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ATLAS 2017 number

HL-LHC        enormous computing resources

Top CPU consumer: MC simulation, dominated by calorimeter

Fast calorimeter simulation: an important approach to help overcome the 
computational challenge

Why Fast Calorimeter Simulation ?

ATLAS Software and Computing HL-LHC Roadmap

https://cds.cern.ch/record/2644515/files/ATL-SOFT-PROC-2018-009.pdf
https://cds.cern.ch/record/2802918/files/LHCC-G-182.pdf


Geant4: CPU intensive

complex geometry

number of secondary particles grows exponentially


AF2, fast simulation tool used in ATLAS (Run1 & Run2) 

simplified geometry  

classical parameterization

complex variables not well modeled, e.g. jet substructures

Run2: AF2 account for ~50% of all simulation
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Calorimeter Simulation

                                 
Geant4

Fast
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Overview of AtlFast3 (AF3) 
AF3 combines the strength of the FastCaloSimV2 and FastCaloGAN 


FastCaloSimV2: classical approach based on parameterization

FastCaloGAN: machine learning approach based on GANs


Muon punch-through: secondary particles created in hadronic showers 
can escape through the back of calorimeter 




Single particles generated at calorimeter surface

photons and electrons: electromagnetic showers

pions: hadronic showers


Samples are sliced by momentum and 


Special G4 configuration: smaller simulation steps 


Electronic noise and cross-talk between neighboring  
cells are turned off in digitization

η
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Input Datasets for AF3 Modeling

EM shower

Hadronic shower
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Overview of FastCaloSimV2
Parameterize the single particle shower development in longitudinal and 
lateral directions separately


longitudinal direction: energy deposition in each layer

lateral direction: shower shape


Simplified geometry: cuboid cell instead of accordion structure
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Longitudinal Energy Parameterization
PCA to remove the energy correlation between layers 


input: total energy, the energy fraction of each layer

gaussian transformation is performed for each input variable 


PCA performed twice

1st PCA to divide the G4 samples

2nd PCA to achieve a better decorrelation

correlated energy deposition in layers uncorrelated random variables  
→

Gaussian 

Transformation 1st PCA

2nd PCA
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Validation of 1st PCA

1st PCA
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Lateral Shower Shape Parameterization
The average shower energy in radial and angular direction as a PDF  
(hits are voxelized) 


Derived in each layer for each PCA bin for each sample




Shower generation is a stochastic process given the lateral shower 
parameterization 


Throw  hits based on the average lateral shower shape

electromagnetic shower: equal hit energy ( )

hadronic shower: weighted hit energy


Nhit
Ehit = Elayer /Nhit
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Lateral Shower Simulation

Nhit ∼ Poisson(1/(σE/E)2)

σE/E = a/ (E/GeV)⨁ c
Energy resolution of the calorimeter
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Overview of FastCaloGAN
Simulate shower development in the longitudinal and lateral direction 
simultaneously 


Architecture: WGAN with GP, conditioned on the truth momentum, output 
the energy deposition in each voxel (reduce the dimension)


One GAN for each  slice (100 GANs for pions)η
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Training Strategy
GAN is first trained on a single energy point, then progressively add 
other energy points


train the first 50k epochs with a middle energy sample (32 GeV)

every 20k epochs add a new sample, alternating between higher and lower 
energy

Once all energy points have been added, continue training with all samples


1 million epochs (limited by the available resources)


Training time for each GAN: ~8 hours on the NVIDIA V100 GPUs
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Best Epoch Performance
Figure of merit:  of the total energy  
between the reference samples and  
generated samples 


Select epoch with lowest 


χ2

χ2



14

Muon Punch-Through
Secondary particles can escape the calorimeter and generate hits in the 
muon spectrometer


new in AF3

need to be well modeled to describe the backgrounds of muons


Number of secondaries and their energy, position and momentum are 
parameterized 
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Performance: Photons & Electrons 

Good modeling for photons and electrons
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Performance: R=0.4 Jets

Improved modeling for R=0.4 Jets
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Performance: R=1.0 Jets

Improved modeling for R=1.0 Jets
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Conclusion
AF3: next generation of fast simulation in ATLAS


FastCaloSimV2: classical parameterization

FastCaloGAN: machine learning

Muon punch-through: fake muon


Similar CPU consumption as AF2, improved  
modeling


Default simulator for Run3 and HL-LHC

Run3: >50%, targeting 70%

HL-LHC: 90%


Thank You !



19

Backup
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Validation of the Longitidinal Energy Parameterization
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Longitude Energy Simulation
During simulation, inverse PCA to obtain the energy in each layer


uncorrelated random variables  correlated energy deposition in layers 


Interpolation used to simulate particles of all energies

energy response: spline interpolation

parameterization: randomly selected based on the logarithm distance


→
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Energy Resolution of Calorimeter

EM shower

Hadronic shower
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Weighted Hit

G4 Equal Hit

Weighted Hit
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FastCaloGAN
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Muon Punch-Through Parameterization
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Energy Resolution Correction
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Phi Modulation 
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Energy Correction

Eh
G4

Eπ
G4

×
Eπ,true

kin

Eh,true
G4

EG4

EAF3
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Simplified Geometry Correction
1. Change the geometry: use the accordion geometry

2. Shift the hit in the phi direction
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Low Energy Hadron

Presampler, calibrated using high energy particles
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Performance: Taus

Improved modeling for taus

 sample (2.0 - 2.25 TeV)


Look at hadronically decaying taus


Tau decay modes

number of charged tracks: 1p/3p

number of neutral particles:  0n/1n/Xn


Number of clusters, similar as number of 
constituents in jets


Z⋆/γ⋆ → ττ



32

G4 vs FastCaloSimV2 vs FastCaloGAN
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G4 vs FastCaloSimV2 vs FastCaloGAN


