

中國科學院為能物服湖第所 Institute of High Energy Physics Chinese Academy of Sciences

RADIATION AND PROTECTION ISSUE STUDIES IN CEPC

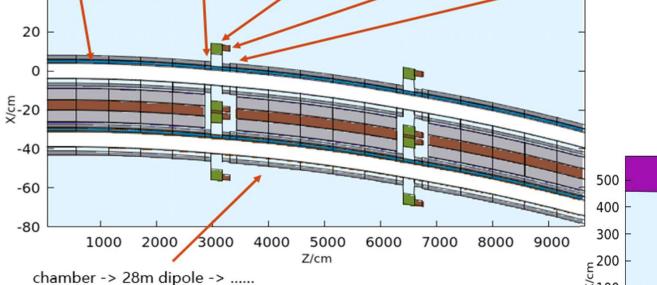
Guangyi Tang, Haoyu Shi and Zhongjian Ma CEPC workshop, 2022

OUTLINE

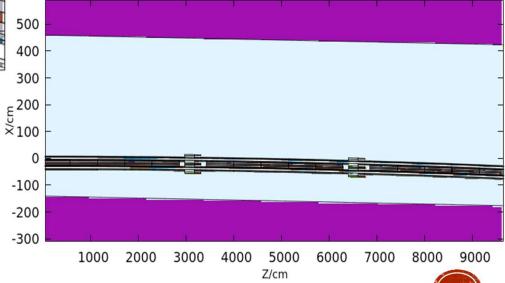
- Introduction
- Synchrotron radiation shielding
- Radionuclides productions in the tunnel Using FLUKA & Flair.
- Linac beam losses shielding
- Summary and outlook

RADIOLOGICAL IMPACT

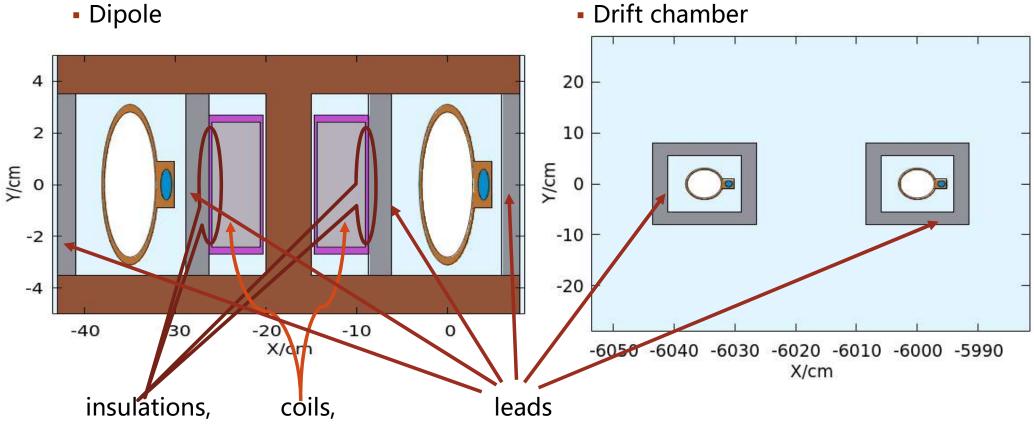
Main consideration aspects


Impact factors	Characteristics
Synchrotron radiation	Radiation damage to magnets coils; Over heat load to ventilation system; Formation of ozone and nitrogen oxides in the air; Slightly activation to the material around;
Random beam loss	Cause secondary radiation inside the tunnel; Determine the bulk shielding thickness;
Hot spots	MDI, Collimation locations, collider/linac dumps, injection/extraction points;
Radiological impact on environment	Dose from stray radiation emitted during machine running Radionuclides in the cooling water, underground water, tunnel air, soil. Radioactivity analysis for the solid components and waste
Machine protection	Active/passive protection

OUTLINE


- Introduction
- Synchrotron radiation shielding
- Radionuclide productions
- Linac beam losses shielding
- Summary and outlook

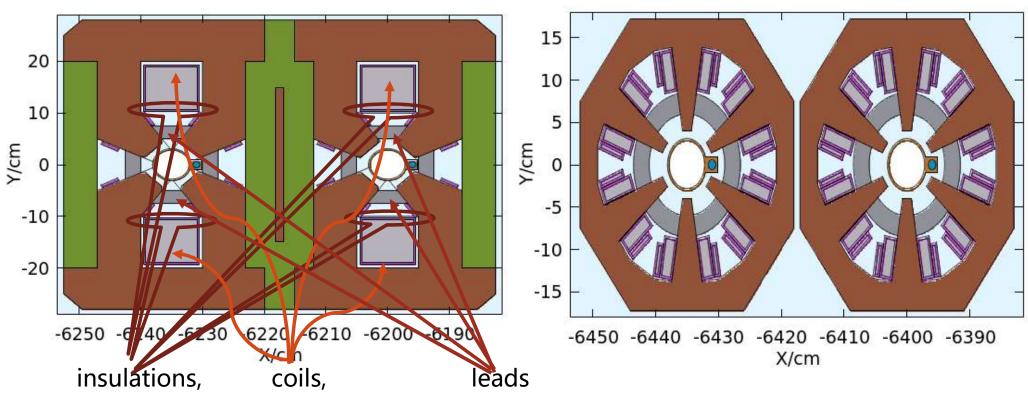
SINULATION SETUP Tunnel geometry 28m dipole -> 1.1m drift chamber -> 2m quadrupole -> 1.4m sextupole -> 1.1m drift 40 40 100


600 500 400 300 200 100 0 -100 -200 -200 0 200 400 600 X/cm

- Length: 100m;
 - 3 dipoles;
 - 2 quadrupoles;
 - 2 sextupoles;

SIMULATION SETUP

Dipole

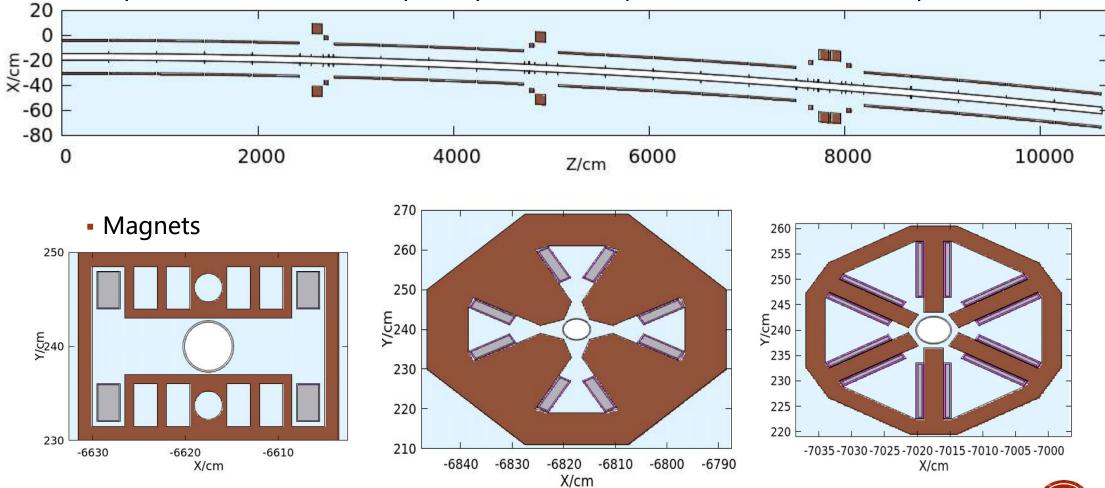


- Insulations is added in the model. Both beam-pipes are made of copper.
- In the cross-section, area of lead: $56cm^2$ area of lead: $216cm^2$

SIMULATION SETUP

Quadrupole

• area of lead : 96*cm*²

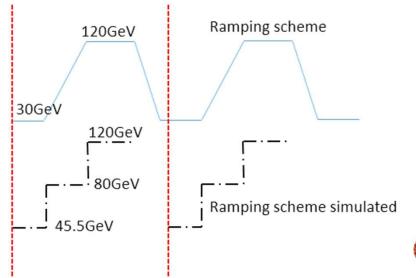

• area of lead : $100cm^2$

Sextupole

BOOSTER

dipole ->drift chamber ->quadrupole -> sextupole ->drift chamber ->dipole ...

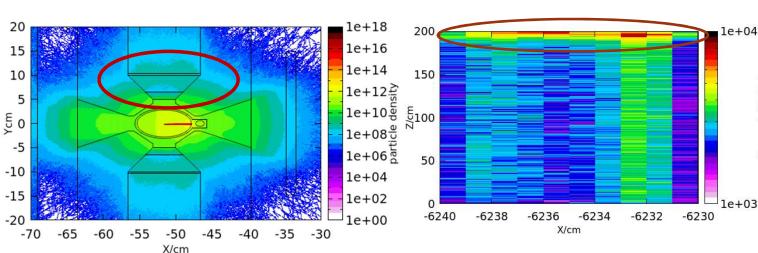
PARAMETERS: 50MW

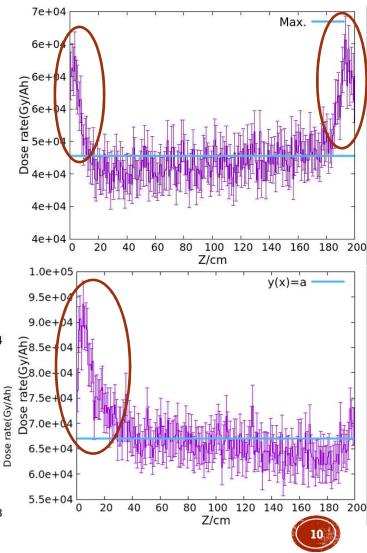

Collider

	Higgs	WW	Z	ttbar
Beam energy/GeV	120	80	45.5	180
Ne/bunch/10 ¹⁰	14	13.5	14	20
Number of bunches	415	2162	19918	58
Number of photons/114m	4.7e18	1.6e19	8.4e19	1.4e18

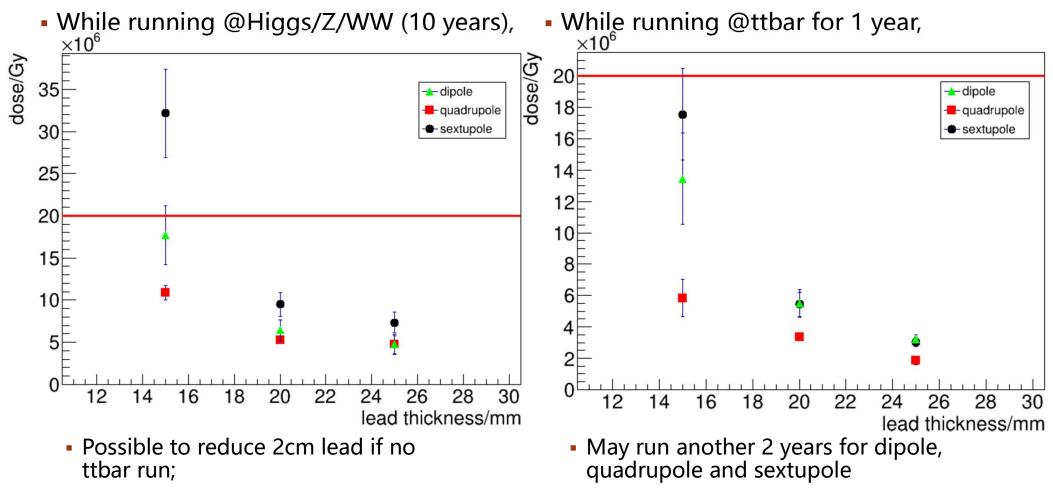
Booster

	Higgs	ww	Z	ttbar
Current(m A)	0.98	2.85	14.4	0.11
Injection duration(s)	31.8	38.1	134.4	29.2
Injection interval(s)	38	155	153.5	65

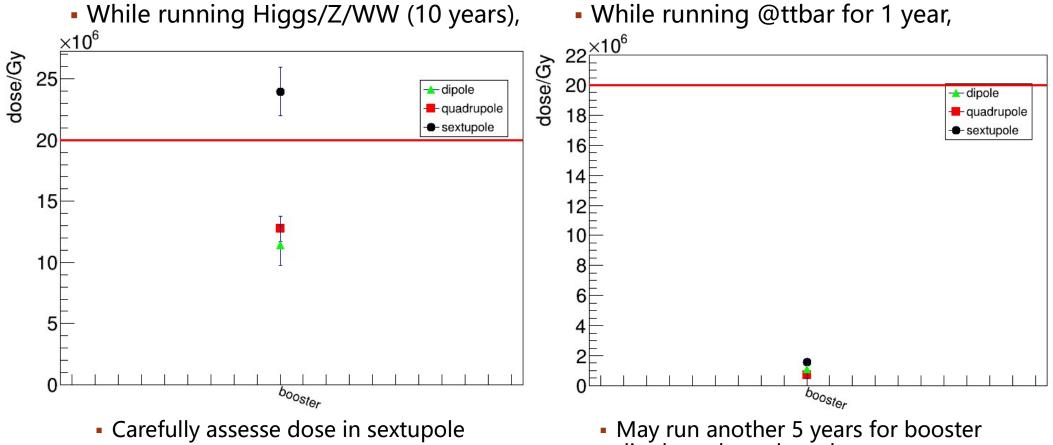

Ramping simulation: example @higgs



- The ramping simulation is more critical than reality.
 - Overestimate dose in booster

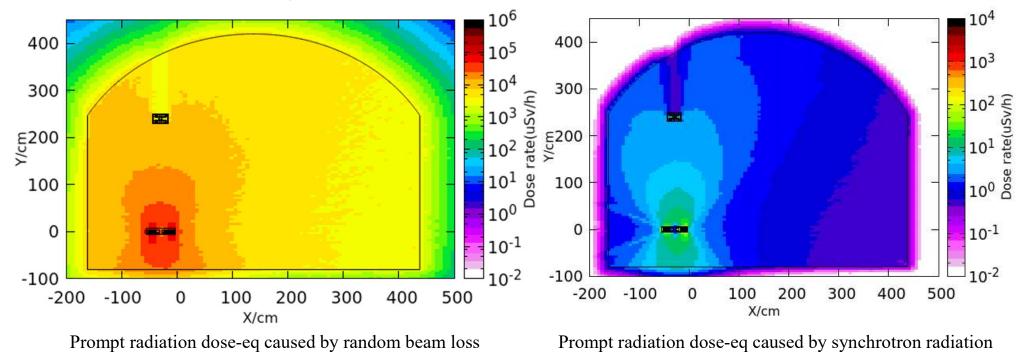

DOSE TO INSULATIONS

- along beam direction, dose is a constant in middle of magnets, but not in both sides of magnets.
- "Hot spots" in insulation because:
 - The shielding between magnets are not matched very well.
 - SR hits the iron close to beam pipe and bypasses lead.
- Hot spots shielding will be considered in next stage.
- Dose in uniform regions are summarized in the following pages.


DOSE VS LEAD THICKNESS: 50MW

Lead thickness is constrained by the operation plan.

DOSE IN BOOSTER INSULATION: 50MW



- Pay attention to sextupole. Simulate more precisely.
- May run another 5 years for booster dipole and quadrupole

DOSE-EQ IN THE TUNNEL

In the arc section of the ring, the most important two radiation sources are from synchrotron radiation and random beam losses.

 Secondary radiation components from random beam losses is harder and more liable to produce radioactivity in the material surrounded, Should be assessed.

RADIONUCLIDES SIMULATION

 Beam losses & SR photon of energy >6MeV

		Higgs	WW	Z	ttbar	
Beam energy	gy/GeV	120	80	45.5	182.5	
Ne/bunch	n/10 ¹⁰	14	13.5	14	20	
Number of bunches	50MW	415	2162	19918	58	
Number of SR photons >6MeV	50MW	1.4e10	1e-7	neglig ible	1.3e1 5)
Life time	50MW	0.33	0.91	1.33	0.30	
Beam losses/114 m	50MW	5.5e7	1.0e 8	6.7e8	1.2e7	

Two critical cases are simulated.

FLUKA options

PHOTONUC	Type:		All E: On ▼
E>0.7GeV: off v	∆ resonance: off ▼	Quasi D: off v	Giant Dipole: off v
	Mat: BLCk	(HOLE V to Mat: @LAS	TMAT V Step:
PHYSICS	Type: EVA	ORAT V Model: New E	Evap with heavy frag 🔻
	Zmax: 0	Amax: 0	
PHYSICS	Type: COA	LESCE 🔻 Activate: On 🔻	
PHYSICS	Type: PEAT	HRES V Nucleons: 100	 Pions: 1000.
Kaons: 1000.	Kaonbars: 1000	AntiNucleon: 1000.	(Anti)Hyperons: 1000.
RADDECAY	Decays: Activ	e 🔻 Patch Isom: 🔻	Replicas: 3.
h/µ Int: ignore		-	e ▼ e-e+ Int; ignore ▼
e-e+ LPB: ignore	-	-	Low-n WW: ignore *
	decay cut: 0.0	prompt cut: 0.0	Coulomb corr: V

- Wall material:
 - Case1: water as wall
 - Case2: rock as wall

SOIL/ROCK

- In previous study, use soil as tunnel wall.
- Now use average components of different kinds of rock.
- Simulate productions of residual nuclei after 1 year running in:
 - Cooling water
 - Air in tunnel
 - Water outside tunnel
 - Rock (leachable isotopes)

		Soil	average components of different rocks
de	nsity	1.6g/cm^3	1.2~3.3g/cm^3
	С	1.0	
	Ν	0.12	
	0	34	30~70
Z	Na	0.50	0.1~2.9
Major element (wt%)	Mg	0.52	0.4~3.7
r ele	Al	8.0	3.5~9.7
eme	Si	40	26~39
nt (Р		0.02~0.16
wt ^o	K	2.36	1.8~3.7
6)	Ca	2.26	0.2~4.8
	Ti	1.0	0.09~0.8
	Mn	0.24	0.02~0.12
	Fe	9.6	0.8~6.3

RADIONUCLIDES PRODUCTION

 Concentrations of Long half-life isotopes are lower than mandatory standard, GB18871.

			Cooling	water
		Half -life	Specific activity/GB 18871	Stat. error (%)
	O15	122s	2.44	10
Beam losses	C14	5700 a	3.5e-7	23
@Z- pole	Be7	53d	1.3e-2	34
1	H3	12a	2.3e-6	22
SR @ttbar			None	

			Air in	tunnel
		Half- life	Specific activity/G B18871	Stat.error (%)
	O15	122s	2.7e-4	52
	C14	5700a	7.7e-7	1
Beam	Be7	53d	1.1e-5	57
losses @Z-	H3	12a	3.5e-9	32
pole	P33	25d	1.9e-8	100
	Ar37	35d	6.1e-9	59
	Ar41	2h	1.4e-3	12
SR	C14	5700a	6.5e-6	2
@ttba r	Ar41	2h	1.5e-2	20

RADIONUCLIDES PRODUCTION

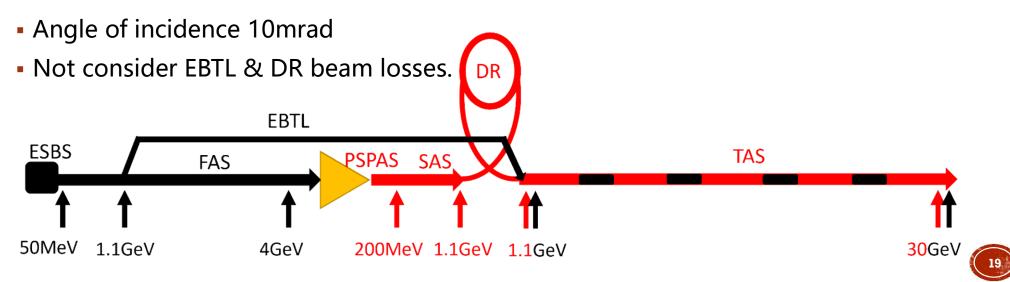
 Densities of Long half-life isotopes are lower than mandatory standard.

			Water	wall
		Half- life	Specific activity/ GB18871	Stat. error (%)
	O15	122s	2e-3	2
Beam	C14	5700a	5e-10	4
losses @Z-	Be7	53d	3e-5	5
pole	H3	12a	6e-9	3
	F18	2h	5e-6	52
SR	C14	5700a	2e-12	99
@ttbar	H3	12a	le-10	71

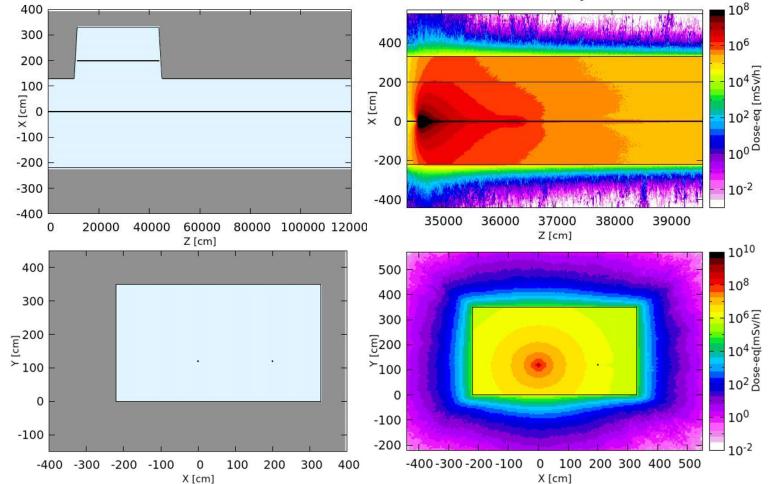
Only leachable isotopes are listed:
³H, ²²Na, ⁴⁵Ca, ⁵⁴Mn

			Rock	wall
		Half- life	Specific activity/ GB18871	Stat. error (%)
Beam	Mn54	312d	6.94E-04	1.8
losses	Ca45	163 d	5.49E-06	0.3
@Z-	Na22	2.6y	7.20E-04	1.4
pole	H3	12a	5.90E-09	0.9
SR @ttbar	H3	12a	le-10	71

- Should investigate if radionuclides would transport to drinking water.


OUTLINE

- Introduction
- Synchrotron radiation shielding
- Radionuclide productions
- Linac beam losses shielding
- Summary and outlook


LINAC BEAM LOSSES ASSUMPTIONS

Position	Length	Beam energy	Number of bunches [s ⁻¹]	Beam losses/bun ch [nC]	Number of particles [10 ¹⁰ /s]
FAS	100m	300MeV		0.5	62.5
Positron target	15mm	4GeV		10	1250
PSPAS	15m	5~200MeV	200	10	1250
CAC	3m	300MeV		2	250
SAS	30m	600MeV		0.2	25
TAS	1163m	1.1~30GeV		0.1	12.5

SIMULATION SETUP & BULK SHIELDING

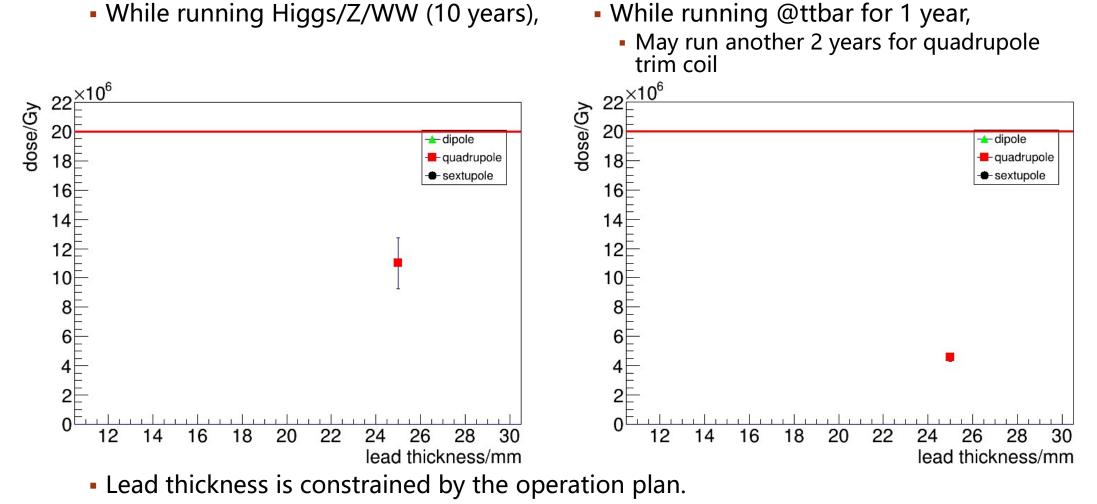
- Beam pipes and concrete wall
 Dose-eq distribution example: SAS
- Top/side view

 Thickness of Shielding wall according to upper limit 5.5mSv(left/right/bottom) /2.5uSv(top).

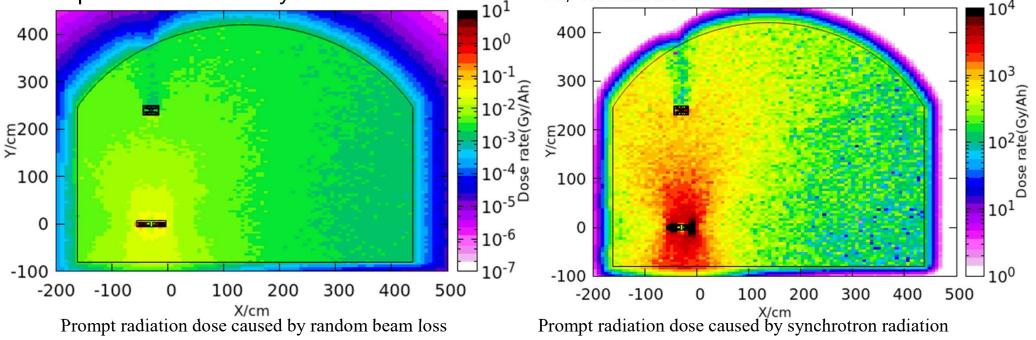
Wall thickn ess	FAS	SAS	TAS
Left	0.3m	1.9m	0.3m
Right	0.2m	1.9m	0.3m
Bottom	0.3m	2.1m	0.3m
Тор	1.3m	4.1m	2.0m

SUMMARY & OUTLOOK

- Lead shielding seems well. Further optimize SR shielding design
 - Unequal dose distribution in the insulations.
 - Precise simulation for booster.
- Radionuclides productions are studied.
 - If necessary, all running modes can be simulated.
- The thickness of Linac walls are designed.
- Go on:
 - Activation transport assessment.
 - Shielding around experiment hall (around MDI).


Thank you

DOSE TO TRIM INSULATION: 50MW



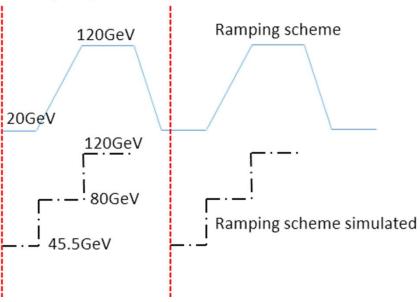
23

DOSE IN THE TUNNEL

In the arc section of the ring, the most important two radiation sources are from synchrotron radiation and random beam losses.

- Radiation caused by synchrotron is more serious than beam losses
- Secondary radiation components from random beam losses is harder and more liable to produce radioactivity in the material surrounded, Should be assessed.

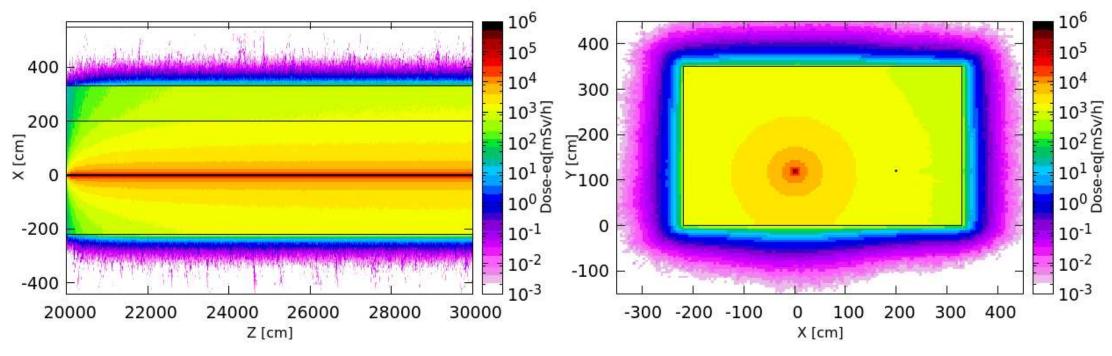
PARAMETER


Collider

		Higgs	WW	Z	ttbar
Beam energy/GeV		120	80	45.5	182.5
Ne/bunch/10 ¹⁰		14	13.5	14	20
Number of bunches	30MW	249	1297	11951	35
	50MW	415	2162	19918	58
Number of photons/11 4m	30MW	2.8e18	9.2e 18	5.0e1 9	8.4e1 7
	50MW	4.6e18	1.5e 19	8.4e1 9	1.4e1 8
Life time	30MW	0.33	0.91	1.33	0.30
	50MW				
Beam losses/114 m	30MW				
	50MW	5.5e7	1.0e 8	6.7e8	1.2e7

Booster

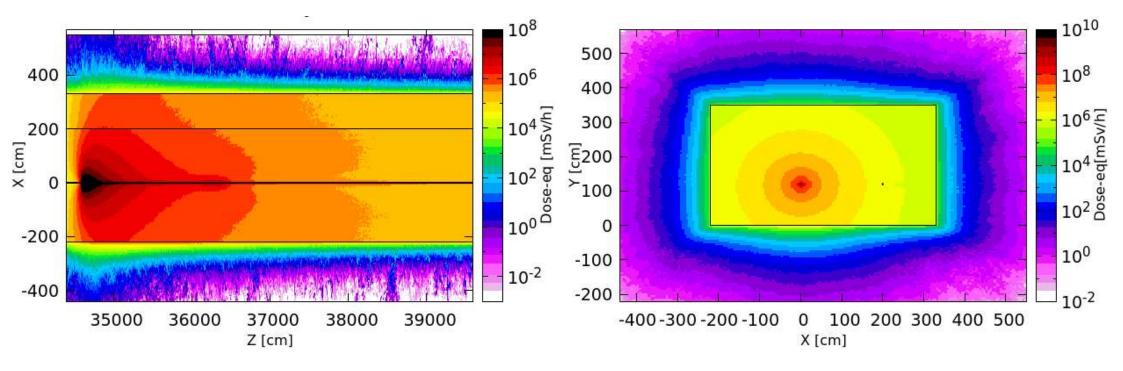
	Higgs On	ww	z	ttbar
Current(mA)	1	2.69	14.4	0.12
Injection duration(s)	32.8	39.3	134.7	30
Injection interval(s)	38	155	153.5	65


Ramping simulation

DOSE-EQ: FAS

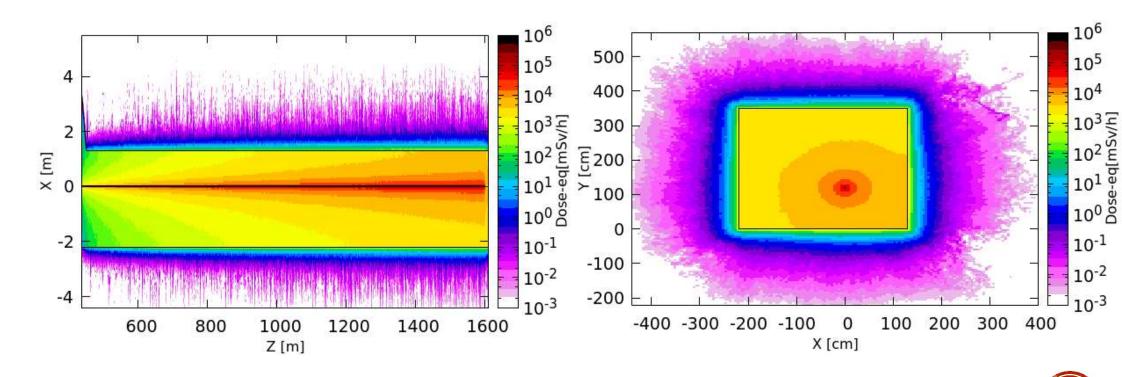
• 束流管所在水平面内剂量当量约1~100Sv/h

- 以5.5mSv限值(土壤中)估计,左/右/下侧 混凝土墙厚度约30cm/20cm/30cm。
- 以2.5uSv限值(空气中)估计,顶部混凝土 厚度1.3m。



DOSE-EQ: PSPAS ~ SAS

 束流管所在水平面内剂量当量约 10~1000Sv/h


- 以5.5mSv限值(土壤中)估计,左/右/下侧 混凝土墙厚度约1.9m/1.9m/2.1m。
- 以2.5uSv限值(空气中)估计,顶部混凝土 厚度4.1m。

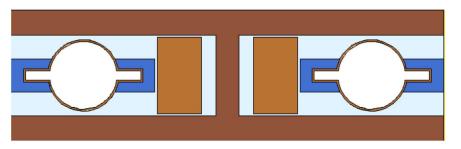
DOSE-EQ: TAS

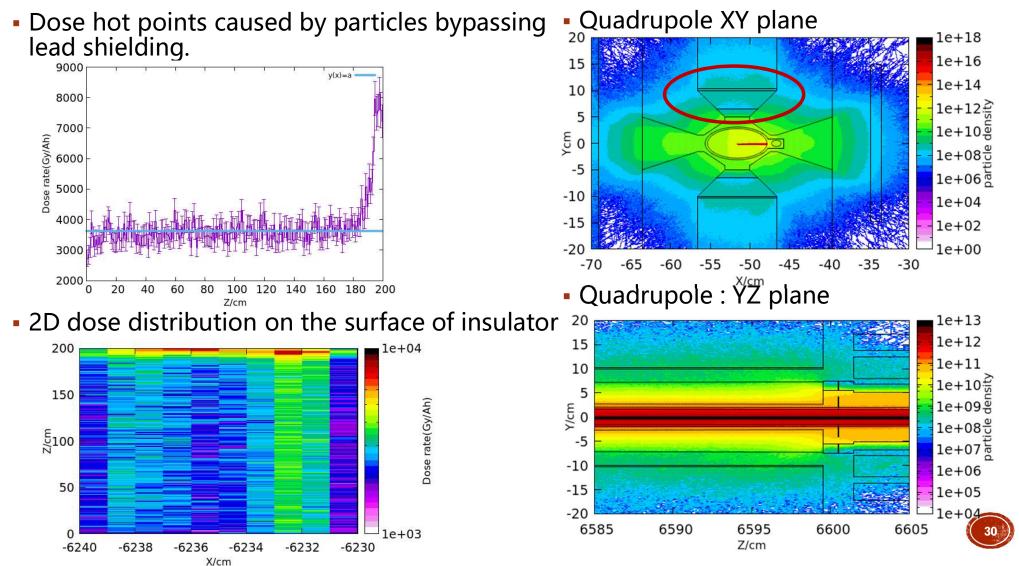
 東流管所在水平面内剂量当量约 0.1~100Sv/h


- 以5.5mSv限值(土壤中)估计,左/右/下侧 混凝土墙厚度约30cm/30cm/30cm。
- 以2.5uSv限值(空气中)估计,顶部混凝土 厚度1.6m。

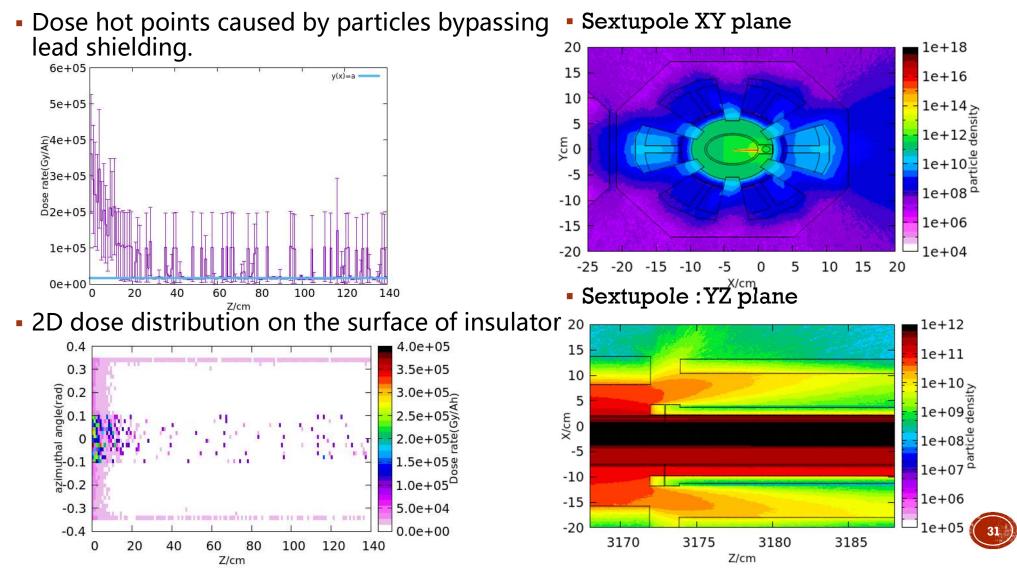
VACUUM CHAMBER: FCC-EE, TWO SCHEMES

Absorbers (ABS)

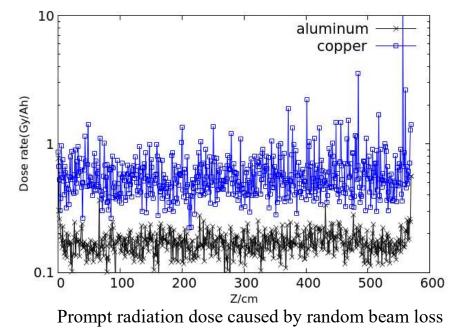

- CuCrZr alloy
- Length: 30cm
- 5-6m distance
- Angled surfaces for even power
- Water cooled
- 25 ABS in each beam (MBs, MQs) (Design and initial placement by R. Kersevan)

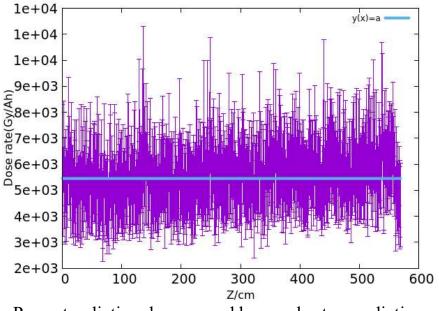

Barbara Humann, FCC week 2021 talk

Continuous shielding


- Equivalent to LEP layout
- Continuous shielding around VC in MBs
 - Due to space restrictions from yoke and coils respectively, no shielding in MQs and MSs.
- Intermet180 (Tungsten alloy)
- Shielding thickness:
 - Top/bottom: 1cm
 - Sides: 1.3cm

HOT POINTS (2CM LEAD)


HOT POINTS (2CM LEAD)



DOSE AROUND INSULATORS

In the arc section of the ring, the most important two radiation sources are from synchrotron radiation and random beam loss.

- Around coils, dose caused by SR is more serious than by beam loss.

Prompt radiation dose caused by synchrotron radiation

