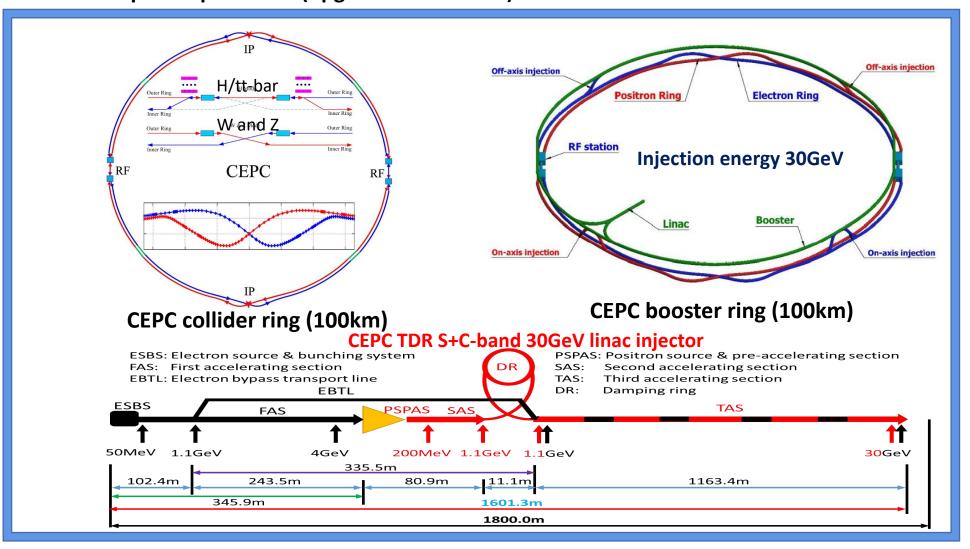
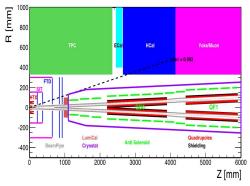


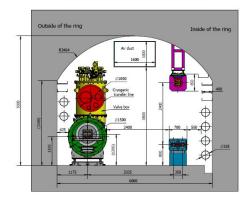
CEPC Accelerator TDR Status Overview

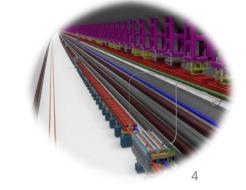

Contents


- Introduction
- CEPC Accelerator System Design and Optimizations inTDR
 - Collider rings
 - Booster
 - Linac
 - MDI
- CEPC Accelerator System Key Hardware R&D Progresses in TDR
 - SRF (platform, cavities, other components, cryomodules...)
 - 650MHz high power and high efficiency klystrons
 - Magnets in collider and booster rings (dipoles, quadrupoles and sextupoles)
 - Vacuum system
 - Electro-magnet seperator
 - Final focus SC quadrupoles, sextupoles in IR region
 - High field SC magnets for SppC
- CEPC Siting, Civil Engineering, AC power consumptions, and Installation Strategy
- Accelerator TDR Documentation Schedule and EDR Plans and Timeline
- CEPC International Collaborations, Conferences, workshops and meetingsSummary
- Summary and Acknowledgements

CEPC Accelerator System Design and Optimizations in TDR

CEPC TDR Layout@30GeV Linac


CEPC as a Higgs Factory: H, W, Z, upgradable to tt-bar, followed by a SppC ~125TeV 30MW SR power per beam (upgradale to 50MW)



CEPC MDI

TUNNEL CROSS SECTION OF THE ARC AREA

CEPC Civil Engineering

CEPC TDR Parameters

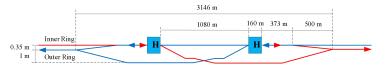
	Higgs	Z	W	ttbar			
Number of IPs		2					
Circumference [km]		100.	0				
SR power per beam [MW]	30						
Half crossing angle at IP [mrad]		16.5	5				
Bending radius [km]		10.7	7				
Energy [GeV]	120	45.5	80	180			
Energy loss per turn [GeV]	1.8	0.037	0.357	9.1			
Piwinski angle	5.94	24.68	6.08	1.21			
Bunch number	268	11934	1297	35			
Bunch spacing [ns]	591 (53% gap)	23 (18% gap)	257	4524 (53% gap)			
Bunch population [10^10]	13	14	13.5	20			
Beam current [mA]	16.7	803.5	84.1	3.3			
Momentum compaction [10^-5]	0.71	1.43	1.43	0.71			
Beta functions at IP (bx/by) [m/mm]	0.3/1	0.13/0.9	0.21/1	1.04/2.7			
Emittance (ex/ey) [nm/pm]	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7			
Beam size at IP (sigx/sigy) [um/nm]	14/36	6/35	13/42	39/113			
Bunch length (natural/total) [mm]	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9			
Energy spread (natural/total) [%]	0.10/0.17	0.04/0.13	0.07/0.14	0.15/0.20			
Energy acceptance (DA/RF) [%]	1.6/2.2	1.3/1.7	1.2/2.5	2.3/2.6			
Beam-beam parameters (ksix/ksiy)	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1			
RF voltage [GV]	2.2	0.12	0.7	10			
RF frequency [MHz]	650	650	650	650			
Longitudinal tune Qs	0.049	0.035	0.062	0.078			
Beam lifetime (bhabha/beamstrahlung)[min]	39/40	80/18000	60/700	81/23			
Beam lifetime [min]	20	80	55	18			
Hour glass Factor	0.9	0.97	0.9	0.89			
Luminosity per IP[1e34/cm^2/s]	5.0	115	16	0.5			

CEPC TDR Parameters (upgrade)

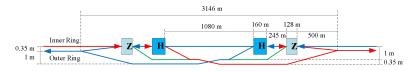
	Higgs	w	Z	ttbar			
Number of IPs		•	2				
Circumference [km]		100.0					
SR power per beam [MW]			50				
Half crossing angle at IP [mrad]			16.5				
Bending radius [km]			10.7				
Energy [GeV]	120	80	45.5	180			
Energy loss per turn [GeV]	1.8	0.357	0.037	9.1			
Piwinski angle	5.94	6.08	24.68	1.21			
Bunch number	415	2162	19918	58			
Bunch spacing [ns]	385	154	15(10% gap)	2640			
Bunch population [10 ¹⁰]	14	13.5	14	20			
Beam current [mA]	27.8	140.2	1339.2	5.5			
Momentum compaction [10 ⁻⁵]	0.71	1.43	1.43	0.71			
Phase advance of arc FODOs [degree]	90	60	60	90			
Beta functions at IP (bx/by) [m/mm]	0.33/1	0.21/1	0.13/0.9	1.04/2.7			
Emittance (ex/ey) [nm/pm]	0.64/1.3	0.87/1.7	0.27/1.4	1.4/4.7			
Beam size at IP (sx/sy) [um/nm]	15/36	13/42	6/35	39/113			
Bunch length (SR/total) [mm]	2.3/3.9	2.5/4.9	2.5/8.7	2.2/2.9			
Energy spread (SR/total) [%]	0.10/0.17	0.07/0.14	0.04/0.13	0.15/0.20			
Energy acceptance (DA/RF) [%]	1.7/2.2	1.2/2.5	1.3/1.7	2.3/2.6			
Beam-beam parameters (xx/xy)	0.015/0.11	0.012/0.113	0.004/0.127	0.071/0.1			
RF voltage [GV]	2.2 (2cell)	0.7 (2cell)	0.12 (1cell)	10 (5cell)			
RF frequency [MHz]		650					
Beam lifetime [min]	20	55	80	18			
Luminosity per IP[10³⁴/cm²/s]	8.3	26.6	191.7	0.8			

This parameter table is used by US Snowmass21 for CEPC physics performance potential evaluation

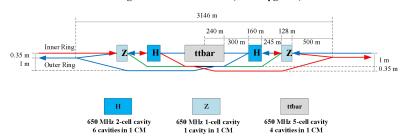
CEPC Accelerator white paper to Snowss21 arXiv:2203.09451


CEPC TDR RF Parameters (Collider Ring)

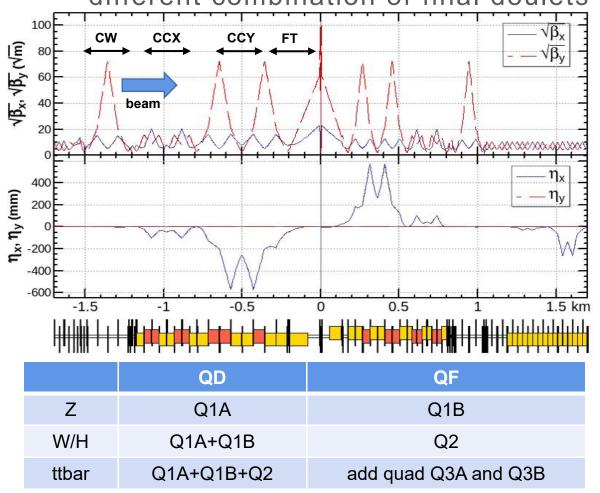
J.Y.Zhai


30 MW SR power per beam for each mode.	ttk	ar			Z
ttbar and Higgs half fill with common cavities for two rings, W and Z with separate cavities for two rings.	additional 5-cell cavities	existing 2-cell cavities	Higgs	w	bypass with 1-cell cavities
Luminosity / IP [10 ³⁴ cm ⁻² s ⁻¹]	0	.5	5	16	115
RF voltage [GV]	10 (7.8	3 + 2.2)	2.2	0.7	0.12
Beam current / beam [mA]	3	.3	16.7	84.1	803.5
Bunch charge [nC]	3	2	20.8	21.6	22.4
Bunch length [mm]	2	.9	4.1	4.9	8.7
650 MHz cavity number	240	240	240	120/ring	30/ring
Cell number / cavity	5	2	2	2	1
Gradient [MV/m]	28.5	20	20	12.7	8.7
Q ₀ @ 2 K at operating gradient (long term)	5E10				
HOM power / cavity [kW]	0.4	0.16	0.45	0.93	2.9
Input power / cavity [kW]	194	56	250	250	1000
Optimal Q _L	1E7	7E6	1.6E6	6.4E5	7.5E4
Optimal detuning [kHz]	0.01	0.02	0.1	0.9	13.3
Cavity number / klystron	4	12	2	2	1
Klystron power [kW]	1400	1400	800	800	1400
Klystron number	60	20	120	60	60
Cavity number / cryomodule	4	6			1
Cryomodule number	60		30		
Total cavity wall loss @ 2 K [kW]	9.5	4	0.45		

- Aiming for all-mode seamless switching in whole project lifecycle without hardware movement
- Highest luminosity in each energy.
 Maximize performance and flexibility for future circular electron positron collider


Stage 1: H/W/LL-Z (and HL-H/W upgrade)

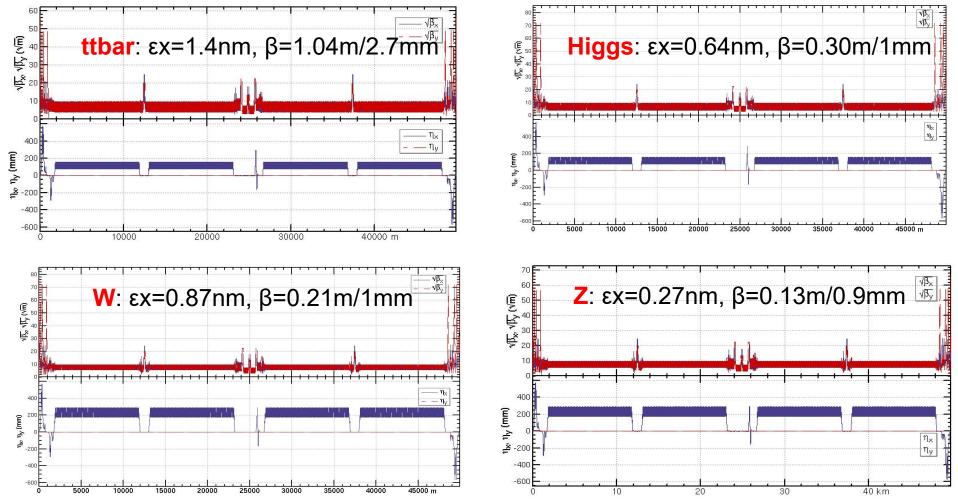
Stage 2: HL-H/W/Z (HL-Z upgrade)



Stage 3: HL-H/W/Z/ttbar (ttbar-upgrade)

CEPC Collider Ring Interaction Region for Four Energies in TDR

• For the interaction region, the IP beta functions are refitted with the Y.W. Wang different combination of final doulets and the matching quadruples.



	L [m]	Strength [T/m]				
		ttbar	Higgs	W	Z	
Q1AIRU	1.21	-141	-141	-94	-110	
Q1BIRU	1.21	-59	-85	-56	+65	
Q2IRU	1.5	-51	+95	+63	0	
Q3AIRU	1.5	+40	0	0	+2	
Q3BIRU	1.5	+40	0	0	+2	
Q1AIRD	1.21	-142	-142	-95	-110	
Q1BIRD	1.21	-64	-85	-57	+65	
Q2IRD	1.5	-47	+96	+64	0	
Q3AIRD	1.5	+40	0	0	+2	
Q3BIRD	1.5	+40	0	0	+2	

Strength of other modes doesn't exceeded the one of Higgs mode.

CEPC Collider Ring Lattice of Half Ring for Four Energy Operation Modes in TDR

Y.W. Wang

The new RF layout has not been implemented in these lattices.

CEPC Collider Ring Dynamic Aperture Status @ Higgs and ttbar in TDR

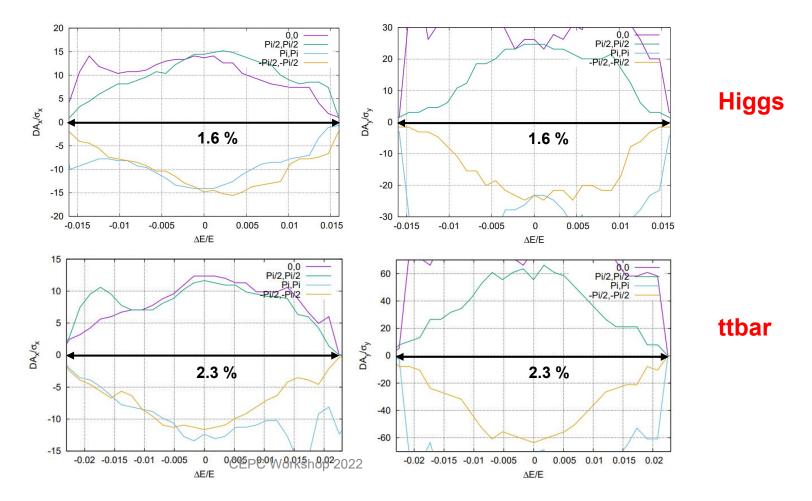
Y.W. Wang

- Tracking to get DA without errors, with turns for one transvers damping time, with 4 initial phases
- DA optimized with 84 variables (64 arc sextupoles + 8 IR sextupoles + 4 multipoles + 8 phase advance)

Effects included in tracking

Synchrotron motion

Radiation loss in all magnets


Tapering

Crab waist sextupole

Maxwellian fringes

Kinematic terms

Finite length of sextupole

CEPC Collider Ring Dynamic Aperture Status @ Z and W in TDR

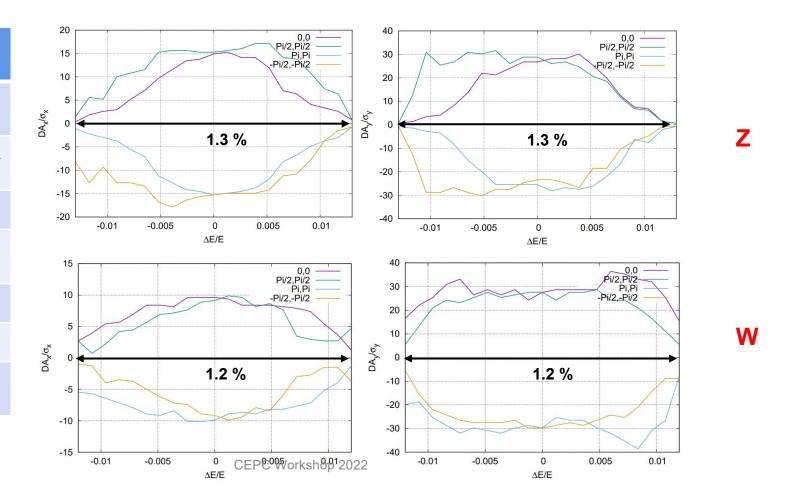
Y.W. Wang

- Tracking to get DA without errors, with turns for one transvers damping time, with 4 initial phases
- DA optimized with 116 variables (96 arc sextupole families + 8 IR sextupoles + 4 multipoles + 8 phase advance)

Effects included in tracking

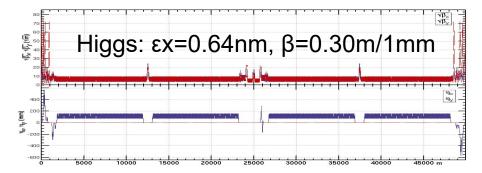
Synchrotron motion

Radiation loss in all magnets


Tapering

Crab waist sextupole

Maxwellian fringes


Kinematic terms

Finite length of sextupole

CEPC Collider Ring TDR Lattice Dynamic Apertures with Errors at Higgs Energy

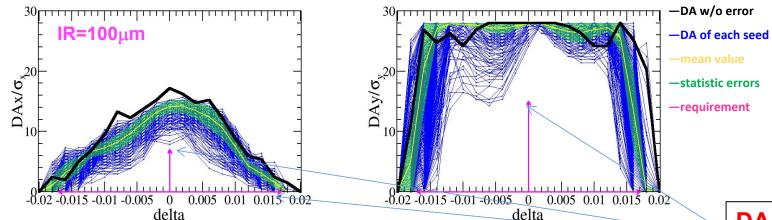
Yiwei Wang Bin Wang

Component	Δx (mm)	Δy (mm)	$\Delta\theta_{z}$ (mrad)	Field error
Dipole	0.10	0.10	0.10	0.01%
Arc Quadrupole	0.10	0.10	0.10	0.02%
IR Quadrupole	0.10	0.10	0.10	
Sextupole	0.10	0.10	0.10	

Effects included in tracking

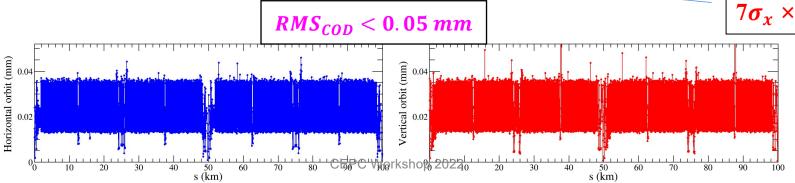
Synchrotron motion

Radiation loss in all magnets

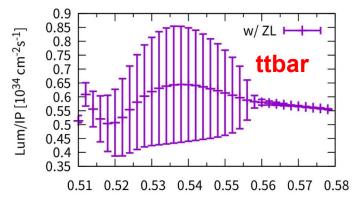

Tapering

Crab waist sextupole

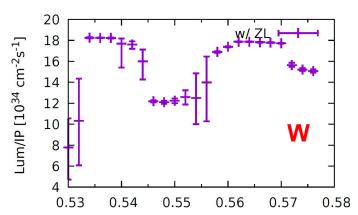
Maxwellian fringes


Kinematic terms

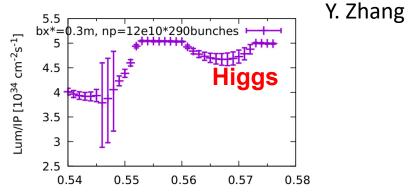
Finite length of sextupole

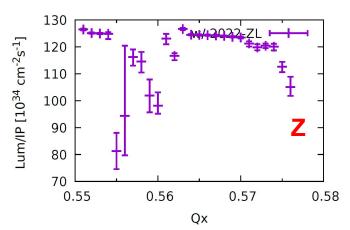


The DA with erros of TDR lattice satisfiy the design goal


DA design goal $7\sigma_x \times 15\sigma_y \times 1.6\%$

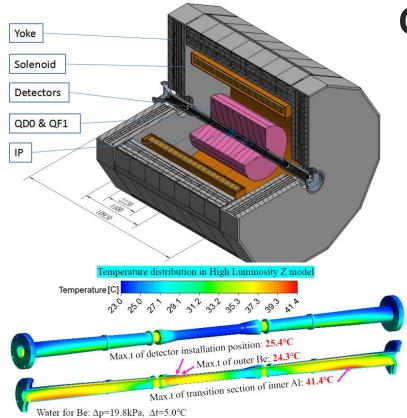
CEPC TDR Parameter Luminosity Check by Beam-beam Simulations

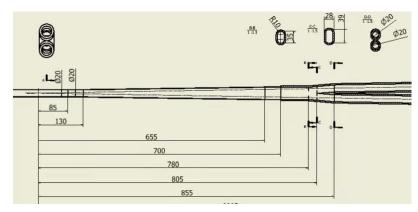

Ttbar: 0.55* 10^34/cm^2/s (BB Simulation)
Parameter table: 0.5*10^34/cm^2/s


W-pole: 18*10^34/cm^2/s(BB Simulation)

Parameter table:16*10^34/cm^2/s

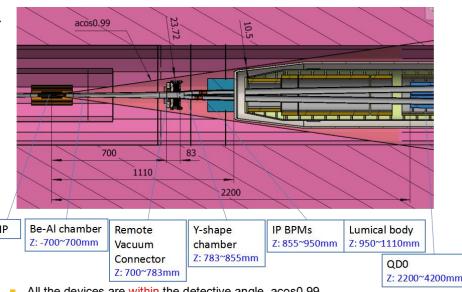
The beam-beam simulations results are consistent with the CEPC TDR parameter tables




Higgs: 5*10^34/cm^2/s (BB Simulation)
Parameter table:5*10^34/cm^2/s

Z-pole: 125*10^34/cm^2/s (BB Simulation)

Parameter table: 115*10^34/cm^2/s



Water for extending Al pipe: Δp=14.9kPa, Δt= 5.1°C

CEPC MDI in TDR

- IR Superconducting magnet design
- IR beam pipe
- Synchrotron radiation
- Beam loss background
- Shielding
- Mechanical support
- Full detector simulation
- Central beryllium pipe inner diameter changes from 28mm(CDR) to 20mm
- There is no SR photons hitting the central beam pipe in normal conditions.
- Single layer beam pipe with water cooling, SR heat load is not a problem.

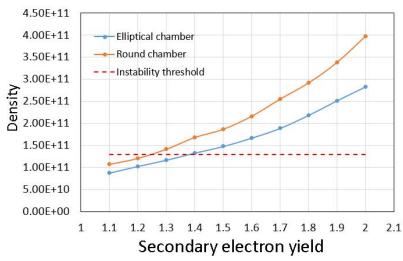
All the devices are within the detective angle, acos0.99.

L*=1.9m, θ c=33mrad, β x*=0.33m, βy*=1.0mm, Emittance=0.68nm

- Strength requirements of anti-solenoids (peak field $B_z \sim 7.2T$)
- Two-in-one type SC quadrupole coils (Peak field 3.8T & 141T/m) with room temperature vacuum chamber & Iron yoke

CEPC TDR Collective Effects

No apparent show stoppers for ttbar, Higgs, W from collective instability point of view for 50MW SR. The beam intensity of Z at 50MW SR is restricted by the resistive wall instability and electron cloud effects, but Z could work at 30MW SR.


N. Wang Y.D. Liu

Collective effects satisfy TDR requirments

Resistive wall instability ⇒ Tough requirement on feedback damping

Total impedance budget @3mm@ Z

	30 MW	50 MW	
Instability growth time [ms]	1.9 (~6 turns)	1.1 (~3 turns)	
Radiation damping [ms]	850		
Bunch by bunch feedback [ms]	1.0 (~3 turns)	0.5 (~1.5 turns)	

30MW (SEY<1.2 for round chamber Realized by NEG coating)

Components	Number	$Z_{ }/n$, m Ω	k _{loss} , V/pC	ky, kV/pC/m
Resistive wall	- 	6.2	363.7	11.3
RF cavities	240	-1.0	225.2	0.3
Flanges	20000	2.8	19.8	2.8
BPMs	1450	0.12	13.1	0.3
Bellows	12000	2.2	65.8	2.9
Pumping ports	5000	0.02	0.4	0.6
IP chambers	2	0.02	6.7	1.3
Electro-separators	22	0.2	41.2	0.2
Taper transitions	164	0.8	50.9	0.5
Total		11.4	786.8	20.2

CEPC Booster TDR Parameters

• Injection energy: $10 \text{GeV} \rightarrow 20 \text{GeV} \rightarrow 30 \text{GeV}$

• Max energy: $120 \text{GeV} \rightarrow 180 \text{GeV}$

• Lower emittance — new lattice (TME)

		tt	Н	W		Z
Beam energy	GeV			30		
Bunch number Injection Threshold of single bunch current		35	268	1297	3978	5967
Threshold of single bunch current	μΑ	8.68	6.3		5.8	
Threshold of beam current (limited by coupled bunch instability)	mA	97	106	100	93	96
Bunch charge	nC	1.1	0.78	0.81	0.87	0.9
Single bunch current	μΑ	3.4	2.3	2.4	2.65	2.69
Beam current	mA	0.12	0.62	3.1	10.5	16.0
Growth time (coupled bunch instability)	ms	2530	530	100	29.1	18.7
Energy spread	%			0.025		
Synchrotron radiation loss/turn	MeV			6.5		
Momentum compaction factor	10-5			1.12		
Emittance	nm			0.076		
Natural chromaticity	H/V			-372/-269		
RF voltage	MV	761.0	346.0		300.0	
Betatron tune v_x/v_y			32	1.23/117.18	3	
Longitudinal tune		0.14	0.0943	0.0879		
RF energy acceptance	%	5.7 3.8 3.6				
Damping time	s	3.1				
Bunch length of linac beam	mm	0.4				
Energy spread of linac beam	%	0.15				
Emittance of linac beam	nm			6.5		

Extraction			H		W	Z	
Extraction		Off axis injection	Off axis injection	On axis injection	Off axis injection	Off axis in	jection
Beam energy	GeV	180	12	20	80	45.5	
Bunch number		35	268	261+7	1297	3978	5967
Maximum bunch charge	nC	0.99	0.7	20.3	0.73	0.8	0.81
Maximum single bunch current	μΑ	3.0	2.1	61.2	2.2	2.4	2.42
Threshold of single bunch current	μΑ	91.5	7	0	22.16	9.57	'
Threshold of beam current (limited by RF system)	mA	0.3	-	1	4	16	
Beam current	mA	0.11	0.56	0.98	2.85	9.5	14.4
Growth time (coupled bunch instability)	ms	16611	2359	1215	297.8	49.5	31.6
Bunches per pulse of Linac		1		1	1	2	
Time for ramping up	s	7.1	4.3 2.4		1.0		
Injection duration for top-up (Both beams)	S	29.2	23.1	31.8	38.1	132.4	
Injection interval for top-up	S	65	3	8	155	153.5	
Current decay during injection interval				39	Vo		
Energy spread	%	0.15	0.0)99	0.066	0.037	
Synchrotron radiation loss/turn	GeV	8.45	1.	69	0.33	0.034	
Momentum compaction factor	10-5	1.12					
Emittance	nm	2.83	2.83 1.26 0.5		0.56	0.19	
Natural chromaticity	H/V			-372/	-269		
Betatron tune v_x/v_y		321.27/117.19					

GV

%

ms

mm

9.7

0.14

1.78

14.2

1.8

0.1

2.17

0.0943

1.59

47.6

1.85

0.16

0.14

0.87

0.0879

2.6

160.8

13

0.27

D. Wang

0.46

0.0879

3.4

0.75

RF voltage

Longitudinal tune

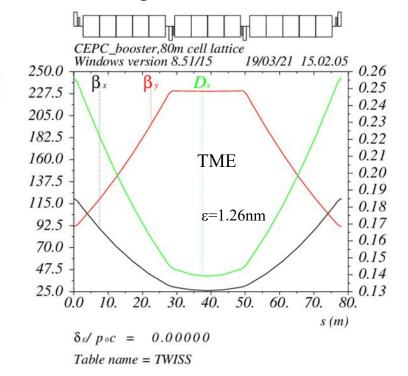
Damping time

RF energy acceptance

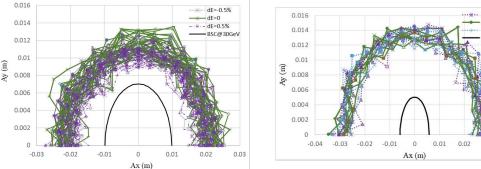
Natural bunch length

Full injection from empty ring

^{*}Diameter of beam pipe is 55mm for re-injection with high single bunch current @120GeV.

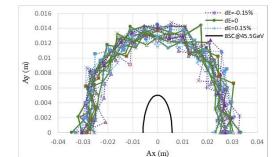

CEPC Booster TDR Optics and DA with Errors

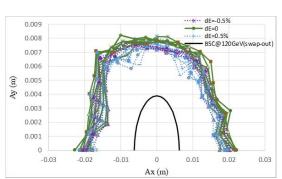
DA @30GeV

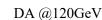

Ax (m)

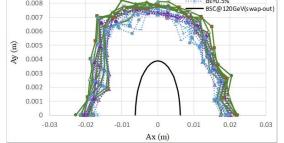
CEPC Workshop 2022

- TME like structure (cell length=80m)
- Overall idea: uniform distribution for the Q
- Combined magnet (B+S) scheme possible
- Interleave sextupole scheme
- Emittance@120GeV=1.26nm

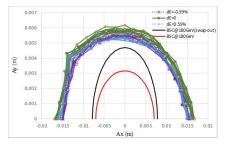



Dispersion sup.


—— dE=0


dE=0.27%

DA @45GeV



DA @180GeV

DA @80GeV

TME DA with installation errors and multipole errors satisfy design goals D. Wang, D.H. Ji, C. H. Yu, Y. M. Peng..

dipole	quadrupole	sextupole
$B1/B0 \leq 2 \times 10^{-4}$		
$B2/B0\leq3\times10^{-4}$	$B2/B1 \leq 3 \times 10^{-4}$	
$B3/B0\leq 2{\times}10^{\text{-5}}$	$B3/B1 \leq 1 \times 10^{-4}$	$B3/B2 \leq 1 \times 10^{-3}$
$B4/B0\leq 8{\times}10^{\text{-}5}$	$B4/B1 \leq 1 \times 10^{-4}$	$B4/B2 \leq 3 \times 10^{-4}$
$B5/B0 \le 2 \times 10^{-5}$	$B5/B1 \le 1 \times 10^{-4}$	$B5/B2 \le 1 \times 10^{-3}$
$B6/B0 \leq 8 \times 10^{-5}$	$B6/B1 \le 5 \times 10^{-5}$	$B6/B2 \le 3 \times 10^{-4}$
$B7/B0 \le 2 \times 10^{-5}$	$B7/B1 \le 5 \times 10^{-5}$	$B7/B2 \le 1 \times 10^{-3}$
$B8/B0\leq 8{\times}10^{-5}$	$B8/B1 \le 5 \times 10^{-5}$	$B8/B2 \le 3 \times 10^{-4}$
$B9/B0\leq2\times10^{-5}$	$B9/B1 \le 5 \times 10^{-5}$	$B9/B2 \le 1 \times 10^{-3}$
$B10/B0 \le 8 \times 10^{-5}$	$B10/B1 \le 5 \times 10^{-5}$	$B10/B2 \le 3 \times 10^{-4}$

(m)

0.018

0.016

0.014

0.012

0.01

0.006

0.004

0.002

₹ 0.008

CEPC TDR SRF Parameters (Booster Ring)

30 MW Collider SR power per beam for each mode. 20 GeV injection.	ttbar	Higgs off/on-axis	w	Z high current	
Extraction beam energy [GeV]	180	120	80	45.5	
Extraction average SR power [MW]	0.087	0.09	0.01	0.004	
Bunch charge [nC]	0.96	0.7	0.73	0.83	
Beam current [mA]	0.11	0.56/0.98	2.85	14.4	
Injection RF voltage [GV]	0.438	0.197	0.122	0.122	
Extraction RF voltage [GV]	9.7	2.17	0.87	0.46	
Extraction bunch length [mm]	1.8	1.85	1.3	0.75	
Cavity number (1.3 GHz 9-cell)	336	96	64	32	
Extraction gradient [MV/m]	27.8	21.8	13.1	13.8	
Q ₀ @ 2 K at operating gradient (long term)		1E	10		
Q _L	4E7		1E7		
Cavity bandwidth [Hz]	33	130			
Peak HOM power per cavity [W]	0.4	1.4/2.7	9.8	108.5	
Input peak power per cavity [kW]	7.9	15.3/21.3	15	33	
SSA peak power [kW] (one cavity per SSA)	10	25	25	40	
Cryomodule number (8 cavities per module)	42	12	8	4	

CDR Higgs energy:

J.Y. Zhai

-collider ring: 240 2cell 650MHz cavities

-booster: 96 1.3GHz 9cell cavities

-Nb consumption: 20 tons

For ttbar energy:

In addition to CDR Higgs energy, SRF cavity numbers have to be increased:

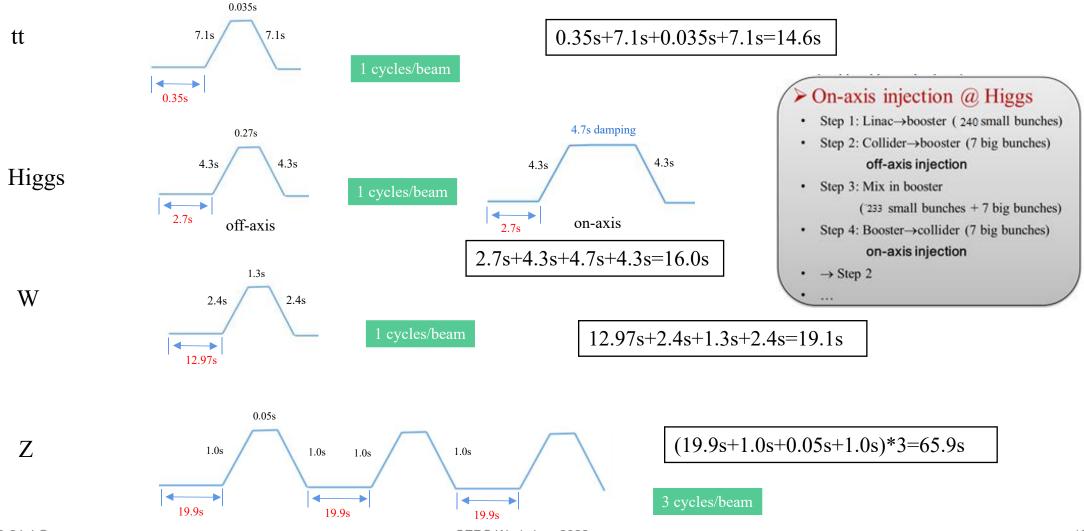
-collider ring:+350 5cell 650MHz cavities

-booster ring:+350 1.3GHz 9 cell cavities

-Additional Nb consumption:65 tons

For 30MW SR/beam Mode at Higgs energy, the cryogenic system need **32000liter Hellium**

For 50MW/beam SR Mode: at Higgs energy, the cryogenic system


needs 42000liter Hellium; at ttbar energy

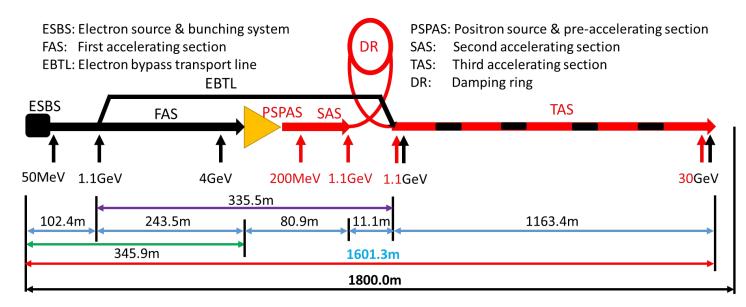
130000liter Hellium needed

Refrigerators: 4*18kW@4.5K

CEPC Booster Ramping Scheme in TDR

Dou Wang, Xiaohao Cui

2022-10-24 J.Gao CEPC Workshop 2022

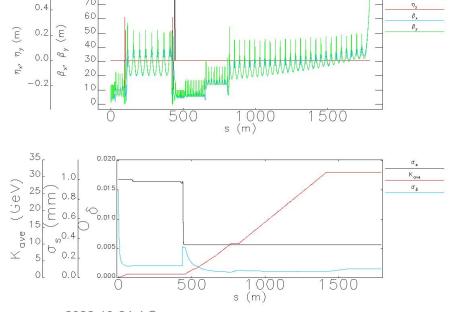

CEPC TDR Linac Injector of 30GeV

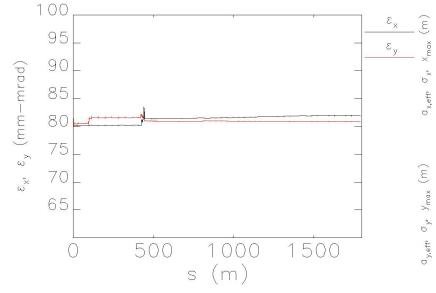
CEPC 20GeV Linac Injector design has also been completed

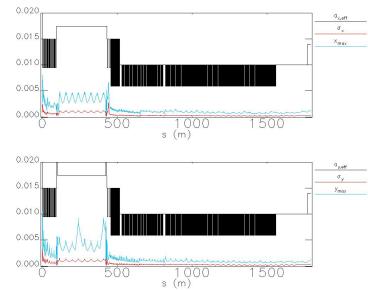
C. Meng

- 30GeV-Linac Scheme
 - C-band accelerating structure is used in TAS form 1.1GeV to 30GeV
 - S-band accelerating structure is used in FAS with energy of 4GeV and SAS with energy of 1.1 GeV
 - The bunch charge is 1.5nC and have the capability to reach 3nC both for electron and positron beam
- Electron Linac
 - ESBS+FAS+EBTL+TAS
- Positron Linac
 - ESBS+FAS+PSPAS+SAS+DR+TAS
- The Linac length is 1.6km and there is still 0.2km as reserved space, the Linac tunnel length is 1.8km
 - The circumference of the damping ring is about 0.15km

Parameter	Symbol	Unit	Baseline
Beam energy	E_{e} / E_{e+}	GeV	30
Repetition rate	f_{rep}	Hz	100
Punch population	Ne-/Ne+	×10 ¹⁰	0.94
Bunch population		nC	1.5
Energy spread	$\sigma_{\!\scriptscriptstyle E}$		1.5×10 ⁻³
Emittance	$arepsilon_r$	nm	6.5

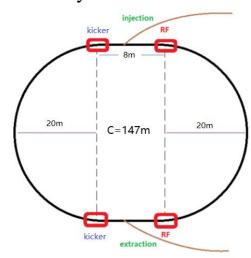


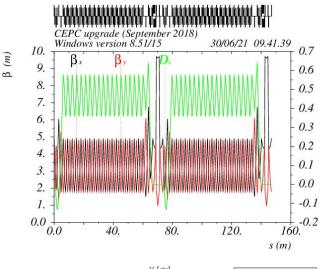

CEPC TDR Linac Injector Design (30GeV)

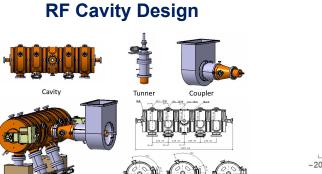

• Simulation results

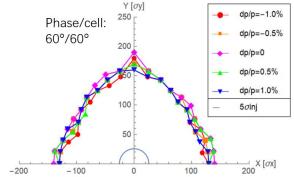
C. Meng

Parameter	Unit	Value	Simulated			
			Elec	ctron	Pos	sitron
Beam energy	GeV	30	31.3	30.8	31.1	30.8
Repetition rate	Hz	100			1	
Bunch charge	nC	1.5	1.5	3.0	1.5	3.0
Energy spread		1.5×10 ⁻³	1.4×10 ⁻³	1.7×10 ⁻³	1.4×10^{-3}	1.9×10 ⁻³
Emittance	nm	6.5	1.4	1.5	3.3(H)/1.7(V)	3.5(H)/1.8(V)
Bunch length (RMS)	mm	1			0.4	


CEPC Positron DR TDR Parameters


Damping with reversed bending magnet


• 4 (max. 8)-bunch storage, storage time:20 (40) ms


• Emittance: $2500 \rightarrow 166/75 (97/3) \text{ mm.mrad}$

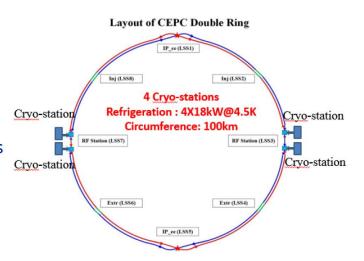
• Flexibility for extr. emittance

D. Wang, J.R. Zhang

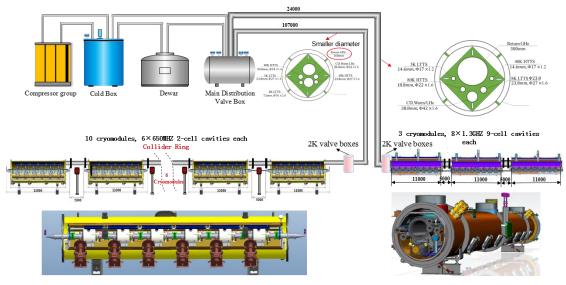
	DR V3.0			
Energy (Gev)	1.1			
Circumference (m)	147			
Number of trains	2 (4)			
Number of bunches/trian	2			
Total current (mA)	12.4 (24.8)			
Bending radius (m)	2.87			
Dipole strength $B_0(T)$	1.28			
U ₀ (kev/turn)	94.6			
Damping time x/y/z (ms)	11.4/11.4/5.7			
Phase/cell (degree)	60/60			
Momentum compaction	0.013			
Storage time (ms)	20 (40)			
δ ₀ (%)	0.056			
ε_0 (mm.mrad)	94.4			
injection σ_z (mm)	4.4			
Extract σ_z (mm)	4.4			
ε_{inj} (mm.mrad)	2500			
$\varepsilon_{\text{ext x/y}}$ (mm.mrad)	166(97)/75(3)			
$\delta_{\rm inj}/\delta_{\rm ext}$ (%)	0.18 /0.056			
Energy acceptance by RF(%)	1.8			
f _{RF} (MHz)	650			
$V_{RF}(MV)$	2.5			
Longitudinal tune	0.0387			

2022-10-24 J.Gao CEPC Workshop 2022 22

CEPC SRF Cryogenic Systems in TDR


Booster ring:

> 1.3 GHz 9-cell cavities, 96 cavities

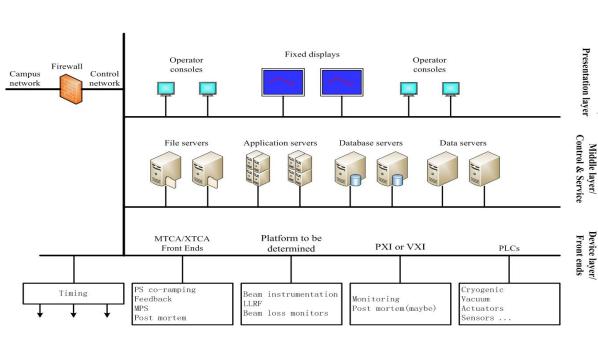

- > 12 cryomodules
- > 3 cryomodules/each station
- > Temperature: 2K/31mbar

Collider ring:

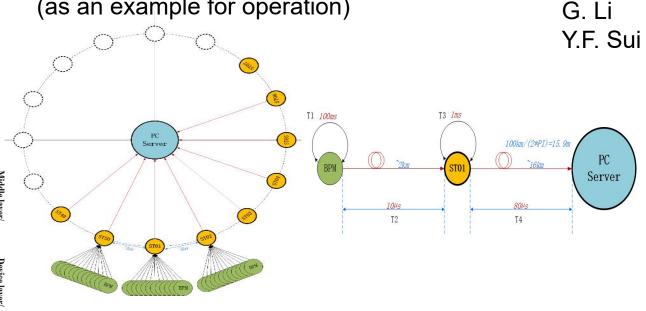
- ➤ 650MHz 2-cell cavities, 336 cavities
- > 56 cryomodules
- ➤ 14 cryomodules/each station
- Temperature: 2K/31mbar

M. Li
CEPC accelerator SRF cryogenic flow chart in TDR

R. Ge

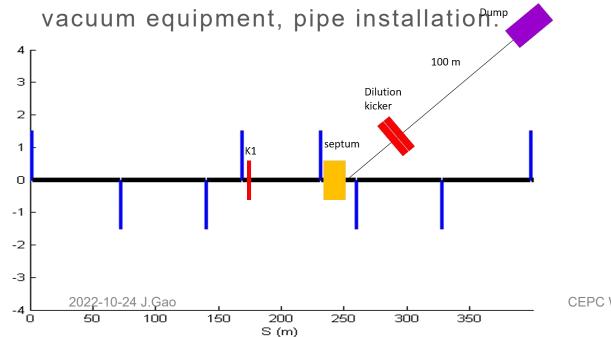

For 30MW SR/beam Mode at Higgs energy, the cryogenic system need 32000liter Hellium

For 50MW/beam SR Mode:


at Higgs energy, the cryogenic system needs 42000liter Hellium; at ttbar energy 130000liter Hellium needed

CEPC Control System and Beam Diagnostic System

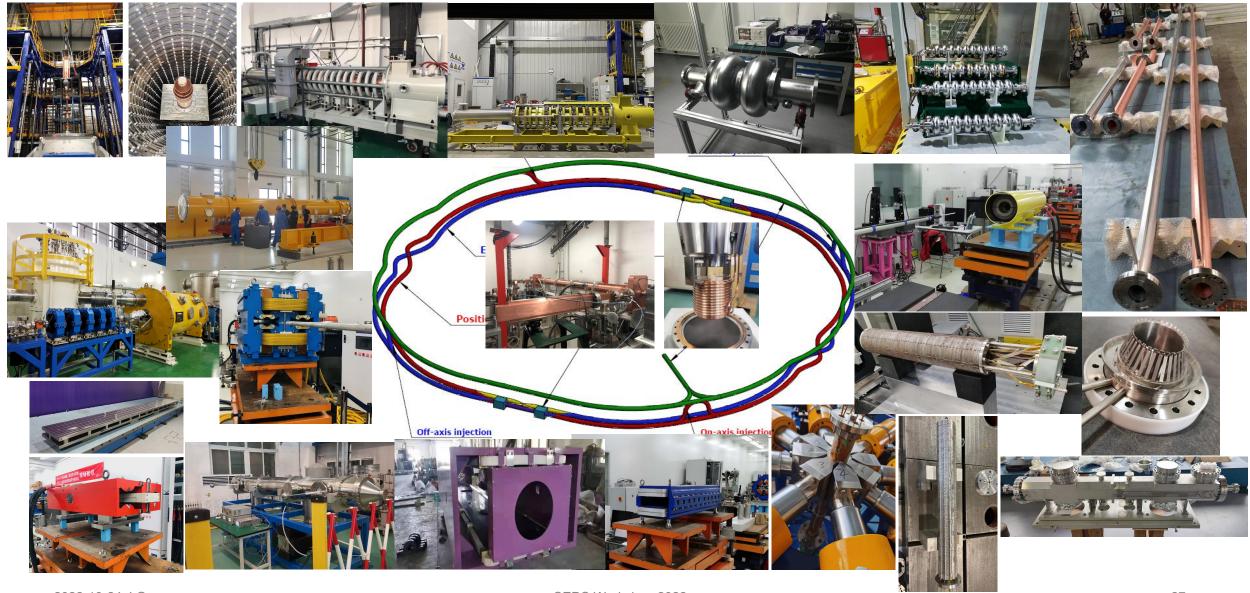
Signal Time Delay Analysis of the COD Measurement (as an example for operation)


Overall hardware architecture of the control system

- 50 stations along the storage ring and connecting with PC sever station with the star topology fiber optic network.
- Consider the delay of whole system, the BPM COD measurement takes about 1s.

CEPC Machine Protection, X.H. Cui G.Y. Tang Beam Abort and Dump System

- A set of kicker magnets has been used to dilute the beam horizontally and vertically;
- The area of bunch distribution in front of dump is assumed to be 6cm x 6cm; These dimensions haven't been optimized yet.
- The length of transfer tunnel is about 100m; the diameter is about 2m, considering the vacuum equipment, pipe installation.


		Extraction kicker	Septum	Dilution kickers
Length (m)		2	20	10
Magnetic flux density (Gauss)	Z	281		
	WW	494		40
	Higgs	741	7000	40
	ttbar	1110		

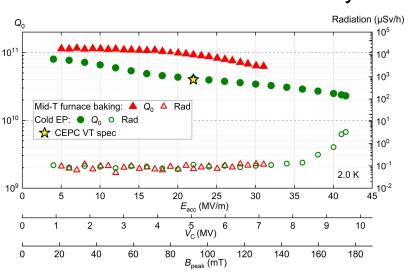
Beam dump graphite core (example) temperature rise

	Higgs	WW	Z	ttbar
Beam energy/GeV	120	80	45.5	182.5
Ne/bunch/10 ¹⁰	14	13.5	14	20
Bunch number (50MW)	415	2162	19918	58
Max. temperature rise	510 ± 15°C	1020 ± 30°C	2620 ± 15°C	
Maximum wtemperature rise by one bunch	7.31 ± 0.03°C	5.38 ± 0.03°C	3.76 ± 0.02°C	10.08 ₹ 0.04°

CEPC Accelerator System Key Hardware R&D Progresses in TDR

CEPC TDR R&D Status of Key Technologies

CEPC SRF Facilities and Components

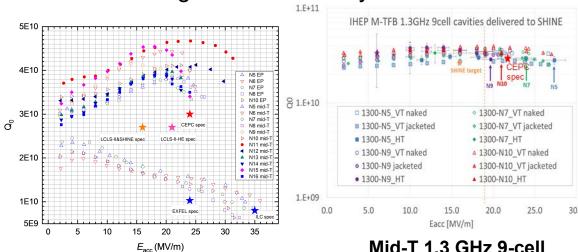


J.Y. Zhai, P. Sha

Mid-T (medium temperature furnace baked) cavities have higher gradient and **Q** than Nitrogen doped cavities with less EP process (1 vs 3)

IHEP PAPS is in full operation since 2021

CEPC 650 MHz 1-cell Cavity


The 650Mhz 1-cell cavity's results (6.4E10@30MV/m, 2.3E10@41.6MV/m)

It is very promising to use 1-cell 650MHz cavity for Higgs, W, and Z modes with requirements:

3E10@40MV/m (horizontal)

CEPC Workshop 2022

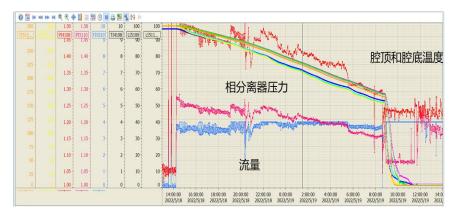
1.3 GHz High Q Mid-T Cavity Horizontal Test

Mid-T 1.3 GHz 9-cell vertical test avg.4.3E10@ 31 MV/m

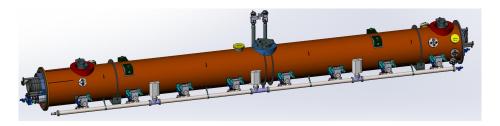
Mid-T 1.3 GHz 9-cell horizontal test (SEL) 3.1E10@21 MV/m, avg. 24.6 MV/m

CEPC 650 MHz 2 x 2-cell Test Cryomodule

J.Y. Zhai



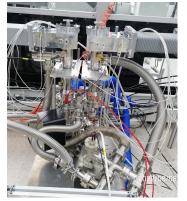
- DC photo-cathode gun voltage conditioned up to 400 kV
- Cavity frequency, HOM coupler double notch filter, tuner, vacuum, cryogenics perform well
- Cavity magnetic field at 2 K < 2 mG (large beam pipe North to South)
- LLRF system commissioning and high power test ongoing
 - Optimizing the outer conductor helium gas cooling of the input coupler. Cavity early quench if with poor coupler cooling.

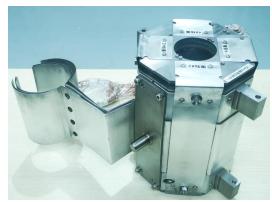


Module automatic cool-down experiment

- 1. 300 to 150 K: < 10 K/hr. Cavity top and bottom ΔT < 20 K
- 2. 150 to 4.5 K: Cavity surface > 1 K/min
- 3. 4.5 to 2 K

CEPC 1.3 GHz 8 x 9-cell High Q Cryomodule


CEPC booster 1.3 GHz SRF R&D and industrialization in synergy with CW FEL projects. J.Y. Zhai

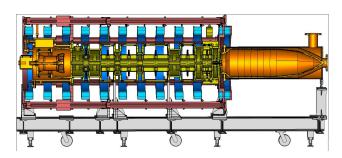

- 8 cavities, input couplers, tuners, SC magnet, BPM, cryostat, other components and tooling are near ready for module assembly
- Module cart, feed/end-cap, volve-box, SSAs, LLRF etc. will be ready soon for horizontal test in early 2023

2022-10-24 | Gao

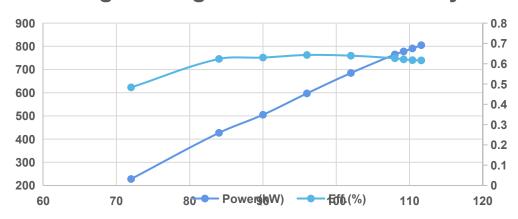
CEPC Workshop 2022

CEPC 650MHz High Efficiency Klystrons

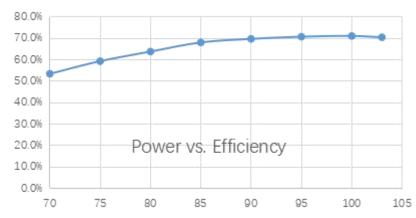
Z.S.Zhou



Klystron No. 2 Efficiency 77% (2021)



Klystron No. 1 Efficiency 65% (2020)

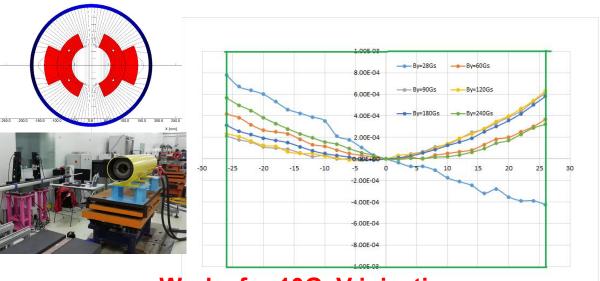

2022

Pulsed RF Mode (30% duty factor, 60ms/5Hz)

High Voltage vs. Power&Efficency

70.5% @ 630kW

Klystron No. 3 (MBK) Efficiency 80.5% (under fabrication)



CEPC Full Size Booster Dipole Magnets

W. Kang

2.0E-03
1.0E-03

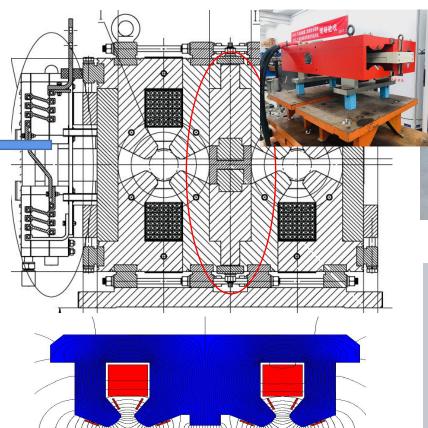
Works for 10GeV injection energy

Oct. 20, 2022

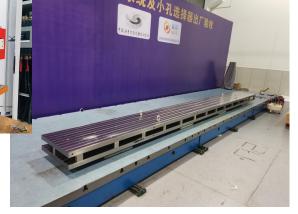
32


Iron core type of 4.7m long full size booster dipoles prototype fabrication completed

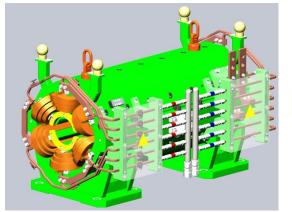
2022-10-24 J.Gao CEPC Workshop 2022

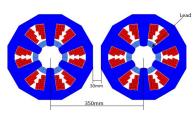

CEPC Collider Ring Magnets

M. Yang


Modification of the dual aperture quadrupole magnet

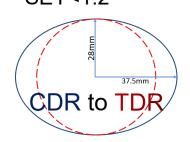
After iron modification with center shim, X0 shifts is lower, which is agreed with the simulation results.




Dural aperture F/D qudrupole design with trim coils

Full size dural aperture dipole

33


Sextupole design

2022-10-24 J.Gao CEPC Workshop 2022

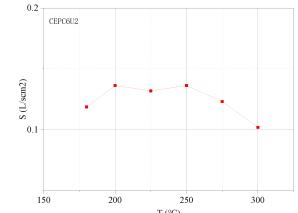
CEPC Vacuum System R&D

Y.S. Ma

New round pipe of Copper (3mm) with NEG coating (200nm) for collider ring in TDR SEY<1.2

6 m vacuum pipe have been installed on the NEG coating setup

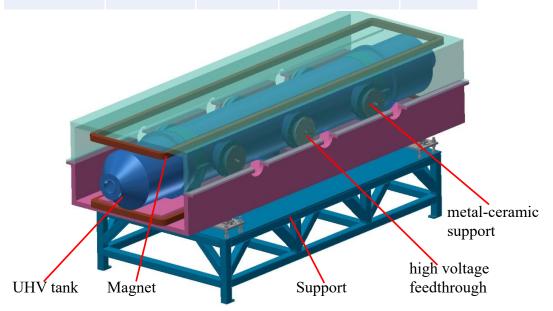
All metal gate valve different from VTA


Vacuum pipes and RF shielding bellows

Facility of pumping speed test have been finished in Dongguan

Pumping speed test of 2 meters long CEPC Cu pipe of NEG coating in IHEP

2022-10-24 J.Gao

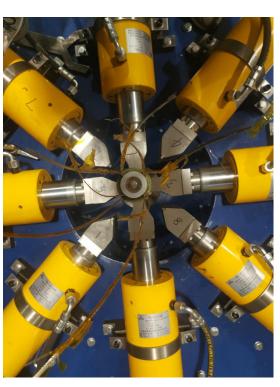

CEPC Workshop 2022

CEPC Electrostatic-Magnetic Deflector

B. Chen

- The Electrostatic-Magnetic Deflector is a device consisting of perpendicular electric and magnetic fields.
- One set of Electrostatic-Magnetic Deflectors including 8 units, total 32 units will be need for CEPC.

	Filed	Effective Length	Good field region	Stability
Electrostatic separator	2.0MV/m	4m	46mm x11mm	5x10 ⁻⁴
Dipole	66.7Gauss	4m	46mm x11mm	5x10-4



The high voltage of prototype test can reach ±90kV, which meets the requirements of Higgs Mode operation, the operating voltage of the electrostatic separator in Higgs Mode (120GeV) is ±75kV

CEPC QD0 SC Magnet R&D (0.5m short model)

Magnet name	0.5m QD0 model magnet
Field gradient (T/m)	136
Magnetic length (m)	0.5
Coil turns per pole	21
Excitation current (A)	2070
Coil layers	2
Conductor	Rutherford Cable, width 3 mm, mid thickness 0.93 mm, keystone angle 1.9 deg, Cu:Sc=1.3, 12 strands
Stored energy (KJ)	2.6
(Single aperture)	
Inductance (H)	0.001
Peak field in coil (T)	3.4
Coil inner diameter (mm)	40
Coil outer diameter (mm)	53
Yoke outer diameter (mm)	108
X direction Lorentz force/octant (kN)	24.6
Y direction Lorentz force/octant (kN)	-23.7
Net weight (kg)	25

Fabrication of NbTi Rutherford cable is finished (12 strands). SC quadrupole coil winding machine, coil heating and curing system has been finished.

Y.S. Zhu

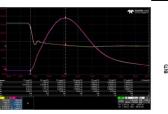
Fabrication of QD0 single aperture short model magnet (NbTi, 136T/m) will be completed in June, 2022, and a dual aperture SC quadrupole will be the next step

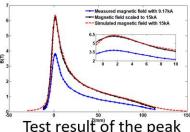
CPEC Linac Injector Key Technology R&D

Flux concentrator for positron source

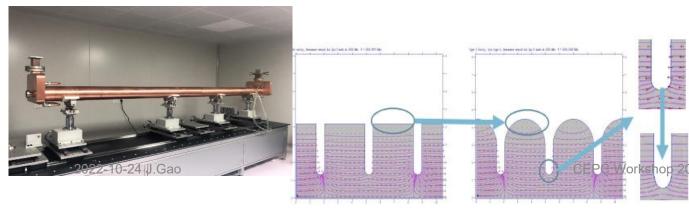
- S band pulse compressor
- High perform. S-band Acc. Struc.
- ◆ C-band Acc. Struc.

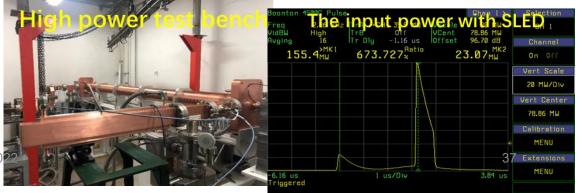
Positron Electron


V. s/m²2


7. 17. 46.5 5—

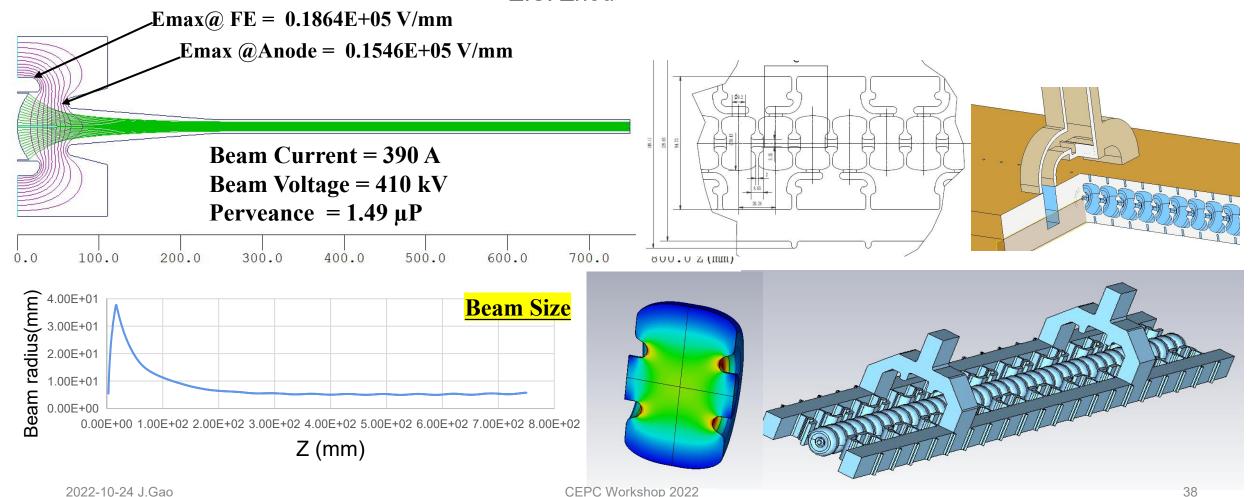
J. Zhang





R&D of the solid state

- pulsed magnetic field of 6 T to 0.5 T
- 15kA/15kV/50Hz solid state pulse source

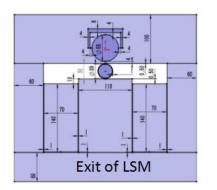

CEPC Linac Advanced Technology Development

J.R. Zhang

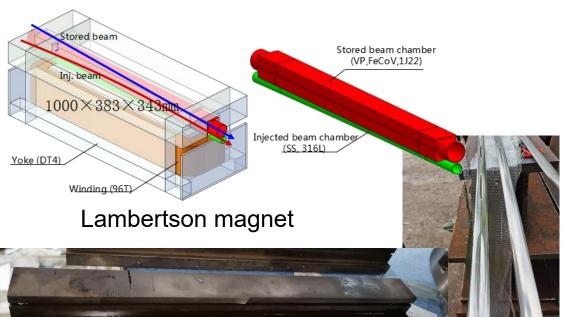
CEPC 80 MW C-Band(5720 MHz) Klystron Design

Z.S. Zhou

R&D on C3 C band accelerator technology as CEPC alternative C-band linac Eacc >70M/m

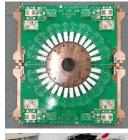


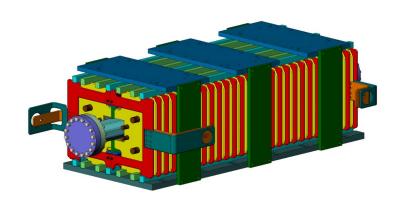

Status of CEPC Beam instrumentation R&D Y.F. Sui


System	R	&D Work support	ted by	Work to be done		
	BEPCII	HEPS/HEPS TF	Funding			
BPM electronics	√	√ 	$\sqrt{}$	Radiation hardness Industrialization		
Beam position monitor fabrication			$\sqrt{}$	detection;		
Longitudinal feedback system	1			Sper France Constitution of the Constitution o		
Transverse feedback system	1			THE STATE OF THE S		
Synchrotron radiation monitor				X-ray interferometer: Gas jet scanner		
BI at the interaction point		ADC_b		ita		
Bunch current monitor	clock	ADC_c		&D based home- npany		
Beam loss monitor 2022-10-24 J.Gao			kshop 2022	R&D		

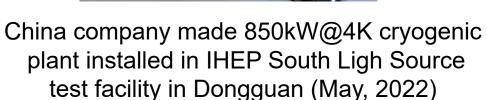
CEPC Inj.&Ext. Hardwares' R&D

J.H. Chen





Slotted-pipe kicker

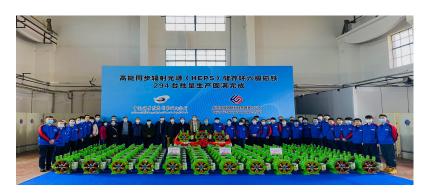

250ns-fast kicker pulser

Delay-line dipole kicker

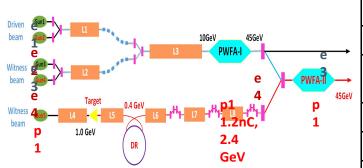
CEPC Technology Demonstration in Synergy with Other Projects

(Next step is 10~18kw@4K)

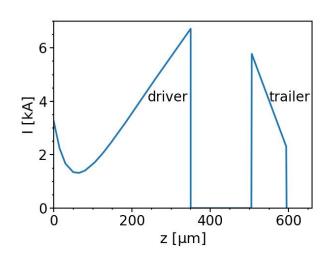
HEPS booster magnet unit (Jan. 2022)

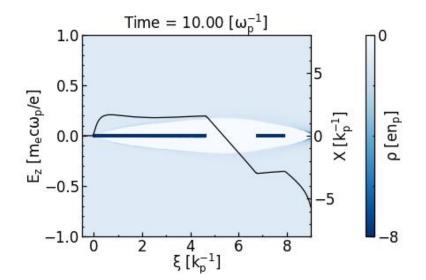


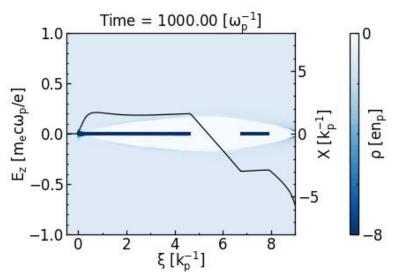
50MW 50Hz C-band klystron by Institute AIR of CAS for Shanghai Soft XFEL (Nov. 2021)


HEPS power source for magnets magnets (June 2022)

HEPS storage ring sextupole magnets (Dec. 2021)

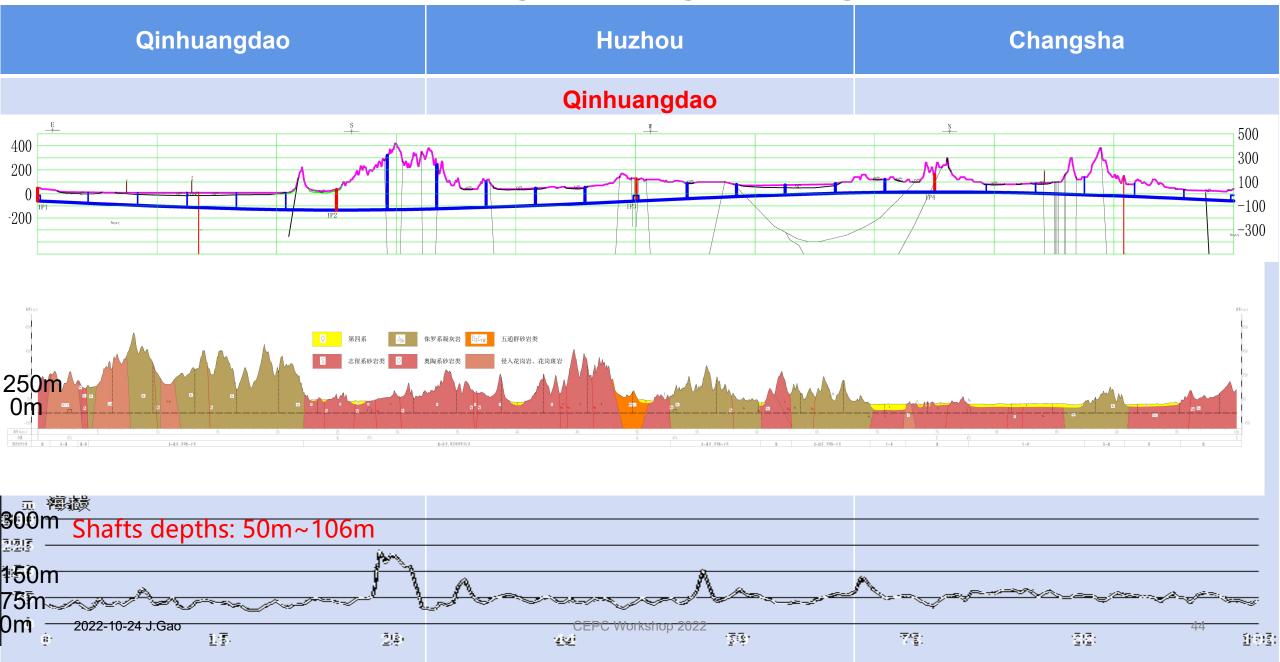

CEPC Plasma Injector 12 GeV → 30 GeV Pratically Feasible


D.Z. Li, X.N. Wang

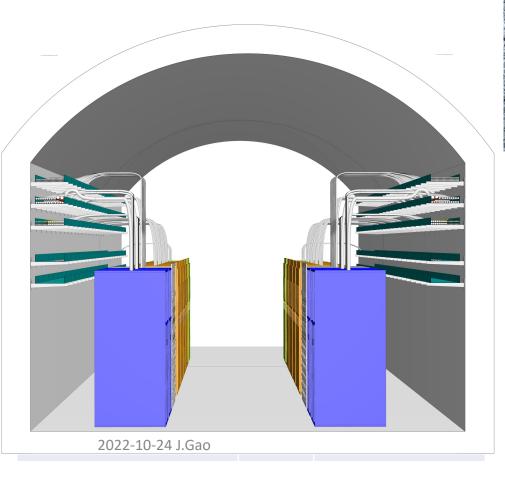


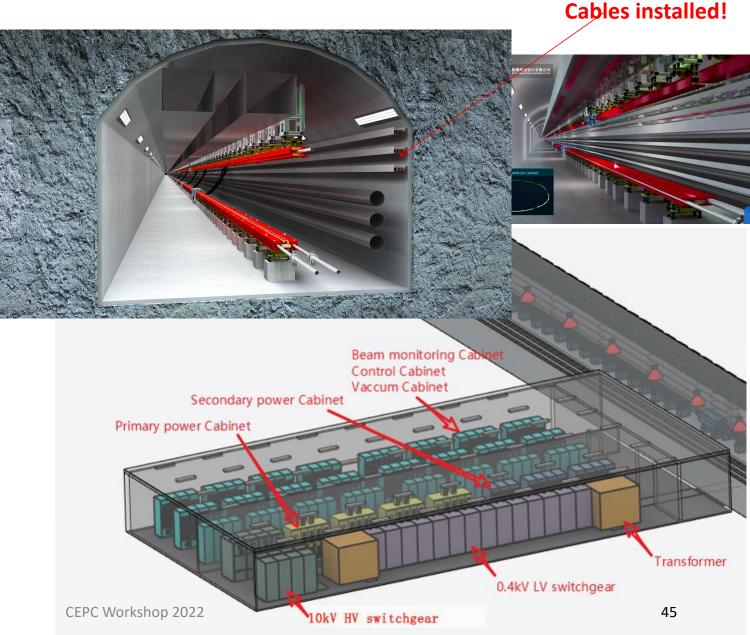
Parameters	Driver	Trailer		
plasma density $n_p (\times 10^{16} cm^{-3})$	0.50334			
Driver energy <i>E</i> (GeV)	12	12		
Normalized emittance $\epsilon_N (\mu m rad)$	20	10		
Length L (µm)	350	90		
(matched) Spot size $\sigma_r(\mu m)$	3.72	2.63		
Charge Q (nC)	4.0	1.2		
Beam distance $d(\mu m)$	1:	55		

Parameters	Trailer
Accelerating distance (m)	$7.3 (97300 w_p^{-1})$
Trailer energy $E(GeV)$	30
Normalized emittance $\epsilon_n(mm\ mrad)$	10
Charge(nC)	1.2
Energy spread $\delta_E(\%)$	0.58
R	1.8
Efficiency(%) (driver -> trailer)	55



By Xiaoning Wang (2022, IHEP)


CEPC Siting, Civil Engineering, AC power consumptions, and Installation Strategy


CEPC Sites Engineering Geologies in TDR

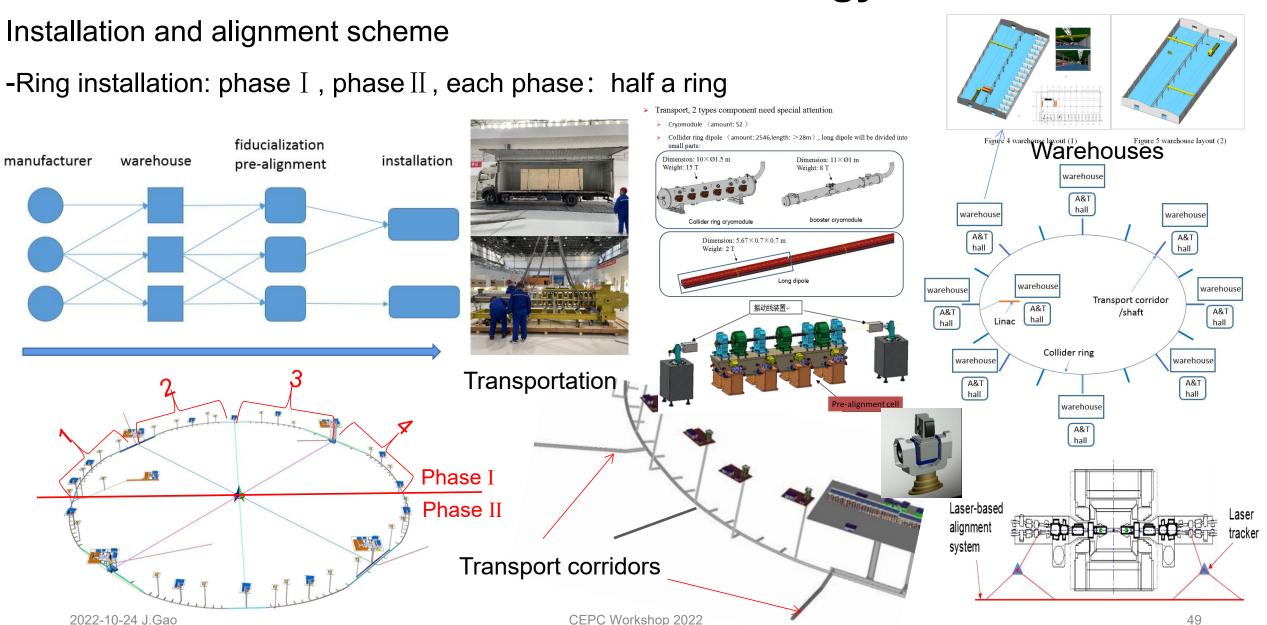
CEPC Conventional Facility and Civil Engineering

Electrical Equipment General Layout in Auxiliary

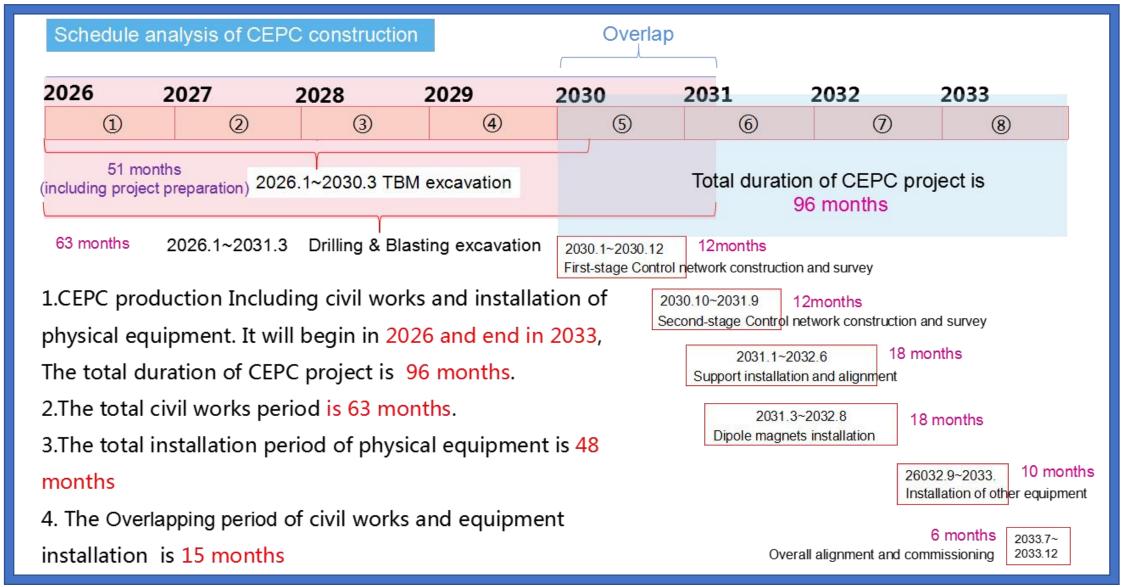
CEPC TDR Power Consumption Breakdowns@Higgs with 30GeV injection Linac and 30MW SR/beam

	Į	ocation and					
	Ring	Booster	LINAC	BTL	IR	Surface building	TOTAL
RF Power Source	96.9	1.4	11.1				109.5
Cryogenic System	11.6	0.6	-		1.1		13.4
Vacuum System	1.0	3.8	1.8				6.5
Magnet Power Supplies	52.3	7.5	2.4	1.1	0.3		63.5
Instrumentation	1.3	0.7	0.2				2.2
Radiation Protection	0.3		0.1				0.4
Control System	1.0	0.6	0.2	0.0	0.0		1.8
Experimental devices					4.0		4.0
Utilities	31.8	3.5	2.0	0.6	1.2		39.1
General services	7.2		0.3	0.2	0.2	12.0	19.8
RF system			0.8				0.8
TOTAL	203.4	18.2	18.9	1.8	6.8	12.0	261.1

CEPC TDR Power Consumption Breakdowns@Higgs with 30GeV injection Linac and 50MW SR/beam


		_	ocation and					
		Ring	Booster	LINAC	BTL	IR	Surface building	TOTAL
1	RF Power Source	161.5	1.4	11.1				174.1
2	Cryogenic System	15.5	0.6	ì		1.7		17.9
3	Vacuum System	1.0	3.8	1.8				6.5
4	Magnet Power Supplies	52.3	7.5	2.4	1.1	0.3		63.5
5	Instrumentation	1.3	0.7	0.2				2.2
6	Radiation Protection	0.3		0.1				0.4
7	Control System	1.0	0.6	0.2	0.0	0.0		1.8
8	Experimental devices					4.0		4.0
9	Utilities	42.4	3.5	2.0	0.6	1.2		49.7
10	General services	7.2		0.3	0.2	0.2	12.0	19.8
11	RF system			0.8				0.8
12	TOTAL	282.4	18.2	18.9	1.8	7.4	12.0	340.7

CEPC TDR Power Consumption Breakdowns@ttbar with 30GeV injection Linac and 50MW SR/beam


		L	ocation and					
		Ring	Booster	LINAC	BTL	IR	Surface building	TOTAL
1	RF Power Source	161.5	1.4	11.1				174.1
2	Cryogenic System	25.2	0.6	-		1.1		26.9
3	Vacuum System	2.0	3.8	1.8				7.6
4	Magnet Power Supplies	118.8	16.8	2.4	1.1	0.3		139.3
5	Instrumentation	1.3	0.7	0.2				2.2
6	Radiation Protection	0.3		0.1				0.4
7	Control System	1.0	0.6	0.2	0.0	0.0		1.8
8	Experimental devices					4.0		4.0
9	Utilities	44.7	3.5	2.0	0.6	1.2		52.0
10	General services	7.2		0.3	0.2	0.2	12.0	19.8
11	RF system			0.8				0.8
12	TOTAL	361.9	27.5	18.9	1.8	6.8	12.0	428.9

CEPC Installation Strategy-1

X.L. Wang

Huadong Company

Accelerator TDR Documentation Schedule and EDR Plans and Timeline

CEPC Accelerator TDR Content Table

1 INTRODUCTION

2 MACHINE LAYOUT AND PERFORMANCE

- 2.1 MACHINE LAYOUT
- 2.2 MACHINE PERFORMANCE

3 OPERATION SCENARIOS

4 COLLIDER

- **4.1 MAIN PARAMETERS**
- 4.2 COLLIDER ACCELERATOR PHYSICS
- 4.3 COLLIDER TECHNICAL SYSTEMS

5 BOOSTER

- **5.1 MAIN PARAMETERS**
- 5.2 BOOSTER ACCELERATOR PHYSICS
- 5.3 BOOSTER TECHNICAL SYSTEMS

6 LINAC, DAMPING RING AND SOURCES

- **6.1 MAIN PARAMETERS**
- **6.2 LINAC ACCELERATOR PHYSICS**
- 6.3 LINAC TECHNICAL SYSTEMS
- 6.4 DAMPING RING TECHNICAL SYSTEMS

7 COMMUNAL FACILITY FOR CEPC ACCELERATORS

- 7.1 CRYOGENIC SYSTEM
- 7.2 SURVEY AND ALIGNMENT
- 7.3 RADIATION PROTECTION AND INTERLOCK
- 7.4 COLLIMATOR AND MACHINE PROTECTION

8 OPERATION AS A HIGH INTENSITY Γ-RAY SOURCE

- 8.1: PARAMETERS AS A GAMMA-RAY SOURCE
- 8.2: APPLICATIONS OF A HIGH INTENSITY Γ-RAY SOURCE
- 8.3: DETECTION METHODS OF HIGH-INTENSITY Gamma-RAY

9 SPPC

- 9.1 INTRODUCTION
- 9.2 KEY ACCELERATOR ISSUES AND DESIGN
- 9.3 HIGH-FIELD SUPERCONDUCTING MAGNET
- 9.4 INJECTOR CHAIN

10 CONVENTIONAL FACILITIES

- 10.1 INTRODUCTION
- 10.2 SITE AND STRUCTURE
- 10.3 ELECTRICAL ENGINEERING
- 10.4 COOLING WATER SYSTEM
- 10.5 VENTILATION AND AIR-CONDITIONING SYSTEM
- 10.6 FIRE PROTECTION AND DRAINAGE DESIGN
- 10.7 PERMANENT TRANSPORTATION AND LIFTING EQUIPMENT
- 10.8 GREEN DESIGN

11 ENVIRONMENT, HEALTH AND SAFETY CONSIDERATIONS

- 11.1 GENERAL POLICIES AND RESPONSIBILITIES
- 11.2 WORK PLANNING AND CONTROL
- 11.3 ENVIRONMENT IMPACT
- 11.4 IONIZATION RADIATION
- 11.5 FIRE SAFETY
- 11.6 CRYOGENIC AND OXYGEN DEFICIENCY HAZARDS
- 11.7 ELECTRICAL SAFETY
- 11.8 NON-IONIZATION RADIATION
- 11.9 GENERAL SAFETY

12 PROJECT COST, SCHEDULE AND PLANNING

- 12.1 CONSTRUCTION COST ESTIMATE
- 12.2 OPERATIONS COST ESTIMATE
- 12.3 PROJECT TIMELINE
- 12.4 PROJECT PLANNING

TDR written is underway, and to be finished at the end of 2022 and delivered in 2023

CEPC Accelerator TDR Electronic Documentation System-DeepC Development

HYDROCHINA Huadong Company with IHEP Project × CEPC-TDR × Project × Conference X Project × Technology Library × Promotion X Project X Project Project Project Project Technology Library 🕸 🔍 CEPC-TDR

□ Promotion 🕸 🔍 Conference 🕸 🔍 Q := Contents Contents Knowledge Knowledge Knowledge Knowledge Contents Contents Q := Articles & Reports Base Base Base ▼ TDR-Reports ▼ CEPC Overall **Brochures** pre-CDR Volume1–Accelerator OA OA OA OA CEPC DAY Progress Report Cover Videos ▼ CEPC workshop CDR **Pictures** A Personal A Personal A Personal A Personal ▶ The 2021 International Workshop 3 Operation scenarios Published Articles ☆ Common ☆ Common The 2020 International Workshop ☆ Common ☆ Common ▼ 4 Collider Requirements Parameters & Physical ▶ The 2019 International Workshop 4.1 Main parameters Project Files The 2018 International Workshop 4.2 Collider accelerator physics 1 Accelerator Physics **>** **Technical Reports** 4.3 Collider technical systems 2 Superconducting RF System IAC meeting Process Flow 4.3.1 Superconducting RF System Published Articles Mechanical Design 15 Control System **CEPC Accelerator** 4.3.9 Mechanical Systems Review Report 5 Booster **CEPC Physics and Detector** Cost and Energy Consumption Volume2 Others Discipline 1 Accelerator Physics ▼
 Discipline 1 Accelerator Physics 2 Superconducting RF System 1 Accelerator Physics 2 Superconducting RF System = 2 Superconducting RF System Public Resource Library X Project × 15 Control System 15 Control System Project Public Resource Library 🕸 🔍 15 Control System Contents Q := Knowledge Base ▼
 Discipline 1 Accelerator Physics Four categories: TDR Preparation; Conference; Technology Library; Promotion OA 2 Superconducting RF System Deep Cois a software developed jointly by HYDROCHINA Huadong Company with IHEP A Personal 53 15 Control System

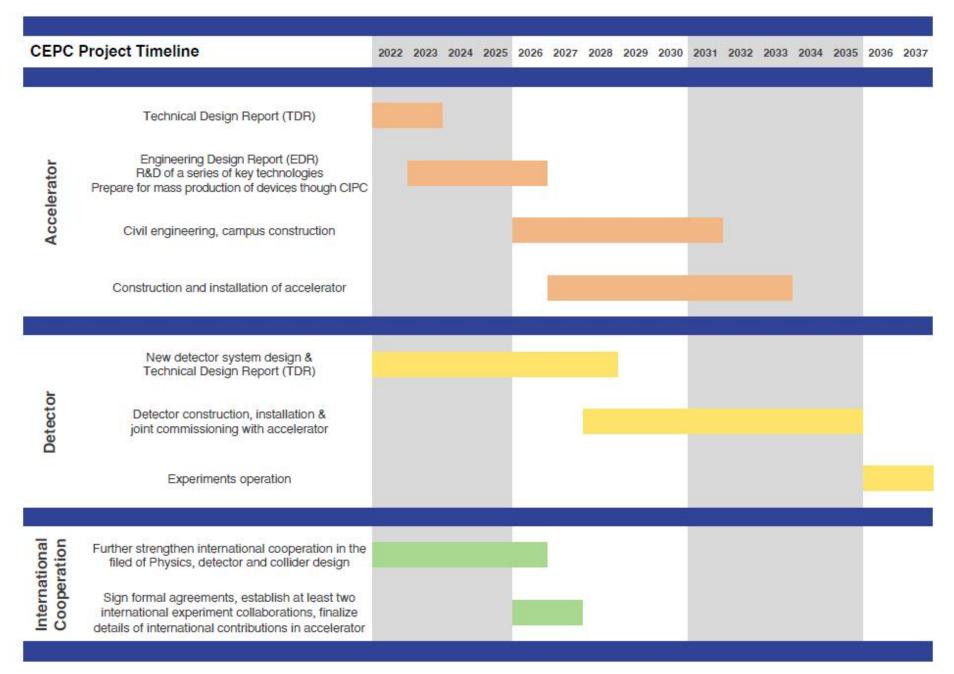
☆ Common

CEPC Accelerator TDR Documentation Preparation and EDR Plans

TDR timeline:

TDR started to write after the first IARC reveiw in June 2022

TDR completes document writing in Dec. 2022


TDR released in 2023 after international review

CEPC Accelerator EDR Phase Plan: Jan. 2023-Dec. 2025

-CEPC site study converging to one or two with detailed feasibility studies (tunnel and infrastructures,

environment)

- -Engineering design of CEPC accelerator systems and components towards fabrication in an industrial way
 - -Site dependent civil engineering design implementation preparation
- -Work closely with CAS and MOST to prepare CEPC be put in the "15th five year plan" (under way)
- -EDR document completed for government's approval of starting construction around 2026 (the starting of the "15th five year plan")

CEPC International Collaborations Conferences, Worhshops and Meetings

CEPC Accelerator White Paper-AF3 Submissions to Snowmass21

Snowmass2021 White Paper AF3- CEPC

CEPC Accelerator Study Group¹

1. Design Overview

1.1 Introduction and status

The discovery of the Higgs boson at CERN's Large Hadron Collider (LHC) in July 2012 raised new opportunities for large-scale accelerators. The Higgs boson is the heart of the Standard Model (SM), and is at the center of many biggest mysteries, such as the large hierarchy between the weak scale and the Planck scale, the nature of the electroweak phase transition, the original of mass, the nature of dark matter, the stability of vacuum, etc. and many other related questions. Precise measurements of the properties of the Higgs boson serve as probes of the underlying fundamental physics principles of the SM and beyond. Due to the modest Higgs boson mass of 125 GeV, it is possible to produce it in the relatively clean environment of a circular electron–positron collider with high luminosity, new technologies, low cost, and reduced power consumption. In September 2012, Chinese scientists proposed a 240 GeV Circular Electron Positron Collider (CEPC), serving two large detectors for Higgs studies and other topics as shown in Fig. 1. The ~100 km tunnel for such a machine could also host a Super Proton Proton Collider (SPPC) to reach energies well beyond the LHC.

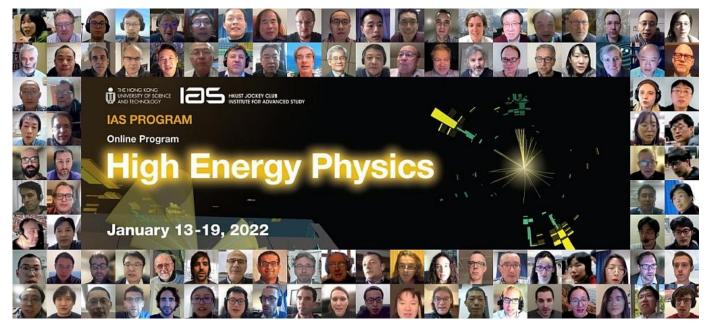
The CEPC is a large international scientific project initiated and to be hosted by China. It was presented for the first time to the international community at the ICFA Workshop "Accelerators for a Higgs Factory: Linear vs. Circular" (HF2012) in November 2012 at Fermilab. A Preliminary Conceptual Design Report (Pre-CDR, the White Report)[1] was published in March 2015, followed by a Progress Report (the Yellow Report)[2] in April 2017, in which the CEPC accelerator baseline choice was made. The Conceptual Design Report (CEPC Accelerator CDR, the Blue Report) [3] has been completed in July 2018 by hundreds of scientists and engineers after an international review from June 28-30, 2018 and was formally released in Nov. 2018. In May 2019, CEPC accelerator document was submitted to European High Energy Physics Strategy workshop for worldwide discussions [4]. After the CEPC CDR, CEPC accelerator entered the phase of Technical Design Report (TDR) endorsed by CEPC International Advisory Committee (IAC). In TDR phase, CEPC optimization design with higher performance compared with CDR and the key technologies such as 650MHz high power and high efficiency klystron, high quality SRF accelerator technology, high precision magnets for booster and collider rings, vacuum system, MDI, etc. have been carried out, and the CEPC accelerator TDR will be completed at

CEPC Accelerator white paper to Snowmass21, arXiv:2203.09451

Participated all the Snowmass21 series meetings:

- 1) J. Gao, Circular Electron Positron Collider (CEPC), Snowmass21 Agora meeting, Jan. 19, 2022.
- 2) J.Gao, "CEPC 50MW upgrade parameters", Snowmass21 AF ITF Meeting, Feb. 10, 2022
- 3) J. Gao, "CEPC: A Higgs Factory Collider", Seattle Snowmass Summer Meeting 2022-AF3, July 19, 2022, USA

2022-10-24 J.Gao CEPC Workshop 2022 57


¹ Correspondance: J. Gao, Institute of High Energy Physics, CAS, China Email: gaoj@ihep.ac.cn

International Collaboration Meetings and Workshops

On Feb. 16, 2022, the 10th IHEP-KEK SRF Technology Collaboration Meeting was held online, more than 30 participants joined the meeting. J. Gao and Shinichiro Michizono co-chaired the meeting.

HKIAS Mini workshop, January 13-14, 2022, on : Accelerator Physics — Key Beam Physics and Technologies Issues for Colliders. 41 talks from Asia, Europe and USA.
HKIAS 22 HEP Conference (ILC,CLIC,C3,FCC, CEPC, Muon Collider...) January 17-19, 2022

https://conference-indico.kek.jp/event/171/timetable/#20220216

https://indico.cern.ch/event/1096427/timetable/#20220113.detailed

2021 IAC Report: Recommendations - Overview

Recommendation 1: The CEPC team increase its effort on generic worldwide accelerator and detector R&D and explore further collaboration with the CLIC, ILC, FCC-ee, and SuperKEKB groups for common effort in the accelerator and detector technical developme

Development:

- On May, 30 2022, Xinchou Lou gave an invited talk at **FCC** Week on "Status of CEPC and possible synergies with FCC-ee developments" https://indico.cern.ch/event/1064327/contributions/4891218/
- Since Feb. 2022, the extension Multi-National Partnership Project (MNPP-01) MoU of IHEP with KEK Super B is on going (ready for signatures).
- From Jan. 1, 2022, J. Gao has become **CERN Machine Advisory Committee (CMAC)** Member
- From May 25, 2022, J.Gao has been approved by TTC CB to be TTC Executive Committee (EC) member (TTC has a strong collaboration with ILC)
- Feb. 16, 2022, the 10th IHEP-KEK collaboration meeting on SCRF technologies Shinichiro Michizono and J. Gao have given talks on ILC Accelerator Status and CEPC Accelerator
- TDR Status. https://conference-indico.kek.jp/event/171/timetable/#20220216
- Joint research works with FCC-ee and Super KEK B in 2022:
 - 1) FCC-ee tuning working group, Y.W. Wang, B. Wang...; FCC-ee beam-beam efforts: Y. Zhang...
 - 2) **Super KEK B** beam beam working group, Y. Zhang...,
 - 3) **Superkek B** collaboration on simulations of injection efficiency and detector background of SuperKEKB, Dou Wang, Mei Li, Philip Bambade, J, Gao

CEPC Accelerator IARC2022

The 2019 CEPC International Accelerator Review Committee

Review Report

June 7-10, 2022 (online)

December 6, 2019

The 2021 CEPC International Accelerator Review Committee

Review Report

May 19, 2021

2021 Second CEPC IARC Meeting

IARC Committee

October 20th, 2021

improving the fo The CEPC Inter The IARC is ple due to the Covid would like to th IARC meeting. help and hospita

The review mee Circular Electro

Committee (IAR (MDI) sessions

The IARC was r TDR. The quali

even if not alrea luminosity perfo

> The Circular I currently hosted Academy of So an International the study of the an upgrade to th IARC meeting to on Nov. 18-21, 2

The Circular Electron Positron Co Collider (SppC) Study Group, currer ergy Physics of the Chinese Academ design of the CEPC accelerator in 20 accelerator in 2 ternational Advisory Committee (IAC Committee (IAC Report (TDR) phase for the CEPC ac CEPC accelerate get year of 2022. Meanwhile an Inter (IARC) has been established to advis erator design, the R&D program, the to advise on all n region, and the compatibility with an well as with a future SppC.

A total of 22 talks were presented

General comments

The Committee congratulates the CE last months and presented at this me R&D of the hardware components lool the table of parameters for the high-li and components for all accelerator sy

2022 First CEPC IARC Meeting

IARC Committee

June 17th, 2022


The Circular Electron Positron Collider (CEPC) and Super Proton-Proton Collider (SppC) Study Group, currently hosted by the Institute of High Energy Physics of the Chinese Academy of Sciences, completed the conceptual design of the CEPC accelerator in 2018. As recommended by the CEPC International Advisory Committee (IAC), the group began the Technical Design Report (TDR) phase for the CEPC accelerator in 2019, with a completion tar-The second 2021 CEPC International Accelerator Review Committee held remotely due to the Covid-19 pai (IARC) has been established to advise on all matters related to CEPC accelerator design, the R&D program, the study of the machine-detector interface region, and the compatibility with an upgrade to the t-tbar energy region, as well as with a future SppC.

> The 2022 CEPC International Accelerator Review Committee was held remotely due to the Covid-19 pandemic on June 7th to 10th 2022.

A total of 24 talks were presented on a variety of topics.

The charges to CEPC IARC for this meeting are:

- 1. For the TDR, how are the accelerator design and the technology R&D progress towards the TDR completion at the end of 2022. Are there any important missing points in the accelerator design and optimization?
- 2. based on CEPC TDR design, the CEPC dedicated key technology R&D status and the technologies accumulated from the other IHEP responsible large-scale accelerator facilities, such as HEPS, could the CEPC accelerator group start the TDR editorial process and EDR preparation?
- 3. with the new progresses between CEPC and FCCee possible synergy and the continuing collaboration with SuperKEKB, are there more suggestions on the next steps of international collaborations?

Nov. 2019: https://indico.ihep.ac.cn/event/9960/

May, 2021: https://indico.ihep.ac.cn/event/14295

October, 2021: https://indico.ihep.ac.cn/event/15177

June, 2022: https://indico.ihep.ac.cn/event/16801/

After the completeion of CEPC CDR in Nov. 2018, since the first CEPC IARC meeting in 2019, there has been toally 4 IARC meetings till 2022, with each meeting a carefully written IARC report, which are very helpful for CEPC accelerator in TDR phase and beyond.

Summary

CEPC accelerator system optimization design based on TDR parameters considering also 50MW SR/beam and ttbar energy upgrade possibilities are completed

CEPC accelerator key hardware R&D made important progresses with the aim of finishing TDR at the end of 2022

CEPC siting, civil engeering, AC power consumptions, installation planning, international collaborations and CIPC collaborations are progressing well

CEPC TDR cost has no major change compared with CDR (to be reviewd)

Preparation for CEPC accelerator EDR phase and beyond (15th five year plan) is underway

Acknowledgements

Thanks go to CEPC-SppC accelerator team's hardworks, international and CIPC collaborations

Special thanks to CEPC SC, IAC and IARC's critical comments, suggestions and encouragement

Backup Slides

CEPC Key Technology R&D Status-1

Technology	Category	Quantity	Specification	R&D Status
650MHz 1 cell SRF cavity	Collider	240	Q= 3E10 @ 39.3 MV/m	Q= 2.3E10 @ 41.6 MV/m
650MHz 2 cell SRF cavity	Collider	240	Q= 4E10 @ 22 MV/m	Q= 6E10 @ 22 MV/m
1.3GHz SRF cavity	Booster	96	Q=3E10 @ 24 MV/m	Q= 4.3E10 @ 31 MV/m
650MHz high efficiency Klystron	Collider	120	Efficiency:75%; Power:800kW	Efficiency: ~70%; Power: 600kW
Electrostatic deflector	Collider	32	Electro field: 2.0MV/m; stability: 5 x 10-4; good field range: 46mm x 11mm	Prototype fulfill the specification
C-band RF cavity	Linac	292	45MV/m	2-m prototype engineered, waiting for high power test
Cool Copper RF cavity (C-band)	Linac	1	120MV/m	Physical design finished, in the manufacture process
Positron source FLUX concentrator	Linac	1	Center field>6T	Center field: 6.2T
Dual aperture dipole	Collider	2384	Field strength: 140Gs~560Gs, aperture:70mm length: 28.7m in 5 segments; harmonic component <5×10-4; fields difference <0.5%	prototype; full length prototype in
Dual aperture qudrupole	Collider	2392	Field gradient: 3.2~12.8T/m; length: 2m, aperture: 76mm; harmonic component <5×10-4; field difference<0.5%.	Preliminary measurement in the prototype shows prominent results, more test in process
Weak field dipole	Booster	16320	Field error <1E-3@60Gs	Prototype fulfills the specifications
J	All	11	Pixel position accuracy 5µm+5µm/m; angular accuracy: (h) 1.8", (v) 2.2";	Prototype manufactured, in test
Superconducting high field dipole magnet	SPPC	1	20T CEPC Workshop 2022	12T ⁶⁴

CEPC Key Technology R&D Status-2

Technology	Category	Quantity	Specification	R&D Status
2860MHz klystron	Linac	35	Power: 80MW Efficiency: 55%	Power: 65MW Efficiency: 42%
Advanced S-band cavity	Linac	111	30MV/m	HEPS production fulfill CEPC specifications
Single aperture Mag.	D(160)+Q(960)+S (1864)+Corr.(5808)	1	I	HEPS production fulfill CEPC specifications
BPM & electronics	All	~5000	Spatial resolution: 600nm response frequency:10Hz	Spatial resolution: 100nm response frequency:10Hz
Cryogenic machine	Collider/booster	4	18kW@4.5K	2.5kW@4.5K collaboration with CAS
kicker ceramic vacuum chamber and coating	transport line	/	75x56x5x1200mm	Prototype in manufacture
in-air delay-line dipole kicker & pulser	transport line	/	Trapezoid pulse width=440- 2420ns,1kHz	Design completed
in-air delay-line nonlinear kicker & pulser	transport line	/	Trapezoid pulse width=440- 2420ns,1kHz	Design completed

2022-10-24 J.Gao CEPC Workshop 2022 65

CEPC Key Technology R&D Status-3

Technology	Category	Quantity	Specification	R&D Status
strip-line kicker & fast pulser	transport line	/	pulse width<10ns, 20kV into 50Ω	HEPS devices fulfill specifications
slotted-pipe kicker & fast pulser	transport line	/	Trapezoid pulse width≤250ns	HEPS devices fulfill specifications
in-air Lambertson septa	transport line	/	septum thickness≤3.5mm	HEPS devices fulfill specifications
in-vacuum Lambertson septa	transport line	/	septum thickness≤2mm	HEPS devices fulfill specifications
Electric source	All	9294	Stability: 100-1000ppm; accuracy: 0.1%	HEPS devices fulfill specifications
Vacuum chamber &NEG coating	collider	~200km	Length: 6000mm; aperture: D56mm vacuum: 3 × 10 ⁻¹⁰ Torr NEG film H ₂ pumping speed: 0.5 L/s·cm ²	Prototype fulfill specifications
Vacuum bellow	collider/booster	24000/1200 0	Force 125±25 g/finger;	HEPS devices fulfill specifications
Vacuum gate valves	All	1040	Leakage: 1×10 ⁻⁹ mbar·L/s @ 5000 times	Life time: 100