics	Direct measure	Indirect	Improved
measurements	of Higgs self-	rare and exotic	discovery	of EW/Yukawa	sensitivity to	measurements
to SM particles	coupling(s)	Higgs decays	potential	top coupling	New Physics	of α_s

Technological Considerations

T1	T2	Т3	Т4	T5	Т6	Τ7
Range of operating E/ease of changing E	Annual integrated luminosity	Upgradability to higher energy/ luminosity	Extent and cost of remaining R&D	Ability to operate at the tt threshold	Ability to run at the Z pole	Ability to run at the WW threshold
Т8	Т9	T10	T11	T12-T13	T14-T15	T16
Stability and calibration of collision energy	Beam stability and luminosity calibration	Ability to control beam-related backgrounds	Ability to provide independent confirmation of new discoveries	Ability to provide polarised electrons/ positrons	Possibility to reconfigure as γγ, e-γ, e-e-, ep, pp collider	Opportunities for beam dumps experiments
			T17			

Need for, and scientific utility of, technology demonstrators

J. Bagger+ arXiv:2203.06164

		-10^{-10} / ID $[1034, -10^{-10}]$	$2 - 1$ π_{b+a}	(9 ID_{α})	D
	actories				
	Z mst phase Z second phase	200	52 ab	$\frac{-1}{\text{vear}}$	
	Working point I u	$\frac{-200}{\text{mi}}$ / IP [10 ³⁴ cm ⁻²	$\frac{1}{2 \text{ g}^{-1}}$ Total lum	$\frac{7300}{1000}$	Run ti
				$\frac{1}{1} \left(\frac{2}{11} \right)$	=
	Z first phase	100	26 ab	' /year	2
C2 C2	Z second phase	200	52 ab^-	¹ /year	2
LCC SS SS SS SS SS SS SS SS SS SS SS SS S	Particle production	$(10^9) B^0 \ / \ \overline{B}^0$	$B^+ / B^- B$	$B_s^0 \ / \ \overline{B}_s^0 \ \Lambda$	$\overline{\Lambda_b} / \overline{\Lambda}_b$
D L L L L	Belle II	27.5	27.5	n/a	n/a
D E	FCC-ee	300	300	80	80
'lav ok (CEPC	120	120	30	25
L, H					
	Physical Quantity	SM Value	Tera - Z	10×Tera	ι - Z
	$R_{J/\psi}$	0.289	2.89×10^{-2}	9.15×10	$)^{-3}$
Ă F	R_{D_s}	0.393	4.15×10^{-3}	1.31×10^{-1}) ⁻³
Ω.	$R_{D_s^*}$	0.303	3.25×10^{-3}	1.03×10	$)^{-3}$
	R_{Λ_c}	0.334	9.74×10^{-4}	3.08×10^{-3}	$)^{-4}$
	\bullet BR($B_c \to \tau \nu$)	2.36×10^{-2} [6]	$0.01 \ [6]$	3.16×10^{-3}	$)^{-3}$
out of reach	$BR(B^+ \to K^+ \tau^+ \tau^-)$	1.01×10^{-7}	7.92 [7]	2.48 [7	']
	$BR(B^0 \to K^{*0}\tau^+\tau^-)$	0.825×10^{-7}	10.3 [7]	3.27 [7]
at LHCD/Belle	$BR(B_s \to \phi \tau^+ \tau^-)$	0.777×10^{-7}	24.5 [7]	7.59 [7]
	$BR(B_s \to \tau^+ \tau^-)$	7.12×10^{-7}	28.1 [7]	8.85 [7]
	$BR(B^+ \to K^+ \bar{\nu} \nu)$	$4.6 \times 10^{-6} \ [11]$	-	-	
	$BR(B^0 \to K^{*0} \bar{\nu} \nu)$	9.6×10^{-6} [11]	-	-	(
	$BR(B_s \to \phi \bar{\nu} \nu)$	9.93×10^{-6} [77]	1.78×10^{-2} [77]	5.63×10	$)^{-3}$

large rates clean envrmt

boosted b's/ τ 's

at Z-factory

Makes possible a topological rec. of the decays w/ miss. energy

7-F	Working po		ni. AIP		Solo Te tal	un i 2 I	Par Ru	
	Z first phas	se			26	ab /year		
	Z second ph	ase		200	52	$ab^{-1}/year$		
	Working p	point Lu	ımi. / IP	$[10^{34} \text{ cm}^{-2}]$	$\mathbb{E}_{X_{O}}$	Furn? (2 TPs	belann;1	₽Ŧ
	$\overline{Z \text{ first pl}}$	nase		100	26 a	ab^{-1} /year	2	
22 22	Z second \mathbf{I}	phase		200	52 a	ab^{-1} /year	2	
SS SS SS	Particle p	oroduction	$n(10^9)$	$B^0 \ / \ \overline{B}^0$	B ⁺ / B ⁻	$B^0_s \ / \ \overline{B}^0_s$	$\overline{\Lambda_b \ / \ \overline{\Lambda}}$	=
L@1	I	Belle II		27.5	27.5	n/a	n/a	
	I	FCC-ee		300	300	80	80	
ok (CEPC		120	120	30	25	
Leil, F I. Kw	Physical Q	uantity	SM	Value	Tera-Z	$10 \times T$	era-Z	_
Moni H. H.	$\frac{R_J}{R_I}$		Flavo	ur @ C	EPC/FCC	vs Belle/	'PP	
Ω.	R_I	Attrib	oute			$\Upsilon(4S)$	pp	
	R_{I}	All ha	dron sp	ecies		,	<i>\</i>	_
	$\frac{BR(B^+ \rightarrow)}{BR(B^+ \rightarrow)}$	High	boost				1	
out of reach	$BR(B^0 \rightarrow$	Enorn	nous pro	duction of	cross-sectio	n	1	
at LHCb/Belle	$BR(B_s \rightarrow$	Neglig	gible trig	gger losse	5	1		
	$BR(B_s -$	Low b	ackgrou	inds		1		
	$BR(B^+ -$	Initial	energy	constrain	nt	1		(
	$BR(B^0 \rightarrow$		51101-85	5 5 1 6 VI (MI		•		<u> </u>
	$BR(B_s \rightarrow$	$\phi \bar{ u} \nu$)	9.93×10^{-10}	10^{-6} [77]	1.78×10^{-2}	[77] 5.63 >	$< 10^{-3}$	

150 ab^{-1} $c\overline{c}$ τ^{-}/τ^{+} 6545150600 Belle II LHCb Z^0 1 1 1 702 [12]

large rates clean envrmt

boosted b's/ τ 's

at Z-factory

Makes possible a topological rec. of the decays w/ miss. energy

Lepton Flavour Universality Tests

	Physical Quantity		ty SM Value	Tera - Z	$10 \times \text{Ter}$
-		$R_{J/\psi}$	0.289	2.89×10^{-2}	9.15×1
Ċ		R_{D_s}	0.393	4.15×10^{-3}	1.31×1
	×° –	$R_{D_s^*}$	0.303	3.25×10^{-3}	1.03×1
_		R_{Λ_c}	0.334	9.74×10^{-4}	3.08×1

Christophe Grojean

T. H. Kwok CEPC'22

X. Jiang CEPC'22

$b \rightarrow s \tau \tau$

best probes of models addressing R_K* LHCb anomalies

W. Altmannshofer CEPC'22

Lepton Flavour Universality Tests

Phys	ical Quantit	ty SM Value	Tera - Z	$10 \times \text{Tera-}Z$
	$R_{J/\psi}$	0.289	2.89×10^{-2}	9.15×10^{-3}
	R_{D_s}	0.393	4.15×10^{-3}	1.31×10^{-3}
	$R_{D_s^*}$	0.303	3.25×10^{-3}	1.03×10^{-3}
	R_{Λ_c}	0.334	9.74×10^{-4}	3.08×10^{-4}

Christophe Grojean

T. H. Kwok CEPC'22

X. Jiang CEPC'22

$b \rightarrow s \tau \tau$

best probes of models addressing R_{K*} LHCb anomalies

W. Altmannshofer CEPC'22

New proposal: time-dependent analysis to probe CP-violation in interference in mixing and decay Br $(B \rightarrow J / \psi \tau v)$ S. Decates German S. Becates $\mathcal{B}_{\mathcal{B}_{c^c}}$ $R_{J/\psi} =$ Br $(B_c \not \to \psi / \psi / \psi), \tau \to \mu \nu \overline{\nu}$ $\rightarrow \mu$ $R_{D_s^{(*)}} = \frac{\operatorname{Br}(B \to D_s^{(*)})}{\operatorname{Br}(B \to D_s^{(*)})}$ $R_{D}R_{\Lambda_{c}} = \frac{\operatorname{Br}(\Lambda_{b} \to \Lambda_{c}\tau v)}{\operatorname{Br}(\Lambda_{b} \to \Lambda_{c}\mu v)} \underbrace{V}_{V} D_{s}$ Theory / Physics $Br(\Lambda, \Lambda, \mathcal{A}, \mathcal{B}, \mathcal{$ → μν⊽ *≈∂\$*\$

τ **Physics**

"3 more tau's than at Belle II"

Z factory produces ~ $\mathcal{O}(10^{10}) \ \tau^+ \tau^-$ pairs from $Z \to \tau^+ \tau^-$

- Measuring $BR(\tau \rightarrow \ell \nu \bar{\nu})$ Improvement: $\sim O(10^2)$
- \blacktriangleright Measuring τ lifetime Improvement: $\sim O(10^3)$

Observable	Present	FCC-ee	FCC-ee	
	value $\pm \text{ error}$	stat.	syst.	
$m_{\tau} \ ({\rm MeV})$	1776.86 ± 0.12	0.004	0.1	
$\mathcal{B}(\tau \to \mathrm{e}\bar{\nu}\nu)$ (%)	17.82 ± 0.05	0.0001	0.003	
$\mathcal{B}(\tau \to \mu \bar{\nu} \nu) \ (\%)$	17.39 ± 0.05	0.0001	0.003	
τ_{τ} (fs)	290.3 ± 0.5	0.001	0.04	

• Measuring $BR(\tau \rightarrow 3\mu)$ and $BR(\tau \rightarrow \mu\gamma)$ Improvement: $\sim O(10 - 10^2)$

Decay	Present bound	FCC-ee sensitivity
$Z \rightarrow \mu e$	0.75×10^{-6}	$10^{-10} - 10^{-8}$
$Z \rightarrow \tau \mu$	$12 imes 10^{-6}$	10^{-9}
$\mathrm{Z} \to \tau \mathrm{e}$	$9.8 imes 10^{-6}$	10^{-9}
$ au o \mu \gamma$	$4.4 imes 10^{-8}$	2×10^{-9}
$ au ightarrow 3 \mu$	$2.1 imes 10^{-8}$	10^{-10}

Strong bounds on LFV

EW measurements @ Tera Z

João Guimarães @ CEPC22

Example of EW measurements @ Tera Z

an

Excellent experimental control of off-peak di-muon asymmetry motivates campaign to collect 50-80 ab⁻¹ off peak to gain highest sensitivity to Z-y interference

$$A_{\rm FB}^{\mu\mu}(s) \simeq \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\mu} \times \left[1 + \frac{8\pi \sqrt{2}\alpha_{\rm QED}(s)}{m_Z^2 G_{\rm F} \left(1 - 4\sin^2\theta_{\rm W}^{\rm eff} \right)^2} \frac{s - m_Z^2}{2s} \right]$$

Allows for clean determination of $\alpha_{QED}(m_Z^2)$, which $\frac{1}{1}$ input for m_W closure tests (see later).

	Abada2019_Article_FCCPhysi File Edit View Sign	icsOpportunities.pdf - Adobe A <u>W</u> indow <u>H</u> elp	crobat Reader DC (32-bit)													
Enabl	Home Tools	SCALE Code Syste	Abada2019_Article ×	Abada2019	_Article.											
	🖹 🕁 🕈 🖶	୍		٢		34 / 161	k	1	Θ	\oplus	300% -	⊥ ₽	.	D	Ó.	Ð
	0															

are chosen to optimise the sensitivity to $\alpha_{QED}(m_Z)$, which as shown by [34] can be extracted frc^{*} the leptonic forward–backward asymmetry. In the vicinity of the Z pole, $A_{FB}^{\mu\mu}$ exhibits a strong \sqrt{s} d

$$A_{\rm FB}^{\mu\mu}(s) \simeq \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\mu} \times \left[1 + \frac{8\pi \sqrt{2}\alpha_{\rm QED}(s)}{m_Z^2 G_{\rm F} \left(1 - 4\sin^2\theta_{\rm W}^{\rm eff} \right)^2} \frac{s - 2\pi m_Z^2}{m_Z^2} \right]$$

off-peak interference between the Z and the photon exchange in the process $e^+e^- \rightarrow \mu^+\mu^-$. As d atistical uncertainty of this measurement of $\alpha_{\text{QED}}(m_{\mathbf{z}})$ is optimised just below ($\sqrt{s} = 87.9 \text{ GeV}$) and βeV) the Z pole. The half integer spin tune energy points Measure $\sigma_{Qec}(m_{ev}^2)$ to $3x 10^{-5}$ set σ_{ev} is σ_{ev} (currently 1.1x10⁻⁴) 80/ab 5) are close enough in practice. Together with the peak postant dominated, Gyst ($u_n certail fies$) $the 0^{-5}$ (dominated by \sqrt{s} calib) Z-pole run plan; about half the data will be taken at the peak point. This scan will at the same tir s of the Z mass and width with very adequate precision. Theoretical uncertainties ~ 10⁻⁴, higher order calcs needed

in Ref. [34] that the experimental precision on α_{QED} can be improved by a factor 4 with 40 ab⁻¹ at ea points, leaving an integrated luminosity of 80 ab^{-1} at the Z pole itself. Because most systematic ur

with 40 ab^{-1} at ea nost systematic ur nental uncertainty d to a relative accu o understand if the

air asymmetry at the FCC-ee, as a function of the centre-of-mass energy. The integrated luminosity is assumed to be 80 ab^{-1} around the Z pole.

— theory improvements needed —

$$\rightarrow \delta(\Delta \alpha_{had}) \sim 3 \times 10^{-5}$$
 for $\mathcal{L}_{int} = 85 \text{ ab}^{-1}$

 \rightarrow Requires 2/3-loop corrections for $e^+e^- \rightarrow \mu^+\mu^-$

A. Freitas @ CEPC'22

\$ ጭ	₿	୍	٢	٩	34 / 161	k	•	Θ	\oplus	300% -	₩	P	Q	Ó.	Ð

() This file claims compliance with the PDF/A standard and has been opened read-only to prevent modified

are chosen to optimise the sensitivity to $\alpha_{\text{QED}}(\text{m}_Z)$, which as shown by [34] can be extracted frc^{*} the leptonic forward–backward asymmetry. In the vicinity of the Z pole, $A_{\text{FB}}^{\mu\mu}$ exhibits a strong \sqrt{s} d

$$A_{\rm FB}^{\mu\mu}(s) \simeq \frac{3}{4} \mathcal{A}_{\rm e} \mathcal{A}_{\mu} \times \left[1 + \frac{8\pi \sqrt{2}\alpha_{\rm QED}(s)}{m_Z^2 G_{\rm F} \left(1 - 4\sin^2\theta_{\rm W}^{\rm eff} \right)^2} \frac{s - 2\pi m_Z^2}{2\pi m_Z^2} \right]$$

off-peak interference between the Z and the photon exchange in the process $e^+e^- \rightarrow \mu^+\mu^-$. As d atistical uncertainty of this measurement of $\alpha_{QED}(m_Z)$ is optimised just below ($\sqrt{s} = 87.9$ GeV) and $(currently 1.1x10^{-4})$ 80/ab 5) the Z pole. The half integer spin tune energy points $\sqrt[4]{gasug9.9}_{...,0} \frac{1}{2} \frac{1}{2$

in Ref. [34] that the experimental precision on α_{QED} can be improved by a factor 4 with 40 ab⁻¹ at ea points, leaving an integrated luminosity of 80 ab⁻¹ at the Z pole itself. Because most systematic up to be the second element of the second element o

an

 \rightarrow Mass ± 4 keV (stat) ± 100 keV (syst)

Systematics limited due to beam calibration uncertainties (RDP ~ 100 keV)

 \rightarrow Width ± 4 keV (stat) ± 25 keV (syst)

- Systematics dominated by:
 - Relative (point-to-point) uncertainty on the \sqrt{s} ~ 22 keV
 - Impact on beam-energy spread uncertainty ~ 10 keV
 - Absolute uncertainty on BES ~ 84 MeV
 - Constrained using $e^+e^- \rightarrow \mu^+\mu^-(\gamma)$ events:
 - \rightarrow Constrain BES uncertainty to per-mille level
 - \rightarrow Taking into account asymmetric beam optics (x-angle α 30 mrad) and $\gamma\text{-ISR}$
 - \rightarrow Muon angular resolution ~ 0.1 mrad required

→ Hadronic cross-section σ^0_{had} : ± 4 pb [LEP 37 pb] → Number of neutrino families: 1x10⁻³ (abs) [LEP 7x10⁻³] - Dominated by luminosity uncertainty

Eysermans @ EPS2021

Ч.

[LEP 2.1 MeV]

[LEP 2.3 MeV]

0.2

-0.1

-0.2

-0.3

-0.4

Couplings measured from ratio of hadronic and leptonic partial widths

 \rightarrow need control on detector acceptances: detector precision ~ 10 μ m

	Statistical uncertainty	Systematic uncertainty		fermion type	g_a	
$R_{\mu}(R_{\ell})$	10^{-6}	$5 imes 10^{-5}$	-	e	$1.5 imes 10^{-4}$	2.5
$R_{ au}$	$1.5 imes 10^{-6}$	10^{-4}		μ	2.5×10^{-5}	2.
$R_{ m e}$	$1.5 imes 10^{-6}$	3×10^{-4}		au	$0.5 imes 10^{-4}$	3.5
$R_{ m b}$	5×10^{-5}	3×10^{-4}		b	$1.5 imes 10^{-3}$	1>
$R_{ m c}$	$1.5 imes 10^{-4}$	$15 imes 10^{-4}$	_	с	$2 imes 10^{-3}$	1 >
Do	lative stat and ave	st une (similar)	- 8	Deletive		امىر

Relative stat. and syst. unc. (similar)

Relative unc. on couplings

Extract strong coupling constant $\alpha_s(m_z^2)$ using leptonic/hadronic width ratio: $R_l = \Gamma_{had}/\Gamma_{lep}$

 $\rightarrow \Delta \alpha_{s}(m_{z}) \sim 1 \times 10^{-5} \text{ (stat)} + 1.5 \times 10^{-4} \text{ (syst)} \text{ abs. (current value } \Delta \alpha_{s} \text{ 30x10}^{-4}\text{)}$ $\rightarrow \text{Systematically dominated (acceptance)}$

Extract strong coupling constant $\alpha_s(m_z^2)$ using leptonic/hadronic width ratio: $R_{I} = \Gamma_{had} / \Gamma_{lep}$

 $\rightarrow \Delta \alpha_{s}(m_{7}) \sim 1 \times 10^{-5} \text{ (stat)} + 1.5 \times 10^{-4} \text{ (syst)}$ abs. (current value $\Delta \alpha_{s} 30 \times 10^{-4}$) \rightarrow Systematically dominated (acceptance)

to keep $\delta_{\mathsf{th}} R_{\ell} \lesssim \delta_{\mathsf{exp}} R_{\ell}$

A. Freitas @ CEPC'22

3.5

2.5

1.5

0.5

, and R⁰, theory uncertainties for FCC-ee scaled by 1/4. today's theo. unc Present precision World average [PDG 2017] 0.116 0.122 0.118 0.12 α_s(M²₇)

energy-energy correlators in collinear limit

S. Xu @ CEPC'22

see also S.Q. Wang @ CEPC'22

see also P. Nason @ CEPC'22 for a assessment of non-perturbative effects

Christophe Grojean

to keep $\delta_{\mathsf{th}} R_{\ell} \lesssim \delta_{\mathsf{exp}} R_{\ell}$

Theory/Physics Progress, Oct. 28, 2022

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

see also J. Gu @ CEPC'22

.

and Y. Du @ CEPC'22

For possible improvements in WW analysis thanks to ML techniques, see S. Chiai @ CEPC'ee

Showmass update: J. De Blas + 2206.08326

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

see also J. Gu @ CEPC'22

and Y. Du @ CEPC'22

For possible improvements in WW analysis thanks to ML techniques, see S. Chiai @ CEPC'ee

17

Christophe Grojean

Showmass update: J. De Blas + 2206.08326

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

see also J. Gu @ CEPC'22

and Y. Du @ CEPC'22

For possible improvements in WW analysis thanks to ML techniques, see S. Chiai @ CEPC'ee

17

Christophe Grojean

Showmass update: J. De Blas + 2206.08326

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

see also J. Gu @ CEPC'22

and Y. Du @ CEPC'22

For possible improvements in WW analysis thanks to ML techniques, see S. Chiai @ CEPC'ee

Showmass update: J. De Blas + 2206.08326

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

see also J. Gu @ CEPC'22

and Y. Du @ CEPC'22

For possible improvements in WW analysis thanks to ML techniques, see S. Chiai @ CEPC'ee

Showmass update: J. De Blas + 2206.08326

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

see also J. Gu @ CEPC'22

and Y. Du @ CEPC'22

For possible improvements in WW analysis thanks to ML techniques, see S. Chiai @ CEPC'ee

- At linear colliders, at high energy: EW measurements via Z-radiative return has a large impact on Zqq couplings
- Improvements depend a lot on hypothesis on systematic uncertainties

Yellow: LEP/SLD systematics / 2 Blue: small EXP and TH systematics

Showmass update: J. De Blas + 2206.08326

The Global EW fit at FCC-ee Materials for the talk presented at the FCC-ee physics work

	Cur	rent		FCCee	9
	Exp.	\mathbf{SM}	Exp.	SM (par.)	SM (t
$\delta M_W ~[{ m MeV}]$	± 15	± 8	± 1	$\pm 0.6/\pm 1$	± 1
$\delta\Gamma_Z~[{ m MeV}]$	± 2.3	± 0.73	± 0.1	± 0.1	$\pm 0.$
$\delta \mathcal{A}_\ell \left[imes 10^{-5} ight]$	± 210	± 93	± 2.1	$\pm 8/214$	Cotili
$\delta R_b^0 \left[imes 10^{-5} ight]$	± 66	± 3	± 6	± 0.3	± 5

Christophe Grojean

J. de Blas, FCC CDR overview '19

$$\hat{C}_{\phi l}^{(1)} = C_{\phi l}^{(1)} + \frac{1}{4}C_{\phi D}$$

$$\hat{C}_{\phi l}^{(3)} = C_{\phi l}^{(3)} + \frac{c_w^2}{4s_w^2}C_{\phi D} + \frac{c_w}{s_w}C_{\phi}$$

$$\hat{C}_{\phi q}^{(1)} = C_{\phi q}^{(1)} - \frac{1}{12}C_{\phi D}$$

$$\hat{C}_{\phi q}^{(3)} = C_{\phi q}^{(3)} + \frac{c_w^2}{4s_w^2}C_{\phi D} + \frac{c_w}{s_w}C_{\phi}$$

$$\hat{C}_{\phi e} = C_{\phi e} + \frac{1}{2}C_{\phi D}$$

$$\hat{C}_{\phi u} = C_{\phi u} - \frac{1}{3}C_{\phi D}$$

$$\hat{C}_{\phi d} = C_{\phi d} + \frac{1}{6}C_{\phi D}$$

$$\hat{C}_{ll} = C_{ll}$$

 $\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{Z'} + \mathcal{L}_{\mathrm{SM}-Z'}$

th.)

 $\mathcal{L}_{\mathrm{Eff}}$

.2 hings in EFT

 $\delta g_{hhh}/g_{hhh}^{
m SM}pprox 40\%$

Jorge de Blas

Higgs @ FCC-ee

Sensitivity to both processes very helpful in improving precision on couplings. For the (indirect) sensitivity on Higgs self-coupling, see J. Gu @ CEPC'22

Table 8: Operation costs of low-energy Higgs factories, expressed in Euros per Higgs boson.

Collider	ILC_{250}	$\operatorname{CLIC}_{380}$	$FCC-ee_{240}$
Cost (Euros/Higgs)	7,000 to $12,000$	$2,\!000$	255

Christophe Grojean

1906.02693

Higgs @ CEPC

Sensitivity to both processes very helpful in improving precision on couplings. For the (indirect) sensitivity on Higgs self-coupling, see J. Gu @ CEPC'22

Table 8: Operation costs of low-energy Higgs factories, expressed in Euros per Higgs boson.

Collider	ILC_{250}	$\operatorname{CLIC}_{380}$	$FCC-ee_{240}$
Cost (Euros/Higgs)	7,000 to $12,000$	$2,\!000$	255

Christophe Grojean

G. Wilkinson, FCC Physics WS '22

CEPC'22

Zhang @

M.

1906.02693

CEPC CDR: arXiv:1811.10545 White Paper: arXiv:1810.09037 CEPC Snowmass 2021(Latest): arXiv:2205.08553

Higgs @ CEPC

Sensitivity to both processes very helpful in improving precision on couplings.

For the (indirect) sensitivity on Higgs self-coupling, see J. Gu @ CEPC'22

Table 8: Operation costs of low-energy Higgs factories, expressed in Euros per Higgs boson.

Collider	ILC_{250}	$\operatorname{CLIC}_{380}$	$FCC-ee_{240}$
Cost (Euros/Higgs)	7,000 to $12,000$	2,000	255

1906.02693

CEPC CDR: arXiv:1811.10545 White Paper: arXiv:1810.09037 CEPC Snowmass 2021(Latest): arXiv:2205.08553

Higgs @ CEPC: Complementarity of 240/360 GeV

Christophe Grojean

K. Zhang @ CEPC'22

J. Gu @ CEPC'22

21

include HL-LHC no measured BR_{unt} measured BR_{inv} Scenario kappa-2

Christophe Grojean

ECFA Higgs study group '19 K. Zhang @ CEPC'22 κ_{h} (%)

Kappa-2, May 2019

CLIC₃₈₀

assumption needed for the fit LHeC ($|\kappa_V| \leq 1$) HE-LHC ($|\kappa_V| \leq 1$) to close at hadron HL-LHC ($|\kappa_V| \leq 1$) machines

21

include HL-LHC no measured BR_{unt} measured BR_{inv} Scenario kappa-2

Christophe Grojean

ECFA Higgs study group '19 K. Zhang @ CEPC'22

assumption needed for the fit to close at hadron machines

include HL-LHC no measured BR_{unt} measured BR_{inv} Scenario kappa-2

cannot measure width

collider

hadron

Christophe Grojean

ECFA Higgs study group '19 K. Zhang @ CEPC'22

Christophe Grojean

ECFA Higgs study group '19 K. Zhang @ CEPC'22 κ_b (%)

ECFA Higgs study group '19 K. Zhang @ CEPC'22

EW

Christophe Grojean

Contamination EW/TGC/Higgs can be understood by looking at correlations

Without Z-pole runs, there are large correlations between EW and Higgs

Christophe Grojean

Contamination EW/TGC/Higgs can be understood by looking at correlations

Without Z-pole runs, there are large correlations between EW and Higgs

Christophe Grojean

Contamination EW/TGC/Higgs can be understood by looking at correlations

With Z-pole runs, only correlations between EW and TGC remain

w/o Z-pole run

Christophe Grojean

Contamination EW/TGC/Higgs can be understood by looking at correlations

Z-pole runs at circular colliders isolate EW and Higgs sectors from each others

Direct Searches for Light New Physics

LLP searches with displaced vertices

e.g. in twin Higgs models glueballs that mix with the Higgs and decay back to b-quarks

 $\overset{\text{CLASS}}{\to} \text{Cosmo} \rightarrow \text{Iong-lived ALPs}$ ciated production of the short-lived ALPs MeV+

> ALP & Flavor see J. Zupan @ CEPC'22

L=0.5ab-1 Progress, Oct. 28, 2022

Exotics/Long Lived Particles

The Higgs could be a good portal to Dark Sector — rich exotic signatures —

 \leftarrow

Decay Topologies	Decay mode \mathcal{F}_i	Decay Topologies	Dec
$h \rightarrow 2$ —	$h ightarrow E_{ m T}$	$h \rightarrow 2 \rightarrow 4$	h
h ightarrow 2 ightarrow 3	$h \rightarrow \gamma + \not\!\!E_T$		h -
	$h ightarrow (b\bar{b}) + E_{ m T}$		h =
	$h \rightarrow (jj) + \not\!\!\!E_{\mathrm{T}}$		$h \rightarrow$
\longrightarrow	$h ightarrow (au^+ au^-) + E_{ m T}$		$h \rightarrow 0$
\backslash	$h \rightarrow (\gamma \gamma) + \not\!\!\!E_T$		h
	$h ightarrow (\ell^+ \ell^-) + E_{ m T}$		h
$h \to 2 \to 3 \to 4$	$h ightarrow (bar{b}) + ot\!$		$h \rightarrow$
	$h ightarrow (jj) + ot\!$		$h \rightarrow$
$\langle $	$h \rightarrow (\tau^+ \tau^-) + E_T$		$h \rightarrow$
	$h ightarrow (\gamma \gamma) + E_{ m T}$		$h \rightarrow 0$
	$h \rightarrow (\ell^+ \ell^-) + E_{\rm T}$		h
	$h \rightarrow (\mu^+\mu^-) + E_T$		h
$h \rightarrow 2 \rightarrow (1+3)$	$h \rightarrow bb + \not\!\!\!E_{\mathrm{T}}$	$h \rightarrow 2 \rightarrow 4 \rightarrow 6$	$h ightarrow (\ell^+$
\swarrow	$h ightarrow jj + E_{ m T}$		$h \rightarrow (\ell$
	$h \rightarrow \tau^+ \tau^- + \not\!$	$h \rightarrow 2 \rightarrow 6$	$h \rightarrow \ell$
\backslash	$h \rightarrow \gamma \gamma + \mu_{\rm T}$		$h \rightarrow \ell$
Ň	$h \rightarrow \ell^+ \ell^- + \not\!$		

Z. Liu @ CEPC 2020

LHC's strength Hard at LHC due to missing energy Hard at LHC due to hadronic background

Lepton colliders' strength

Exotics/Long Lived Particles

The Higgs could be a good portal to Dark Sector — rich exotic signatures —

Z. Liu @ CEPC 2020

Exotics/Long Lived Particles

The Higgs could be a good portal to Dark Sector — rich exotic signatures —

Christophe Grojean

Z. Liu @ CEPC 2020

Conclusions

- A circular "Higgs factory" like CEPC has a rich potential:
 - Direct and indirect sensitivity to New Physics.
- * Establish new organising principles of Nature (LEP \rightarrow gauge symmetries, Z/H factory \rightarrow ??).
 - * Probe the HEP-Cosmo connections thanks to the high statistics of the Z-pole run
 - (omitting this exploration would be ignoring the outcome of LHC.
 - 10+ years of LHC have changed the HEP landscape).

FCC-ee/CEPC are an essential part of an **integrated** programme to probe New Physics.

Conclusions

- A circular "Higgs factory" like CEPC has a rich potential:
 - * Direct and indirect sensitivity to New Physics.
- * Establish new organising principles of Nature (LEP \rightarrow gauge symmetries, Z/H factory \rightarrow ??).
 - * Probe the HEP-Cosmo connections thanks to the high statistics of the Z-pole run
 - (omitting this exploration would be ignoring the outcome of LHC.
 - 10+ years of LHC have changed the HEP landscape).
- FCC-ee/CEPC are an essential part of an integrated programme to probe New Physics.

We have profound questions and we need create opportunities to answer them.

h potential: sics.

Theory/Physics Progress, Oct. 28, 2022

BONUS

A circular ee Higgs factory starts as a Z/EW factory (TeraZ)

A linear ee Higgs factory operating above Z-pole can also preform EW measurements via **Z-radiative** return

A linear ee Higgs factory could also operate on the Z-pole though at lower lumi (GigaZ) Not included in the analyses yet

	Higgs	aTGC	EWPO	Top EW
FCC-ee	Yes (μ, σ _{ZH}) (Complete with HL-LHC)	Yes (aTGC dom.) ^{Warning}	Yes	Yes (365 GeV, Ztt)
ILC	Yes (μ, σ _{ZH}) (Complete with HL-LHC)	Yes (HE limit) <mark>Warning</mark>	LEP/SLD (Z-pole) + HL-LHC + W (ILC)	Yes (500 GeV, Ztt)
CEPC	Yes (μ, σ _{ZH}) (Complete with HL-LHC)	Yes (aTGC dom) ^{Warning}	Yes	No
CLIC	Yes (μ, σ _{ZH})	Yes (Full EFT parameterization)	LEP/SLD (Z-pole) + HL-LHC + W (CLIC)	Yes
HE-LHC	Extrapolated from HL-LHC	N/A → LEP2	LEP/SLD + HL-LHC (M _w , sin²θ _w)	_
FCC-hh	Yes (µ, BRi/BRj) Used in combination with FCCee/eh	From FCC-ee	From FCC-ee	_
LHeC	Yes (µ)	N/A → LEP2	LEP/SLD + HL-LHC (M _w , sin ² θ _w)	_
FCC-eh	Yes (µ) Used in combination with FCCee/hh	From FCC-ee	From FCC-ee + Zuu, Zdd	-

Christophe Grojean

Open Symposium - Update of the European Strategy for Particle Physics

Example of measurements @ WW threshold

W mass and width extracted from line-scans using WW xsec

2 energy points determined from Δm_w and $\Delta \Gamma_w$ sensitivities on WW xsec:

 \rightarrow 157.1 GeV width measurement: maximum sensitivity on width

 \rightarrow 162.5 GeV mass measurement: minimal impact on width, max. on mass

Luminosity (<10⁻⁴) and center-of-mass (< 0.5 MeV) uncertainties to be controlled, but weaker constraints than on Z pole

Combined fit with optimized lumi fraction (f=0.4: <u>5 /ab at 157.1</u>, <u>7 /ab at 162.5</u>) \rightarrow precision m_W to 0.25 (stat) + 0.3 (syst) MeV (present 15 MeV) \rightarrow precision Γ_W to 1.2 (stat) + 0.3 (syst) MeV (present 42 MeV)

12

10

8

6

2

155

۵(WW) (pb)

EPS2021

0

Eysermans

Example of measurements @ WW thresheld

Independent analysis on W mass and width using kinematic reconstruction techniques in WW \rightarrow qqlv events

- Profit from precise angle and velocity (β) measurements
- Run at all kinematically accessible energy points (WW, ZH and tt)
- Put conditions on detector requirements

Christophe Grojean

 Δm_{W} (stat) ~ 250 keV \rightarrow similar as xsec measurement $\Delta \Gamma_{W}$ (stat) ~ 350 keV \rightarrow reduction factor 2-3

Limited by systematics (beam energy, resolution, fragmentation) \rightarrow constrain

30

	$\Delta m_{ m W}~({ m MeV}/c^2)$			$\Delta \Gamma_{\rm W} ~({ m MeV})$				
Source	eνqq	$\mu\nu q \bar{q}$	au u q ar q	$\ell \nu q \bar{q}$	eνqq	$\mu u \mathrm{q} \mathrm{ar{q}}$	$ au u q \bar{q}$	$\ell \nu q \bar{q}$
$e+\mu$ momentum	3	8	-	4	5	4	-	4
$e+\mu$ momentum resoln	7	4		4	65	55	-	50
Jet energy scale/linearity	5	5	9	6	4	4	16	6
Jet energy resoln	4	2	8	4	20	18	36	22
Jet angle	5	5	4	5	2	2	3	2
Jet angle resoln	3	2	3	3	6	7	8	7
Jet boost	17	17	20	17	3	3	3	3
Fragmentation	10	10	15	11	22	23	37	25
Radiative corrections	3	2	3	3	3	2	2	2
LEP energy	9	9	10	9	7	7	10	8
Calibration ($e\nu q\bar{q}$ only)	10	-	-	4	20	-	-	9
Ref MC Statistics	3	3	5	2	7	7	10	5
Bkgnd contamination	3	1	6	2	5	4	19	7

Example of measurements @ WW threshold

Precise measurement of W decays

Precise control of lepton ID to avoid cross contamination in signal channels

(e.g. $\tau \rightarrow e, \mu$ vs. e, μ channels)

- Precision of 10⁻⁴ achievable (rel.)
- Simultaneously probe lepton and q/l universality to high precision (~ 10^{-4})

Decay mode relative precision	$B(W\toev)$	$B(W\to \muv)$	$B(W\toTv)$	$B(W \rightarrow qq)$	$W \rightarrow \mu v$
LEP2	1.5 %	1.4 %	1.8 %	0.4 %	
CMS	0.9 %	0.7 %	2 %	0.4 %	
FCCee	0.03 %	0.03 %	0.04 %	0.01 %	

$W \rightarrow TV_{T}$

Flavor tagging

- Allows precise measurement CKM matrix elements V_{cs}, V_{ub}, V_{cb}
- Extract strong coupling constant at WW-threshold

$$R_W = \frac{B_q}{1 - B_q} = \left(1 + \frac{\alpha_S(m_W^2)}{\pi}\right) \sum_{i=u,c;j=d,s,b} |V_{ij}|^2$$

$$\rightarrow \Delta \alpha_{\rm S}(\rm m_W) \sim 3 \times 10^{-4}$$
 (a

 \rightarrow Statistically dominated

EPS2021

0

J. Eysermans

ıbs)
Example of measurements @ tt threshold

Top mass and width measurements similar as WW line-shape

Though more energy points needed:

- Relative large uncertainty on top mass (+/- 0.5 GeV)
- Need to constrain shape in optimal way
- Possible to constrain backgrounds (below) and ttH (above) -

 \rightarrow Multipoint scan in 5 GeV window [340, 345], each ~ 25 /fb

 $\rightarrow \Delta m_{t}$ (stat) ~ 17 MeV

 $\rightarrow \Delta \Gamma_{t}$ (stat) ~ 45 MeV

To date: theoretical QCD errors order of 40 MeV for mass and width

I heory/ Physics Progress, UCT. 28, 2022

Impact of Diboson Systematics

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul 1907.04311

Impact of Beam Polarisation (@250GeV)

increased sensitivities Polarised vs. Unpolarised scenarios @ 250GeV

Christophe Grojean

J. De Blas et al. 1907.04311

Statistical gain from increased rates

$$-P_{e^+}P_{e^-})\left[1-A_{LR}\frac{P_{e^-}-P_{e^+}}{1-P_{e^+}P_{e^-}}\right]$$

- From ee→Zh, A_{LR}~0.15 so $\sigma_{-80,+30} \sim 1.4 \sigma_0$
 - overall, one could expect O(6%) increased coupling sensitivity

Impact of Beam Polarisation (@250GeV)

increased sensitivities Polarised vs. Unpolarised scenarios @ 250GeV

Christophe Grojean

J. De Blas et al. 1907.04311

Statistical gain from increased rates

$$-P_{e^+}P_{e^-})\left[1-A_{LR}\frac{P_{e^-}-P_{e^+}}{1-P_{e^+}P_{e^-}}\right]$$

From ee→Zh, A_{LR}~0.15 so $\sigma_{-80,+30} \sim 1.4 \sigma_0$

overall, one could expect O(6%) increased coupling sensitivity

Gain is much higher in global EFT fit since polarisation removes degeneracies among operators

Impact of Beam Polarisation (@250GeV)

increased sensitivities Polarised vs. Unpolarised scenarios @ 250GeV

Christophe Grojean

J. De Blas et al. 1907.04311

Statistical gain from increased rates

$$-P_{e^+}P_{e^-})\left[1-A_{LR}\frac{P_{e^-}-P_{e^+}}{1-P_{e^+}P_{e^-}}\right]$$

From ee→Zh, A_{LR}~0.15 so $\sigma_{-80,+30} \sim 1.4 \sigma_0$

overall, one could expect O(6%) increased coupling sensitivity

Gain is much higher in global EFT fit since polarisation removes degeneracies among operators

Polarisation benefit diminishes when other runs at higher energies are added and basically left only with statistical gain

J. De Blas et al. 1907.04311

• Positron polarisation doesn't play a big role (for Higgs couplings determination)

J. De Blas et al. 1907.04311

- Positron polarisation doesn't play a big role (for Higgs couplings determination)
- If 250GeV run only: electron polarisation improves significantly (>50%) hVV determination

J. De Blas et al. 1907.04311

- Positron polarisation doesn't play a big role (for Higgs couplings determination)
- If 250GeV run only: electron polarisation improves significantly (>50%) hVV determination
- Polarisation-benefit diminishes (in relative and absolute terms) when other runs at higher energies are added Christophe Grojean 35

J. De Blas et al. 1907.04311