
The 2022 International Workshop on the High Energy Circular Electron Positron Collider

Accelerator Activities in Korea

<u>Younguk Sohn</u>, Garam Han (PAL, POSTECH) Myun Kwon (RISP) Pilsoo Lee (KOMAC)

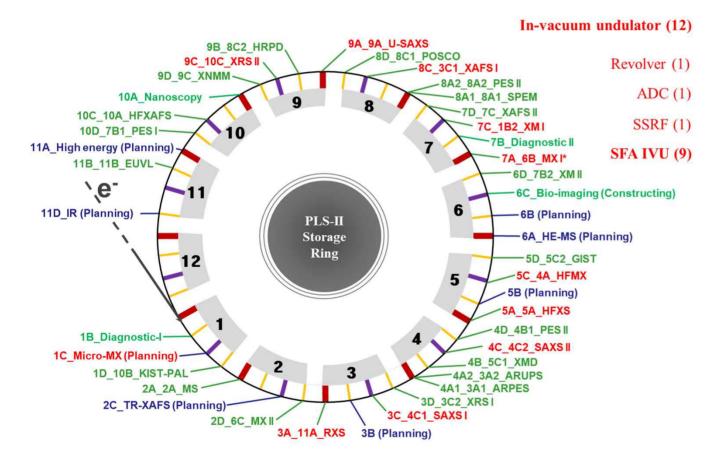
October 26, 2022

Accelerator facilities in Korea

Pohang Accelerator laboratory (PAL), Pohang University of Science & Technology (POSTECH)

PAL Accelerators

- I. PLS (synchrotron, 2.5 GeV, 200 mA):
 - First large-scale accelerator
- II. Major upgrade of the PLS (3GeV 400 mA)
 - 3.0 GeV PLS-II upgrade
 - User service
 - With 3-500 MHz SRF cryomodules
- III. PAL-XFEL (11 GeV)
 - Construction including commissioning 2010 2016
 - Saturation of 0.1 nm FEL 2017 (Demo experiment of coherent X-ray imaging)
 - 2017 -User service
- IV. PAL-EUV (400 MeV, Synchrotron)
 - Construction including commissioning 2020 2023
 - User service
 - For semi-conductor R&D

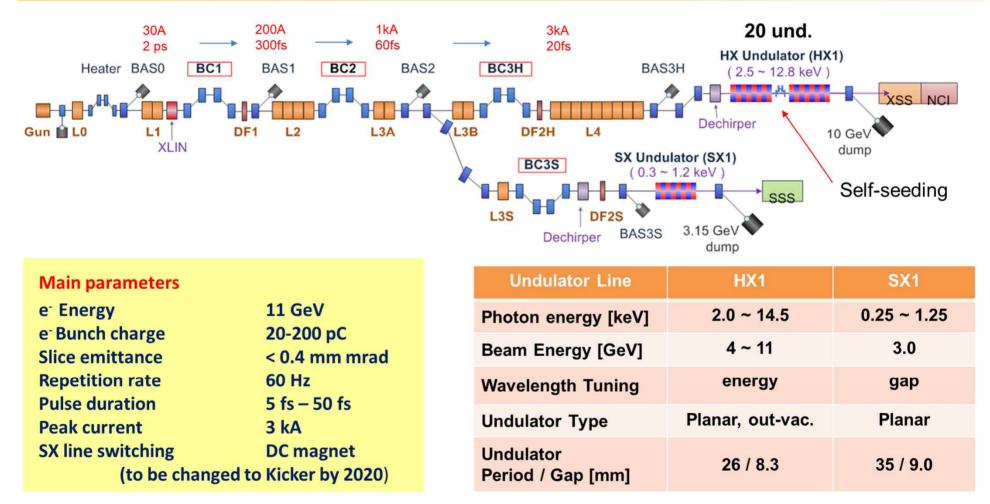

1988 - 2011

2012 -

2023 -

Beam Line Map and Accelerator Tunnel of PLS-II

Total 32 beamlines with 24 IDs and 8 BMs


POHANG ACCELERATOR LABORATORY

User Achievements with PLS-II and PAL-XFEL (September, 2022)

PAL POHANG ACCELERATOR LABORATORY

PAL-XFEL Overview

POHANG ACCELERATOR LABORATORY

ompleted)

al achieve

Achievements from PAL-XFEL

- April 2011
- PAL-XFEL project started
- Dec. 2015
- June 14, 2016
- Nov. 27, 2016
- March 16, 2017
- June 7, 2017

Nov. 2018

Mar. 2019

May 2020

Dec. 2021

٠

٠

٠

٠

First User Service

First SASE las

Saturation of (

Saturation of (

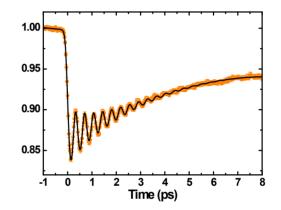
started

Permission granted to operate up to 11 GeV

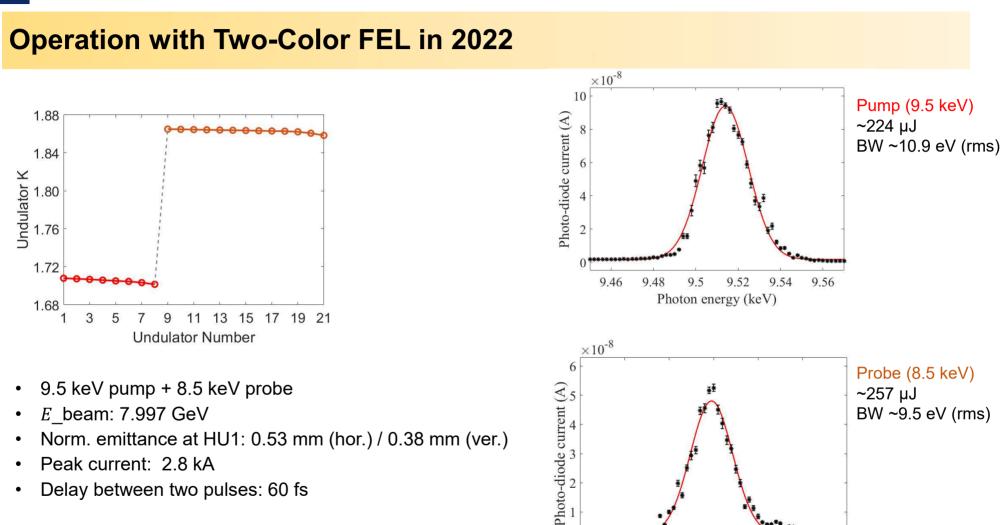
-2.5

-5

Ave. SASE Ave. Seeded woll-Ave. Seeded w/LH


0

E - E_ (eV)


2.5

arb.

- 60 Hz operation started
- Self-Seeding operation
 - HX & SX parallel operation

8.46

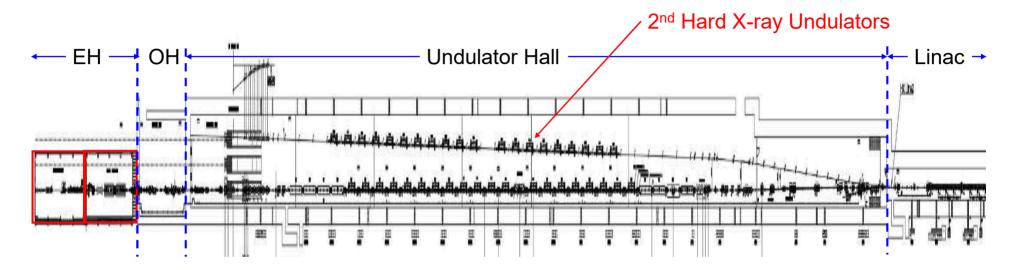
8.44

8.48

8.5

Photon Energy (keV)

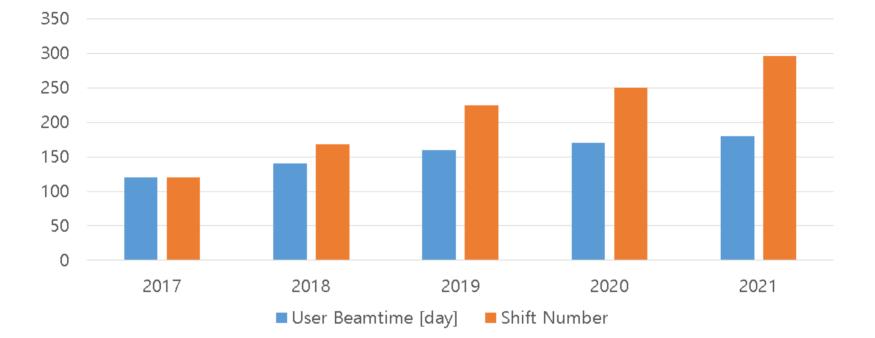
8.52


8.54

8.56

Delay between two pulses: 60 fs ٠

POHANG ACCELERATOR LABORATORY


Plan for Second Hard X-ray Beamline

- Funding in 2025.
- Because of the limited space, the 2nd hard X-ray beamline will be installed in a tilted way.
- As an alternative, we proposed vertical polarization undulators for the 2nd hard X-ray beamline.
- In that case, 2nd hard X-ray undulators will be parallel to 1st hard X-ray undulators and FEL will be reflected to horizontal direction in the optical hutch.
- A prototype of the vertical polarization undulator will be developed until the end of 2024.

Beam-time & Shift Number

 \times In 2022, 190 days user beamtime will be delivered

PAL-EUV Accelerator

PAL-EUV is a new Low Energy Synchrotron Light Source, fully funded from Korean Government To provide <u>diffraction-limited radiation</u> at EUV range Application <u>mainly for semiconductor R&D</u>

- Injector Linac (to 20 MeV)
 - Photocathode gun + 3 m accelerator column
 - 10 MW S-band klystron + solid state modulator
- Booster Ring (400 MeV)
 - 2 straights for injection/extraction
 - 500 MHz PLS cavity (reuse)
 - Storage Ring (400 MeV)
- 4 straights for injection and three IDs
 - 140 mA beam with 500 MHz NC cavity
 - 1500 MHz harmonic cavity

PAL-EUV Accelerator

- Tunnel will be closed and beam commissioning will start in late November, 2022.
- Beam commissioning until summer 2023
- Beamline research with high-harmonic generation EUV source
- EUV beam service from 3rd Quator 2023
- Second ID beamline will start in 2023.
- For second ID, permanent magnet undulator with cryogenic temperature

5th October, 2022

Rare Isotope Project (RISP), Institute of Basic Science (IBS)

Rare Isotope Science Project (RISP)

 Goal: To build a heavy ion accelerator complex RAON, for rare isotope science research in Korea.

* RAON - Rare isotope Accelerator complex for ON-line experiments

• Budget: KRW 522.8 billion (US\$ 420 million) for accelerators and experimental apparatus

Period: 2011.12 ~ 2022.12 (1st Phase)

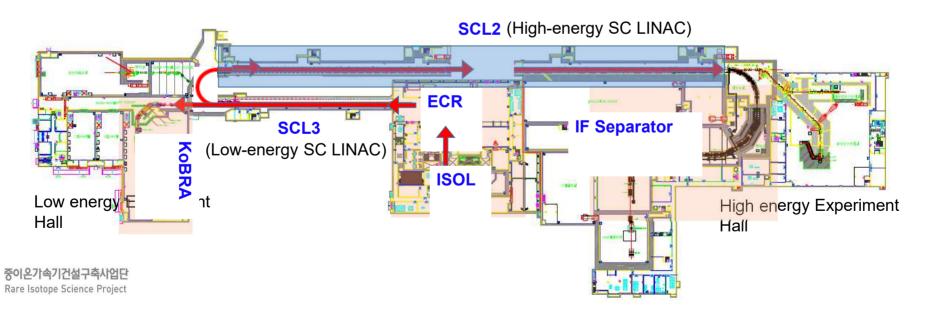
System Installation Project

Development, installation, and commissioning of the accelerator systems that provides high-energy (200MeV/u) and high-power (400kW) heavy-ion beam

Facility Construction Project

Construction of research and support facility to ensure the stable operation of the heavy-ion accelerator, experiment systems, and to establish a comfortable research environment

****** Accelerator and experiment buildings, support facility, administrative buildings, and guest house, etc.



- Providing high intensity RI beams by ISOL and IF ISOL: direct fission of ²³⁸U by 70 MeV proton IF: 200 MeV/u ²³⁸U (intensity: 8.3 pµA)
- Providing high quality neutron-rich beams e.g., ¹³²Sn with up to 250 MeV/u, up to 10⁹ particles per second
- Providing More exotic RI beam production by combination of ISOL and IF

RIB production at RAON

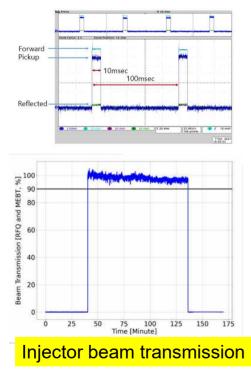
	KoBRA	ISOL	IF Separator
Driver	SCL3(ECR/ISOL)	Cyclotron	SCL3(ECR/ISOL)->SCL2
(Post) Acceleration		SCL3 or SCL3->SCL2	
Production Mechanism	Direct reactions Multi Nucleon Transfer	P induced U fission	PF, U fission
RIB Energy	< a few tens of MeV/u	> a few of keV/u	< a hundreds of MeV/u

Phased Installation

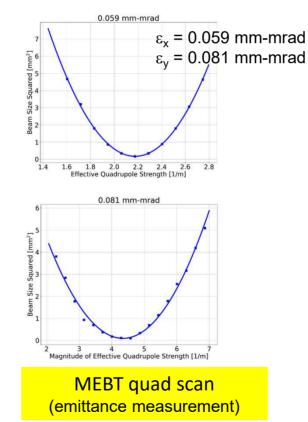
Phase 1 (~2022)

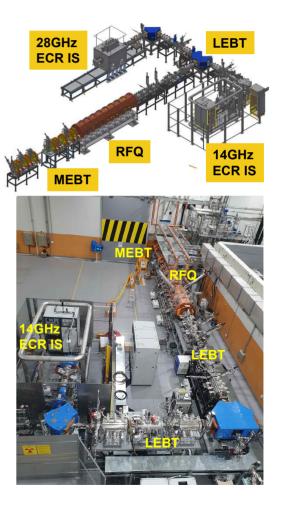
- > Injector, SCL3, ISOL beam commissioning
- All experimental systems including IF separator system to be installed and machine commissioned

Phase 2 (~2029)


- High energy Linac, SCL2
- Prototyping R&D until 2025

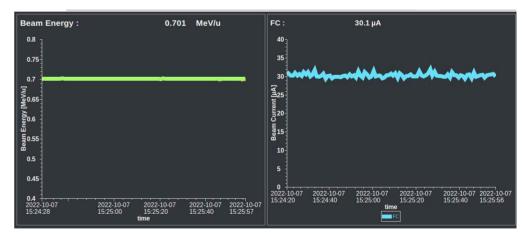
SCL3 → installation done on 2021 & atarting commissioning on Oct 2022


Commissioning Injector Beam, done


- 10% beam duty operation: 96 minutes, 10Hz, 10msec (2021.12.07.)
- * Injector transmission > 94%
- MEBT beam emittance measurement based on quad scan

중이온가속기건설구축사업단

Rare Isotope Science Project



Commissioning Low-energy LINAC (SCL3), on-going

- Cryogenic plant for SCL3, ready and working
- · He distribution, in cold ready
- All SCL3 SRF cryomodules (22 QWRs, 15 HWR-As and 18 HWR-Bs are in cold temperature
- All interlock system for cryoplant and cryomodules, ready The first cool-down : started @ 7th of Sep. 15:30
- First acceleration was observed on Oct. 7 !!

(with first five QWR modules only)

Further commissioning is going on until 2023 Experiments will start Feb. 2024

Measured beam energy

Measured beam energy

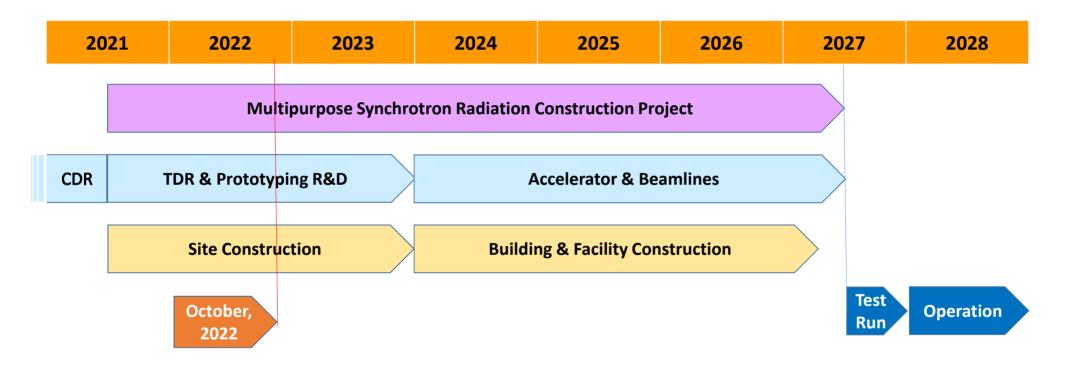
Further Commissioning & Optimization of Beam until 2023

- October : Cool-down of HWR/RF conditioning
- November : 2K pumping for HWR section/RF conditioning
- December : 2K stabilization for HWR section/RF conditioning Second beam commissioning toward HWR A5.
- January-March, 2023 : Beam commissioning for whole SCL3

Multipurpose Synchrotron Radiation Construction Project (4GSR), Korean Basic Science Institute (KBSI) & PAL

Project Outline

* Multipurpose Synchrotron Radiation Construction Project

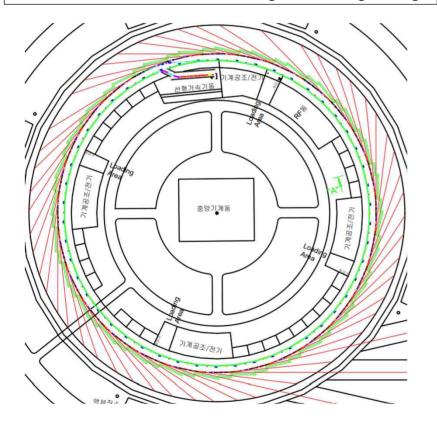

- Period: 2021 July to 2027 June (6yrs)
- Budget: 1.0454 Trillion KRW (≈ USD 750M)
- Land: 540,000 m / Building: 69,400 m
- Location: Ochang, Chungcheongbuk-do

* 2 Institutions working together

- KBSI: Hosting institution in charge of Building and Facility
- PAL: Partner institution in charge of Accelerator and Beamlines

◆ Specifications Beam Energy: 4 GeV Beam Emittance: less than 100 pm·rad (CDR: 58 pm·rad) Circumference: 800m Beamlines : more than 40 Accelerator: Gun, Injector LINAC, 4 GeV Booster Lattice: MBA-7 Bend Achromat

Project Timeline

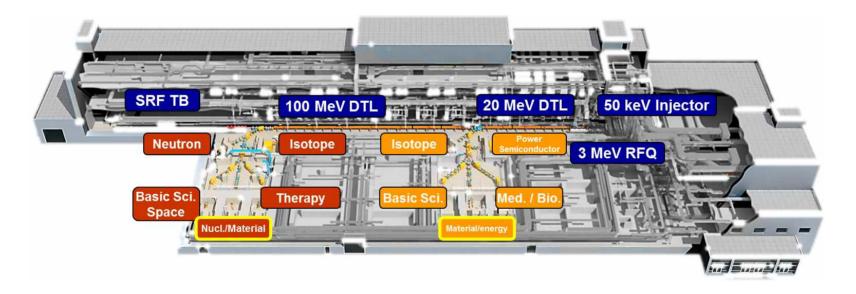


Primary Parameters

Gun →	$LINAC \rightarrow$	Booster Ring \rightarrow	Storage Ring

Ose such Demonster		
General Parameter		
Energy / GeV	4.0	
Symmetry / Sub-Symmetry	28	
Straight Sections: No & Length / m	28 / 6.5	
Ring Circumference / m	798.8	
# Dipole Magnets	28 * 7 = 196	
Nat. Emittance / prad m	58	
regular hor/ver @ coupling	55 / 6 @ 10 %	
Diffraction limited source for	l > 1.7 / 0.365 nm	
Energy spread	1.20E-3	
Bunch Length s _t / ps	10.68 (without HC) / 53.40 (with HC)	
RF Parameter & Others		
RF frequency / MHz	499.877	
# cavities / total Voltage	3 x nc / 3.5 MV (1.8 MV max)	
# buckets: total / gap	1332 / 267	
Harmonic RF system	3 rd , passive,sc, 800 kV	
Average current / mA	400	
Lifetime / h	4.54 (flat) / 8.81 (round)	
Top up operation	yes	
Injection scheme	4 Kicker bump	
Beam pipe (in achrom.) / mm ²	D: 24(H)*20(V) @ Straight Section	
Magnets:		
max. bending magnet field / T	1.7	
max. quadrupole grad. T/m	56	
max. sextupole strength T/m ²	1844	

4GSR Design – Building Cross-session

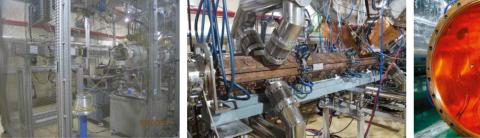


Korea Multi-Purpose Accelerator Complex – KOMAC (KAERI)

Outline of KOMAC

- Construction 2002.7~2012.12 Proton Engineering Frontier Project (PEFP)
- Budget ~\$300M (Government: \$180M, Gyeongju: \$110M, Industry: \$10M)
- Specification High Current (20 mA) Proton Linear Accelerator
- Applications Atmospheric/Space Radiation Effects, RI Production, Bio, Basic sciences, Secondary Particle Productions
- In last 5 years, supported 489 projects of 1,967 users from 188 institutions

Characteristics – 100 MeV Proton LINAC


- 2.45 GHz Microwave ion source
- 350 MHz 4-vane RFQ (Radio Frequency Quadrupole)
- 350 MHz Drift Tube Linacs
- Digital LLRF and EPICS control system

Extraction Energy	100 MeV
Max. Peak Beam Current	20 mA
Max. Beam Duty	8%
Avg. Beam Current	(max) 1.6 mA
Pulse Length	0.1 - 1.33 ms
Max. Repetition Rate	60 Hz
Max. Average Beam Power	160 kW

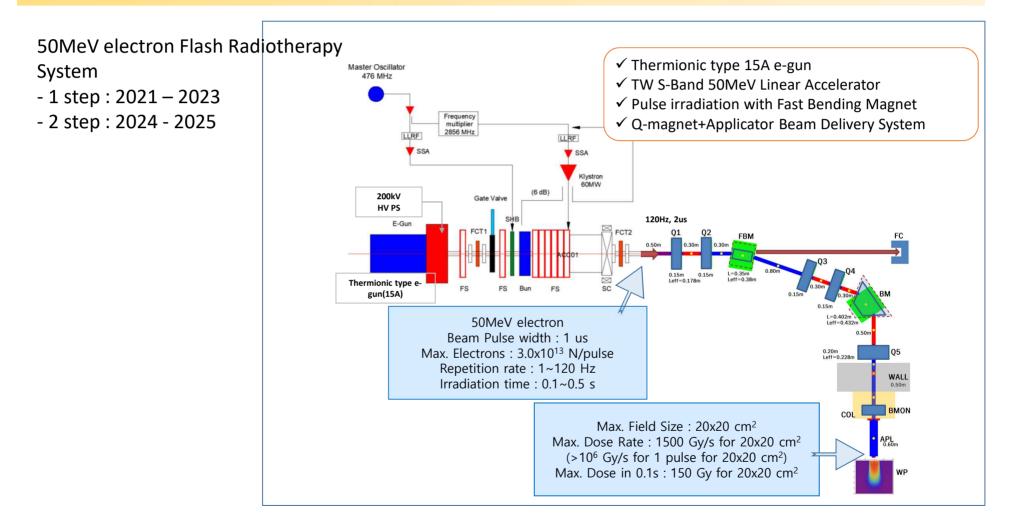
KOMAC Injector

KOMAC RFQ

KOMAC DTL

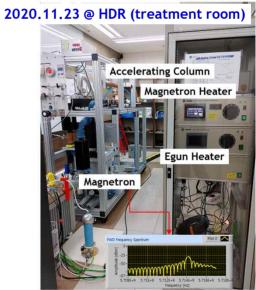
Proposing: Korea Spallation Neutron Source (KSNS)

- 2-GeV Rapid Cycling Synchrotron
- MW-class Spallation Target Station
- Proton beamline for deep-space radiation testsNeutron beamlines for neutron science



Medical Application of Acelerators

- 50MeV e-FLASH Radiotherapy System of KIRAMS
- 9 MeV C-band LINAC @ DIRAMS


50MeV e-FLASH Radiotherapy System of KIRAMS

9 MeV C-band LINAC @ DIRAMS

- We are developing a radiotherapy machine consisting of a gantry, a support stand, a treatment couch, a control console, etc.
- The 9 MeV Accelerating column was manufactured and bonded using vacuum-brazing with our DIRAMS machines.
- The 9 MeV LINAC located in the gantry-like frame was constructed and operates with the solid-state pulse modulator.
- After getting the radiation license (2022), we will study the beam from LINAC and provide the FLASH irradiation.

