



### **Optimisation of the FCC-ee positron source**

Yongke Zhao<sup>1</sup>, Iryna Chaikovska<sup>2</sup>

<sup>1</sup>CERN, <sup>2</sup>IJCLab

On behalf of the FCC-ee positron team

CEPC Workshop 2022

26/10/2022

Many thanks to the FCC-ee Injector team and the CHART project.



## FCC-ee injector complex



# FCC-ee pre-injector layout (6 GeV option)



- Linac efficiencies optimized: electron/positron beam with same energy, main and drive electron beam with same final energy
- Specifications are fulfilled for the electron bunch (beam dynamics simulations for the e- linac and common linac well advanced)
- e+ Linac: several options of the capture section, RF design well advanced 2 GHz, 200 Hz, large iris aperture, beam dynamics on-going.
- DR provides the damping of the positron beam and delays extraction to allow single species operation for the common linac.

# FCC-ee positron source requirements



#### Positron source basic scheme

<u>Accepted e<sup>+</sup> yield</u> is a function of primary beam characteristics + target + capture system + DR acceptance

To estimate the accepted yield: energy window cut: (1540  $\pm$  58.5) MeV  $\rightarrow$  ( $\pm$ 3.8% @ 1.54 GeV) time window cut: 40° RF (~16.7 mm/c @2 GHz)

The complete filling for Z running => Requirement  $\sim 3.5 \times 10^{10} e^+/bunch (5.6 nC)$ 

#### $N_{e}$ /bunch × $\eta^{e+}_{Accepted} \ge 5.6 \text{ nC/bunch} \times 2$

\*A safety margin of 2 is currently applied for the whole studies.

 $\eta^{e^+}_{
m Accepted} = rac{N^{e^+}_{
m DR~accepted}}{N^{e^-}_{
m Primary}}$ 

All the studies are focused on the operation scheme: 6 GeV, 2 bunches/pulse, 200 Hz rep. rate, the max e- bunch charge is 5.6 nC  $\rightarrow \sim 1.4 \times 10^{13} \text{ e}^+/\text{s}$ 

# FCC-ee positron production



### FCC-ee positron capture system: matching device

<u>Matching device</u> => a fast phase space rotation to transform the small size and high divergence in big sizes and low divergence beam.

#### Flux Concentrator (FC) designed by P. Martyshkin (BINP)



#### Compared with HTS solenoid:

- Low peak field (5-7 T, ~1.5-3 T at target exit)
- Small entrance aperture (Φ = 8-16 mm)
- Fixed target position (2–5 mm upstream) Therefore, lower e+ yield

In case used, needs to be optimised for 200 Hz rep. rate

High-Temperature Superconducting (HTS) solenoid designed by J. Kosse, B. Auchmann and M. Duda (PSI)

target-converter



5 coils ReBCO tape

separator

matching device

(AMD/OWT/lens)

capture section (bunching



the bore) Therefore, higher e+ yield Yield higher th

Flexible target position (can be placed inside

High peak field (~15 T, ~12 T at target exit)

• Large aperture ( $\Phi = \sim 40$  mm)

Yield higher than using FC with a factor of > 2. We currently focus on studies using HTS solenoid.

### FCC-ee positron capture system: matching device



Flux Concentrator (FC)

HTS solenoid field, with optimised target position FC on-axis field, with fixed target position Target located inside HTS solenoid. Peak of the FC field is at 5 mm from the target =>  $\sim$ 40 % drop in capture efficiency Position optimised for maximum DR accepted e+ yield.

#### 26/10/2022

### FCC-ee positron capture system: capture linac



### FCC-ee positron capture system: capture linac



Maxwell 2D simulation for solenoid over 2 RF structures

### FCC-ee positron capture system: preliminary results

The first results (preliminary)

- Capture efficiency @ 200 MeV: ~0.6
- e+ yield @1.54 GeV: 6.4 Ne+/Ne- (\*)
- e+ norm. emittance: ~12 mm.rad

RF-Track used for tracking simulation

- In the coming update, an extra solenoid between HTS and RF linac will be placed, which will improve the final e+ yield to ~6.6-6.8 <sup>(\*)</sup>
  - (\*) Depending on simulation tools and codes, the yield might be slightly different.



### FCC-ee positron capture system: preliminary results



#### 26/10/2022

### Radiaton load study: HTS solenoid



PSI HTS solenoid design

 HTS coils: peak power density seems OK. 10<sup>-4</sup> DPA/year. Ionizing radiation dose up to 22 MGy/year. Being discussed with experts. More shielding optimisations needed

#### Preliminary results! Study still on-going! Layout and results to be updated shortly!

### Radiaton load study: RF structures

B. Humann, A. Lechner (CERN)



- Study still on-going!
- Only S-band RF structure (as shown on the left) studied so far (for the PSI P<sup>3</sup> e+ source project). To study the new L-band structure (larger aperture)
- Simulation planned to see the impact and efficiency of a mask in front
- Radiation protection being studied with the experts (might be a mid-term plan)

### FCC-ee positron linac (Linac 1)



# Summary

- In the latest version of FCC-ee pre-injector, e+ produced by 6 GeV, 2 bunches/pulse e- beam at 200 Hz (cf. CDR version is 4.46 GeV)
- FCC-ee positron source studies well advanced: e+ production, SC technology (HTS) feasibility for matching device, capture linac (RF structure & solenoid), etc. Studies in progress. No showstoppers found that prevent HTS solenoid from being used as matching device
- e+ linac and DR designs well-established and advanced. Studies in progress. DR dynamic aperture to be optimised. DR filling schemes under investigation
- Radiation load studies in progress: layout & results to be updated (e.g. increasing shielding thickness or aperture). Energy deposition in RF structures (if mask is needed)
- Design of the target mechanical system in progress
- A demonstrator for the FCC-ee positron production and capture will be realised at SwissFEL facility at PSI (CHART P<sup>3</sup> project)
- Next deliverables (CHART and FCC FS): inputs for mid study costing exercise in summer 2023, final project cost update and feasibility study report in 2025

# BACKUP

### Hybrid FCC-ee target scheme: preliminary simulations

e- beam energy = 6 GeV, angular divergence 0.1 mrad and with the r.m.s. transverse beam size of 0.5 mm. W crystal oriented in <111> ( $\theta c \approx 0.6 \text{ mrad}$ ).

A 2 mm thick crystal has been selected to be used as a radiator for the hybrid positron source.

ightarrow good photon yield, moderate values of photon divergence and energy deposition in the crystal.

#### Results for the positron production simulations

| scheme                                    | conventional | hybrid <sup>1</sup> |
|-------------------------------------------|--------------|---------------------|
| target thickness [mm]                     | 17.6         | 2 + 10              |
| $e^+$ production rate $[N_{e^+}/N_{e^-}]$ | 14.4         | 15.1                |
| target deposited energy $[GeV/e^-]$       | 1.44         | 0.946               |
| $ m PEDD~[GeV/mm^3/e^-]$                  | 0.0416       | 0.0156              |

<sup>1</sup>The values are given for the amorphous target-converter installed after the crystal target.

#### L. Bandiera et al., Eur. Phys. J. C (2022) 82:699)



#### Radiation enhancement in the tungsten (W) crystals aligned along <111> axes



Final yield accepted by DR to be compared (since increased beam size leads to lower final yield)

#### 26/10/2022

### The Swiss CHART P<sup>3</sup> project at PSI



# FCC-ee Damping Ring design studies



| Parameter                        |                         | FCC_ee DR            |                |           |          |
|----------------------------------|-------------------------|----------------------|----------------|-----------|----------|
| Circumference                    |                         | 239.2 m              |                |           |          |
| Harmonic number                  |                         | 319                  |                |           |          |
| Eq. Emittance (x/y/z)            |                         | 1.01 nm/ - / 1.46 μm |                |           |          |
| Dipole length, Field             |                         | 0.21 m, 0.66 T       |                |           |          |
| Wiggler #,Lenght, Field          |                         | 4, 6.64 m, 1.8 T     |                |           |          |
| Cavity #, Lenght, Voltage        |                         |                      | 2, 1.5 m, 4 MV |           |          |
| Bunch stored #, charge           |                         | 18 . 4.0 nC          |                |           |          |
| Damping Time (x/y/z)             |                         | 10.8 / 10.8 / 5.4 ms |                |           |          |
| Store Time                       |                         | 42.5 ms              |                |           |          |
| Energy loss per turn             |                         | 0.227 MV             |                |           |          |
| SR Power Loss (WGL)              |                         | 15.7 kW              |                |           |          |
|                                  | V= 8MV                  | V= 6MN               | /              | V= 4MV    | V= 2MV   |
| U <sub>0</sub> [KeV]             | 227.1                   |                      |                |           |          |
| DE/Es                            | 0.71 • 10 <sup>-3</sup> |                      |                |           |          |
| Ω <sub>s</sub> [KHz]             | 25.313                  | 21.918               | 3              | 17.888    | 12.618   |
| T <sub>0</sub> [µsec]            | 0.79801                 |                      |                |           |          |
| $\omega_0$ [s <sup>-1</sup> rad] | 7.87 106                |                      |                |           |          |
| Vs                               | 0.003215                | 0.0027               | 8              | 0.002272  | 0.0016   |
| L <sub>bunch</sub> [m]           | 0.00207                 | 0.00                 | 0239           | 0.00293   | 0.00415  |
| φ <sub>s</sub> [rad]             | 0.0283967               | 0.03786              | 63             | 0.0568164 | 0.113817 |
| $(E - E_s)$ [GeV]                | 0.124                   | 0.107                |                | 0.0862    | 0.058    |
| $\Delta \phi$ [unit of $\pi$ ]   | 1.8                     | 1.7769               | ,              | 1.7269    | 1.6016   |
| L <sub>bucket</sub> [m]          | 0.6788                  | 0.6664               | ŀ              | 0.6476    | 0.6006   |