ATLAS Fast Calorimeter Simulation

Xiaozhong Huang on behalf of the ATLAS collaboration

CEPC 2022 October 24-28, 2022

Why Fast Calorimeter Simulation ?

HL-LHC → enormous computing resources
 Top CPU consumer: MC simulation, dominated by calorimeter
 Fast calorimeter simulation: an important approach to help overcome the computational challenge

Calorimeter Simulation

- Geant4: CPU intensive
 - complex geometry
 - In number of secondary particles grows exponentially
- AF2, fast simulation tool used in ATLAS (Run1 & Run2)
 simplified geometry
 - Classical parameterization
 - Second complex variables not well modeled, e.g. jet substructures

Overview of AtlFast3 (AF3)

- FastCaloSimV2: classical approach based on parameterization FastCaloGAN: machine learning approach based on GANs
- can escape through the back of calorimeter

AF3 combines the strength of the FastCaloSimV2 and FastCaloGAN

Muon punch-through: secondary particles created in hadronic showers

Input Datasets for AF3 Modeling

- Single particles generated at calorimeter surface photons and electrons: electromagnetic showers pions: hadronic showers
- Samples are sliced by momentum and η
- Special G4 configuration: smaller simulation steps
- Electronic noise and cross-talk between neighboring cells are turned off in digitization

EM shower

Hadronic shower

Overview of FastCaloSimV2

- lateral directions separately
 - Iongitudinal direction: energy deposition in each layer
 - Interal direction: shower shape
- Simplified geometry: cuboid cell instead of accordion structure

Parameterize the single particle shower development in longitudinal and

Longitudinal Energy Parameterization

- PCA to remove the energy correlation between layers See input: total energy, the energy fraction of each layer gaussian transformation is performed for each input variable
- PCA performed twice
 - Solution 1 st PCA to divide the G4 samples
 - 2nd PCA to achieve a better decorrelation
 - $^{\odot}$ correlated energy deposition in layers \rightarrow uncorrelated random variables

Validation of 1st PCA

Lateral Shower Shape Parameterization

- (hits are **voxelized**)
- Derived in each layer for each PCA bin for each sample

The average shower energy in radial and angular direction as a PDF

Lateral Shower Simulation

- Shower generation is a stochastic process given the lateral shower parameterization
- Solution Throw N_{hit} hits based on the average lateral shower shape
 Image electromagnetic shower: equal hit energy ($E_{hit} = E_{layer}/N_{hit}$)
 Image hadronic shower: weighted hit energy

Overview of FastCaloGAN

- simultaneously
- Architecture: WGAN with GP, conditioned on the truth momentum, output the energy deposition in each voxel (reduce the dimension)
- \odot One GAN for each η slice (100 GANs for pions)

Simulate shower development in the longitudinal and lateral direction

NVoxel	Number of voxels		
Generator nodes	50, 50, 100, 200, NVoxel		
Discriminator nodes	NVoxel, NV Voxel, NVoxel, 1		
Activation function	ReLU		
Optimizer	Adam [60]		
Learning rate	10 ⁻⁴		
β1	0.5		
β2	0.999		
Batch size	128		
Training ratio (D/G)	5		
Gradient penalty (λ)	10		

Training Strategy

- other energy points

 - Itrain the first 50k epochs with a middle energy sample (32 GeV) every 20k epochs add a new sample, alternating between higher and lower energy
 - Once all energy points have been added, continue training with all samples
- I million epochs (limited by the available resources)
- Training time for each GAN: ~8 hours on the NVIDIA V100 GPUs

GAN is first trained on a single energy point, then progressively add

Best Epoch Performance

- Solution Figure of merit: χ^2 of the total energy between the reference samples and generated samples
- Select epoch with lowest χ^2

Muon Punch-Through

- muon spectrometer See a second second
 - Instant set of the set of the
- parameterized

Secondary particles can escape the calorimeter and generate hits in the

Sumber of secondaries and their energy, position and momentum are

Performance: Photons & Electrons

Good modeling for photons and electrons

Performance: R=0.4 Jets

Performance: R=1.0 Jets

Improved modeling for R=1.0 Jets

AF3: next generation of fast simulation in ATLAS

- FastCaloSimV2: classical parameterization
- FastCaloGAN: machine learning
- Muon punch-through: fake muon
- Similar CPU consumption as AF2, improved modeling
- Default simulator for Run3 and HL-LHC See HL-LHC: 90%

Thank You !

Conclusion

Backup

Validation of the Longitidinal Energy Parameterization

Longitude Energy Simulation

- During simulation, inverse PCA to obtain the energy in each layer $^{\odot}$ uncorrelated random variables \rightarrow correlated energy deposition in layers
- Interpolation used to simulate particles of all energies energy response: spline interpolation Separameterization: randomly selected based on the logarithm distance

Energy Resolution of Calorimeter

	Calorimeter technology	Stochastic term a	Constant term c
EM shower	LAr EM barrel and endcap	10.1% 56.4%	0.2% 5.5%
	LAr hadronic endcap	76.2%	0
	FCal	28.5%	3.5%

Stochastic term a		
30 - 40%		
50 - 60%		
60 - 80%		
80 - 100%		

Weighted Hit

Equal Hit

FastCaloGAN

Muon Punch-Through Parameterization

Energy Resolution Correction

Phi Modulation

Energy Correction

Simplified Geometry Correction

Low Energy Hadron

Presampler, calibrated using high energy particles

Performance: Taus

$^{\odot}Z^{\star}/\gamma^{\star} \rightarrow \tau\tau$ sample (2.0 - 2.25 TeV)

- Look at hadronically decaying taus
- Tau decay modes Inumber of charged tracks: 1p/3p
 - Investigation of neutral particles: 0n/1n/Xn
- Sumber of clusters, similar as number of constituents in jets

Improved modeling for taus

G4 vs FastCaloSimV2 vs FastCaloGAN

G4 vs FastCaloSimV2 vs FastCaloGAN

