Two-loop Electroweak corrections with fermion loops for $e^+e^- \rightarrow ZH$

A. Freitas, Q. Song: arXiv:2209.07612

Qian Song In collaboration with Ayres Freitas University of Pittsburgh CEPC Workshop, 24 Oct, 2022

Content

- Motivation
- Evaluation method
- Result
- Summary

Higgs discovery and property measurement

- Discovery of SM-like Higgs boson(2012,LHC) offers opportunity to investigate Higgs
- Higgs property measurements
 - agrees with the result SM predicted
 - BSM expects deviations at percent level
 - One promising way probing new physics: precision measurements of the properties of H
 - LHC is difficult to reach very high precision due to complicated background

Higgs discovery and property measurement

• Higgs factories: such as CEPC, FCC-ee, ILC, e+e- collider (\sqrt{s} =240-250GeV)

Higgs discovery and property measurement

- e+e- colliders can measure H properties with very high precision due to large statistics, high luminosity, clean environment
- For example: expected precision on $\sigma(e^+e^- \rightarrow ZH)$
 - CEPC:0.5%. Y.Fang et al `18
- Reconstruct Higgs with Recoil Mass Method

$$\kappa_Z^2 = \frac{\sigma(e^+e^- \to ZH)^{exp}}{\sigma(e^+e^- \to ZH)^{theory}} \qquad \kappa_Z = \frac{g_{\rm HZZ}}{g_{\rm HZZ}^{\rm SM}}$$

• Theoretical precision on $\sigma(e^+e^- \rightarrow ZH)$ should be comparable with experiment

$$\sigma(e^+e^- \to ZH) \propto |MM^*| = |(M^{\text{tree}} + M^\alpha + M^{\alpha_s \alpha} + ...)(M^{\text{tree}} + M^\alpha + M^{\alpha_s \alpha} + ...)^*|$$

$$= \underbrace{|M^{\text{tree}}M^{\text{tree}}|}_{\text{LO}} + \underbrace{2Re|M^{\text{tree}}M^{\alpha_s}|}_{\text{NLO}} + \underbrace{2Re|M^{\text{tree}}M^{\alpha_s \alpha_s}|}_{\text{NNLO(EW+QCD)}} + \underbrace{|M^\alpha M^{\alpha_s}| + 2Re|M^{\text{tree}}M^{\alpha^2_s}|}_{\text{NNLO(EW+EW)}} + \underbrace{2Re|M^\alpha M^{\alpha_s \alpha}|}_{\text{NNNLO(EW+EW+QCD)}} + ...$$

• Perturbative expansion with respect to EW coupling(α) and QCD coupling(α_s)

$$\sigma(e^+e^- \to ZH) \propto |MM^*| = |(M^{\text{tree}} + M^{\alpha} + M^{\alpha_s \alpha} + ...)(M^{\text{tree}} + M^{\alpha} + M^{\alpha_s \alpha} + ...)^*|$$

$$= |M^{\text{tree}}M^{\text{tree}}| + 2Re|M^{\text{tree}}M^{\alpha_s}| + 2Re|M^{\text{tree}}M^{\alpha_s \alpha_s}| + 2Re|M^{\text{tree}}M^{\alpha_s \alpha_s}| + \frac{|M^{\alpha}M^{\alpha_s}| + 2Re|M^{\text{tree}}M^{\alpha_s^2*}|}{NNLO(EW + EW)} + \frac{2Re|M^{\alpha}M^{\alpha_s \alpha_s}|}{NNNLO(EW + EW + QCD)} + ...$$

• LO : only consider s channel(ignore electron mass)

e

Z

е

 G^0

- NNLO(EW+EW): complete result in progress
- Complete result
 - with fermion loops $N_f > 0$
 - without fermion loops $N_f = 0$
- Correction for $N_f > 0$ dominate due to:
 - large top-quark Yukawa coupling
 - flavor number enhancement
- Correction for $N_f > 0$: 0.7% ($\alpha(M_z)$) (this talk)

Examples of two-loop EW Feynman diagrams with at least one closed fermion loop

Evaluation method

- Analytical result:
 - optimal, convenient for phenomenology analysis
 - is expressed with harmonic polylogarithmic functions, etc
- NNLO correction:
 - simple diagrams have analytical expressions
 - massless double-box diagram V.A.Smirnov `99
 - double-box diagram with 4 massive and 3 massless lines V.A.Smirnov `00
 - generally difficult for analytical result: require more knowledge about special functions

Evaluation method

• Numerical calculation:

F. Yuasa, E. de Doncker, N. Hamaguchi, T. Ishikawa,

- Feynman parametrization K. Kato, Y. Kurihara, J. Fujimoto and Y. Shimizu `12
 - applied to calculate double-box diagrams
 - takes few days integrand converges slowly
- Differential equation X. Chen, X. Guan, C-Q. He, Z.Li, X. Liu `22
 - applied to calculate complete NNLO(EW+EW) result
 - more details \rightarrow See Xin Guan's talk
- Feynman parametrization and dispersion relation A. Freitas, Q. Song 22`
 - applied to calculate complete NNLO(EW+EW) result
 - finished NNLO(EW+EW) diagrams with fermion loops
 - not automatic, case-by-case UV divergence treatment
 - numerically stable, with good precision(4-digit precision)
 - evaluation is fast, takes few minutes

Preliminary

- dimensional regularization to regulate UV divergence, trace calculation in D dim
 - Trace not involving γ_5 is evaluated in D dimension(NDR) because of UV div
 - Trace involving γ_5 is treated in 4 dimension because that part is UV finite \Rightarrow zero by summing over all fermions, SM free of anomaly
- On-Shell renormalization: cancel all UV divergences
- IR divergence:
 - spurious IR divergence: regulate with a small photon mass
 - physical IR divergence: cancel with real photon emission, not include in our calculation

Example diagram with physical IR div

Example diagram with spurious IR div

Calculation process

- Generate Feynman diagrams with FeynArts T.Hahn `00
- Calculate unpolarized squared amplitude with FeynCalc V. Shtabovenko, R. Mertig and F. Orellana `01
- Use dispersion relation and Feynman parameterization to simplify squared amplitude
 - Using private code, Squared amplitude is expressed as \leq 3-fold numerical integral

 $|MM^*| = \int dx \int d\sigma \Delta B_{\mu\nu}(\sigma, m_1^2, m_2^2) \times (c_1 A_0 + c_2 B_0 + c_3 C_0 + c_4 D_0 + c_{ij} D_{ij} + \dots)$

analytically known analytically known, implemented from looptools packag

- UV finite diagram: straight forward
- UV divergent diagram: subtraction terms
- Squared amplitude is evaluated numerically in C++ with LoopTools package, Gauss-Kronrod quadrature in Boost package
 T.Hahn `98
 https://www.boost.org/

UV divergent diagram

- Subtraction terms to deal with UV divergence:
 - subtract few simple terms($I_{
 m subtra}$) to make it UV finite
 - $I_{\rm subtra}$ must be simple enough to be integrated analytically
 - add $I_{
 m subtra}$ back analytically

Integrated in C++ Derive analytical result in MMA

• 3 types subtraction terms \leftrightarrow 1 global divergence + 2 local divergences

Calculation process

- Generate Feynman diagrams with FeynArts T.Hahn `00
- Calculate unpolarized squared amplitude with FeynCalc V. Shtabovenko, R. Mertig and F. Orellana `01
- Use dispersion relation and Feynman parameterization to simplify squared amplitude
 - Using private code, Squared amplitude is expressed as \leq 3-fold numerical integral

 $|MM^*| = \int dx \int d\sigma \Delta B_{\mu\nu}(\sigma, m_1^2, m_2^2) \times (c_1 A_0 + c_2 B_0 + c_3 C_0 + c_4 D_0 + c_{ij} D_{ij} + \dots)$

analytically known analytically known, implemented from looptools packag

- UV finite diagram: straight forward
- UV divergent diagram: subtraction terms
- Squared amplitude is evaluated numerically in C++ with LoopTools package, Gauss-Kronrod quadrature in Boost package
 T.Hahn `98
 https://www.boost.org/

UV divergent diagram: VZH vertex(2 local + 1 global divergence)

CEPC workshop October 24-28, 2022

- Vacuum diagram(no legs) with same intermediate particles
- cancel global divergence
- analytical expression
 - tensor decomposition: reduce tensor integral to scalar integral
 - reduce scalar integral to master one using FIRE
 A.V.Smirnov and F.S.Chukharev `19
 - master integral can be evaluated analytically with TVID

B.Stefan, F.Ayres and W.Daniel `19

UV divergent diagram: VZH vertex(2 local + 1 global divergence)

- Product of one loop functions
- analytically known: product of one-loop functions
- cancel local divergences from two subloops

CEPC workshop October 24-28, 2022

Numerical result

input parameters:
$m_W = 80.352 \text{ GeV}$
$m_Z = 91.1535 \text{ GeV}$
$m_H = 125.1 \text{ GeV}$
$m_t = 172.76 \text{ GeV}$
$m_{f\neq t} = 0$
$\alpha^{-1} = 137.036$
$\Delta \alpha = 0.059$
$\sqrt{s} = 240 \text{ GeV}$
$\theta = \pi/2$

	(fb)	Contribution	(fb)
$\sigma^{ m LO}$	222.958		
$\sigma^{ m NLO}$	229.893	N_f : number of fermion loops	
		$\mathcal{O}(lpha_{N_f=1})$	21.130
		$\mathcal{O}(lpha_{N_f=0})$	-14.195
$\sigma^{ m NNLO}$	231.546	N_f : number of fermion loops	
		$\mathcal{O}(lpha_{N_f=2}^2)$	1.881
		$\mathcal{O}(lpha_{N_f=1}^2)$	-0.226

• $\mathcal{O}(\alpha) = 3\%$ bosonic and fermionic contribution partially cancel • $\mathcal{O}(\alpha^2) = 0.7\%$ comparable with experimental precision • $\mathcal{O}(\alpha_{N_f=2}^2) \gg \mathcal{O}(\alpha_{N_f=1}^2)$ large top mass and flavor number enhancement; accidental numerical cancellation;

Numerical result

Contribution for N_f =1:

- difference between solid bule line and dashed green curves;
- larger than 0 for $|\cos \theta| > 0.59$
- smaller than 0 for $|\cos \theta| < 0.59$

Summary

- Two-loop Electroweak correction must be included because of expected high precision at future e^+e^- colliders
- Diagrams with closed fermionic loops are dominated, UV divergent in general
- Using Feynman parametrization and dispersion relation, squared amplitude can be simplified to 3/2/1-fold integral
- Numerical integration takes few minutes with 4-digit precision
- Subtraction terms to deal with UV divergence, canceled with CT
- NNLO(EW+EW) for $N_f=2~$ is much greater than $N_f=1~$
- For future: polarized cross section, real correction, unstable Z&H decay, bosonic correction estimation, renormalization scheme dependence...

Thank you!

Numerical result at NLO

Polarized cross section at NLO

P_{e^-}	P_{e^+}	$\sigma^{ m hard},{ m fb}$	$\sigma^{\rm Born}$, fb	$\sigma^{1-\text{loop}},\text{fb}$	$\delta, \%$
0	0	82.0(1)	225.59(1)	206.91(1)	-8.28(1)
-0.8	0	47.6(1)	266.05(1)	223.52(2)	-15.99(1)
-0.8	-0.6	46.3(1)	127.42(1)	111.76(2)	-12.29(1)
-0.8	0.6	147.1(1)	404.69(1)	335.28(1)	-17.15(1)

Table 1: Hard, Born and 1-loop cross sections in fb of the process $e^+e^- \rightarrow ZH$ and relative correction δ in percents for energy 250 GeV and various polarizations of initial particles produced by SANC.

Missing term estimation

• A simple method is based on the assumption that the perturbation series follows roughly a geometric progression, such as

$$\mathcal{O}(\alpha^2 \alpha_s) = \frac{\mathcal{O}(\alpha^2)}{\mathcal{O}(\alpha)} \mathcal{O}(\alpha \alpha_s)$$

- One is called the "Traditional Blue Band Method". It is based on the fact that the results by using different method, different renormalization scheme, differ from each other.
- A different approach is that for each type of unknown corrections the relevant enhancement factors are kept and remaining dimensionless loop integral is set to be 1.

Box diagram with self-energy fermionic subloop

• Self-energy loop is UV divergent.

$$\int d^4q \frac{q^{\mu}q^{\nu}}{(q^2 - m_1^2)((q+p)^2 - m_2^2)} \stackrel{q \to \infty}{\approx} \int dq \, q = \infty$$

• With dispersion relation, the UV performance at large q becomes UV divergence at large σ

$$\int d^4q \frac{q^{\mu}q^{\nu}}{(q^2 - m_1^2)((q+p)^2 - m_2^2)}$$
$$= \int_{\sigma_0}^{\infty} d\sigma \frac{\Delta B^{\mu\nu}(\sigma, m_1^2, m_2^2)}{\sigma - p^2} \stackrel{\sigma \to \infty}{\approx} \int d\sigma = \infty$$

Box diagram with self-energy fermionic subloop

1. Feynman parametrization and dispersion relation divergence of fermionic loop $\rightarrow \Delta B_{\mu\nu}(\sigma - p^2)$ at large σ

2.
$$\lim_{\sigma \to \infty} \Delta B_{\mu\nu}(\sigma - p^2) - \Delta B_{\mu\nu}(\sigma) - p^2 \partial_{\sigma} \Delta B_{\mu\nu}(\sigma) \to \text{finite}$$

3. $\Delta B_{\mu\nu}(\sigma) + p^2 \partial_{\sigma} \Delta B_{\mu\nu}(\sigma)$ can be integrated analytically: $\int d\sigma \Delta B_{\mu\nu}(\sigma) + p^2 \partial_{\sigma} \Delta B_{\mu\nu}(\sigma) = B_{\mu\nu}(0) + p^2 \frac{\partial B_{\mu\nu}(ps)}{\partial ps}|_{ps \to 0}$

bosonic subloop is expressed using scalar PaVe functions 4. Divergent part cancels with CT diagram

Box diagram with self-energy fermionic subloop

div: $(6.449289*10^{-7} + 3.513202*10^{-15*I})/\epsilon$ finite: $-6.847403*10^{-6} - 3.854979*10^{-14*I}$ div: $(-6.449289*10^{-7} - 7.518501*10^{-15*I})/\epsilon$ finite: $6.963528*10^{-6} + 8.438749*10^{-14*I}$

Sum of loop and CT is UV finite

Polarized amplitude

- Polarized squared amplitude can be easily computed by multiplying projection operator with fermion spinor $M_{LR}=M_{RL}=0$

$$p_1) \to u_L(p_1) = \frac{1 - \gamma^5}{2} u(p_1)$$

 $\to u_R(p_1) = \frac{1 + \gamma^5}{2} u(p_1)$

u(

• Derive relation between polarized squared amplitude and unpolarized square amplitude $|M^0(M^2_{LL,RR})^*| = C_{LL,RR} \times |M^0(M^2)^*|$

Number of gauge 🛛 👝	gauge bosons V_i	unpolarized square amplitude	$e_L^- e_L^+$	$e_R^- e_R^+$
bosons connected	$V_1 = \gamma$	$ M_0^Z M_2^{\gamma} = \frac{1}{4} (M_{0,L}^Z M_{2,L}^{\gamma} + M_{0,R}^Z M_{2,R}^{\gamma})$	$rac{g_L imes 4 imes M_0^Z M_2^{\gamma\gamma} }{q_L + q_B}$	$rac{g_R imes 4 imes M_0^Z M_2^{\gamma\gamma} }{q_L + q_R}$
with ee beam	$V_1 = Z$	$ M_0^Z M_2^Z = \frac{1}{4} (M_{0,L}^Z M_{2,L}^Z + M_{0,R}^Z M_{2,R}^Z)$	$rac{g_L^Z imes 4 imes M_0^Z M_2^Z }{g_L^Z + g_R^Z}$	$\frac{g_R^Z \times 4 \times M_0^Z M_2^Z }{g_L^Z + g_R^Z}$
	$V_1=\gamma, V_2=\gamma$	$ M_0^Z M_2^{\gamma \gamma} = \frac{1}{4} (M_{0,L}^Z M_{2,L}^{\gamma \gamma} + M_{0,R}^Z M_{2,R}^{\gamma \gamma})$	$rac{g_L^Z imes 4 imes M_0^Z M_2^{\gamma\gamma} }{g_L^Z + g_R^Z}$	$\frac{g_R^Z \times 4 \times M_0^Z M_2^{\gamma\gamma} }{g_L^Z + g_R^Z}$
	$V_1 = \gamma, V_2 = Z$	$ M_0^Z M_2^{\gamma Z} = \frac{1}{4} (M_{0,L}^Z M_{2,L}^{\gamma Z} + M_{0,R}^Z M_{2,R}^{\gamma Z})$	$\frac{(g_L^Z)^2 \times 4 \times M_0^Z M_2^{\gamma Z} }{(g_L^Z)^2 + (g_R^Z)^2}$	$\frac{(g_R^Z)^2 \times 4 \times M_0^Z M_2^{\gamma Z} }{(g_L^Z)^2 + (g_R^Z)^2}$
	$V_1 = Z, V_2 = Z$	$ M_0^Z M_2^{ZZ} = \frac{1}{4} (M_{0,L}^Z M_{2,L}^{ZZ} + M_{0,R}^Z M_{2,R}^{ZZ})$	$\frac{(g_L^Z)^3 \times 4 \times \tilde{M}_0^Z M_2^{ZZ} }{(g_L^Z)^3 + (g_R^Z)^3}$	$\frac{(g_R^Z)^3 \times 4 \times \tilde{M}_0^Z M_2^{ZZ} }{(g_L^Z)^3 + (g_R^Z)^3} $
	$V_1 = W, V_2 = W$	$ M_0^Z M_2^{WW} = rac{1}{4} (M_{0,L}^Z M_{2,L}^{WW} $	$4\times M_0^Z M_2^{WW} $	0