

中國科學院為能物記為完備 Institute of High Energy Physics Chinese Academy of Sciences

Progress of reconstruction for crystal bar ECAL

Zhang Yang

On Behalf the CEPC Calo-Software Working Group

CEPC International Workshop, Oct 28th , 2022

Simulation and Digitization

Reconstruction Algorithm

Introduction

- > CEPC, A high precision H/Z factory
 - Heavy bosons separation and precise Higgs measurements require excellent jet energy resolution 3~4%.
 - Fine γ/π^0 reconstruction for flavor physics.
- Particle flow Approach
 - Identification of energy deposits from each individual particle.

•
$$\sigma_{jet} = \sqrt{\sigma_{Track}^2 + \sigma_{EM}^2 + \sigma_{Had}^2 + \sigma_{Confusion}^2}$$

Imaging calorimeter + Topological analysis

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \to e^+e^-, \mu^+\mu^-$ $H \to \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$H \to b\bar{b}/c\bar{c}/gg$	$BR(H\to b\bar{b}/c\bar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{\rm jet}/E=$ $3\sim 4\%$ at 100 GeV
$H \to \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\begin{array}{l} \Delta E/E = \\ \frac{0.20}{\sqrt{E({\rm GeV})}} \oplus 0.01 \end{array}$
JET = ETRACK + E	+ En Charged Hadrons	otons Neutral Hadron	Electron

Introduction

Long crystal bar ECAL

- Homogeneous structure → Optimal energy resolution $\left(\frac{\sim 3\%}{\sqrt{E}} \oplus \sim 1\%\right)$
- Significant reduction of number of channels
- Time measurement at both ends to determine shower position along the bar.

Challenges:

- Ambiguity caused by matching of horizontal and vertical bars.
- Identification of energy deposits from each individual particle.
 - Larger R_M and smaller λ_I/X_0 increase probability of shower overlap.
- > High performance reconstruction algorithm is required!

Design Concept of Long Crystal Bar ECAL

Crystal bar

- **BGO:** $X_0 = 1.12 \text{ cm}$, $R_M = 2.23 \text{ cm}$, $\lambda_I = 22.7 \text{ cm}$
- Size in simulation: $1 \times 1 \times 40 \sim 60 \text{ cm}^3$
- Readout at both ends
- Basic Detection Unit: Super Cell
 - 2 layers of perpendicular crossing bars
- Tower
 - $\sim 40 \times \sim 60 \times 24X_0 \text{ cm}^3$
- Detector:
 - R = 1.86 m, L = 6.6 m, H = 28 cm
 - 8 same trapezoidal staves
 - Avoid gaps point to IP

Simulation and Digitization

- Geant4-based simulation in CEPCSW
 - DD4Hep is used for geometry construction.
 - Focusing on software performance, ignoring dead area, supporting and cooling mechanics, etc.
 - Electromagnetic & hadronic interaction
- > Digitization for each crystal bar:

• For step *i*: $Q_{\pm}^{i} = E_{0} \cdot e^{-\frac{L/2 \pm z_{i}}{L_{Atten}}}$ $T_{\pm}^{i} = T_{0} + Gaus(z_{\pm}^{i}/\nu, \sigma_{T})$

• For each bar: $Q_{\pm} = \sum_{step} Q_{\pm}^i$ $T_{\pm} = T_{\pm}^k \mid (\sum_{i=1}^k Q_{\pm}^i > thres)$

Design of Reconstruction Software

- > Design the reconstruction software as a proto-PFA:
 - Follow the idea of PandoraSDK: flexible, reusable, modular. (Many thanks!)
 - Develop within CEPCSW: based on the common HEP software stack Key4HEP.

Reconstruction Algorithm

- Clustering
 - Neighbor clustering
- Shower Recognition:
 - Local maximum and seed candidate $E_i > E_{th}^{seed}$
 - EM showers \rightarrow Hough transformation
 - Charged particle \rightarrow track extrapolating & matching
- Energy splitting and Energy/time matching
 - Correctly assign the energy deposits to correct particle.
 - Efficient ghost hit removal.
- Energy Assignment

Clustering

Cluster:

A group of adjacent fired crystals whose energy are greater than threshold

Performance Check for Clustering Algorithm

- > MC research on $e^+e^- \rightarrow ZH \rightarrow \nu\nu\gamma\gamma$ process at $\sqrt{s} = 240$ GeV to check the performance of Clustering Algorithm
- > 2 high energy clusters + many low energy clusters (isolated hit)

Performance Check for Clustering Algorithm

- > Invariant mass of $\gamma \gamma$: $M_{\gamma \gamma} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1 \cos\theta_{\gamma_1\gamma_2})}$
 - Fit with Gaussian
 - $M_{mean} = 124.148 \pm 0.011 \ GeV/c^2$
 - Position reconstruction algorithm used to evaluate photon position
 - Without effect of dead area , attenuation...
- "Tail" and shift of MPV caused by longitudinal energy leakage
 - Will be corrected based on longitudinal profile

For details please refer to WeiZheng's poster on Wednesday

Shower Recognition: Local Maxima

> In each layer / 1D-cluster : local maximum

- Real: core of energy deposition → real cluster
- ➤ Cluster recognition → Energy "Core" recognition
 - Reduce the negative effects due to wider longitudinal and lateral developments of clusters.

Principle of Hough Transformation

- A feature extraction method for detecting simple shapes (e.g. lines) in an image.
- > For straight lines:

 $\rho = x \cos \alpha + y \sin \alpha$

- Each point (x, y) in image space is transformed to a curve in Hough space.
- If several points (x_i, y_i) are collinear, their curves intersect at a point (α_0, ρ_0) in Hough space.
- α_0 and ρ_0 are parameters of the straight line that pass through these points (x_i, y_i)

Hough Transformation in ECAL

- Each crystal in image space is transformed to a band in Hough space instead of a curve.
- Cluster recognition in horizontal and vertical projection spaces respectively.
- Each point/peak (overlap region of band) in Hough space is chosen as a cluster candidate.

Efficiency and Fake Rate of Single Photon

- > Low energy or small $|\cos \theta|$: One & only one cluster
- > High energy and large $|\cos \theta|$: >1 clusters
 - Fluctuations of energy deposits increase fake shower

Efficiency and Fake Rate of Single Photon

Recognition of Charged Particles

Track extrapolation and matching algorithm are used to identify the energy deposit of charged particle in ECAL

- > Track extrapolation algorithm
 - Using track information of charged particles in tracker
 - reference point, parameters of helical track
 - Evaluate the expected points in each layer of ECAL

- > Track matching algorithm (under development)
 - Match extrapolated points with clusters

Energy Splitting

- > Showers from different particles may overlap, i.e. multiple energy axis in one cluster
 - Energy of shower μ deposited in bar $i : E_{i\mu}^{exp} = E_{\mu}^{seed} \times f(|x_i x_c|)$

• Energy splitting:
$$E_{i\mu} = w_{i\mu} \times E^i_{mea} = \frac{E^{exp}_{i\mu}}{\sum_{\mu} E^{exp}_{i\mu}} \times E^i_{mea}$$

Iteration until convergence

Energy/Time Matching

Perpendicular arrangement of crystal bars in adjacent layers may cause ambiguity problem for multiple particles in one tower

• Define
$$\chi_E^2$$
 for energy matching: $\chi_E^2 = \frac{(E_X - E_y)^2}{\sigma_E^2}$

- Define χ_T^2 for time matching: $\chi_T^2 = \frac{(Z_T Z_Y)^2}{\sigma_{bar}^2 + \sigma_{Z(t)}^2}$
- Define $\chi^2_{point} = \chi^2_E + \frac{1}{2}(\chi^2_{Tx} + \chi^2_{Ty})$
- Totally *N*! combinations: $\chi_c^2 = \sum_{i=1}^N \chi_{point}^2$

Preliminary Performance

Gamma/gamma matching:

Separation efficiency

- Particle gun events simulation for two 5GeV photons in parallel.
- Scan the distance between photons, check the successful reconstruction efficiency and energy resolution.

Summary

- Long crystal bar is a promising solution for ECAL, it is challenging for hardware and software to obtain a maximal exploitation of precise measurements.
- Simulation and digitization of barrel part of long bar crystal ECAL have been simplified for reconstruction algorithm without electronics, supporting, etc.
- Software development of reconstruction algorithms, which makes full use of 5D information (x, y, z, E, T), is in processing.
- Basic functions of clustering, shower recognition, energy splitting and energy/time matching has been implemented.
- Emphasis on clusters separation of charged and neutral particles in ECAL is in the plan.
- Simulation and reconstruction of ECAL combined with HCAL will be performed for jet energy measurement.

