

Search for $H \rightarrow ss \rightarrow 4b$ exotic decays of SM Higgs with CEPC

Zhen Wang, <u>Xu-Liang Zhu</u>, Yanda Wu, Yuwen Zhang, Elham Khoda, Shih-Chieh Hsu, Shu Li, M. J. Ramsey-Musolf

CEPC Workshop

2022-10-24

Outline

- Physics Motivation
- Theoretical Prospects
- Sample Production
- Cut Based Approach
- BDT Approach
- Systematic Uncertainty
- Limit Setting with TRExFitter
- Summary and future plans

Physics Motivation

J. Kozaczuk, M. J. Ramsey-Musolf, and J. Shelton *Phys. Rev. D* **101**, 115035 (2020).

 We are interested in the strong first-order electroweak phase transition in the "SM Higgs + Light Real Singlet Scalar" model:

$$V = -\mu^2 |H|^2 + \lambda |H|^4 + \frac{1}{2}a_1|H|^2S + \frac{1}{2}a_2|H|^2S^2 + b_1S + \frac{1}{2}b_2S^2 + \frac{1}{3}b_3S^3 + \frac{1}{4}b_4S^4$$

• Mass eigenstates: $h_1 = h \cos \theta + s \sin \theta$ (h_1 : singlet-like) $h_2 = -h \sin \theta + s \cos \theta$ (h_2 : SM-like Higgs)

Extrema can evolve differently as T evolves → Rich possibilities for symmetry breaking

Theoretical Prospects

$$H \rightarrow ss \rightarrow 4b$$

<u>J. Kozaczuk, M. J. Ramsey-Musolf, and J. Shelton *Phys. Rev. D* **101**, 115035 (2020). <u>Z. Liu *et al.*, *Chinese Phys. C* **41**, 063102 (2017).</u></u>

Sample Production

59.999

59.9995

- Signal: The samples are generated at 240 GeV. 50000 events per mass point from 5 to 60 GeV for electron and muon channel separately

50000

60.001

h1InvMass [GeV]

- Generator: Madgraph5 and Pythia8
- Simulation and reconstruction: cepcsoft 0.1.1, CEPC_v4

Fig. Mass distribution of h_1 when $m_1 = 60 \,\mathrm{GeV}$ TSUNG-DAO LEE INSTITUTE

60

60.0005

Sample Production

• Background: 2-Fermion, 4-Fermion, eeH, mumuH as our background. Expect luminosity: $5 \, ab^{-1}$.

Process	$\int L$	Final states	X-sections (fb)	Comments
	$5~{ m ab}^{-1}$	ffH	203.66	all signals
	5 ${ m ab}^{-1}$	e^+e^-H	7.04	including ZZ fusion
	5 ${\rm ab^{-1}}$	$\mu^+\mu^- H$	6.77	
	$5~{ m ab}^{-1}$	$ au^+ au^- H$	6.75	
	$5~{ m ab}^{-1}$	$ uar{ u}H$	46.29	all neutrinos (ZH+WW fusion)
	5 ${ m ab}^{-1}$	$qar{q}H$	136.81	all quark pairs (Z $ o qar q$)

decay mode	branching ratio	relative uncertainty
$H \rightarrow b \bar{b}$	57.7%	+3.2%, -3.3%
$H \rightarrow c\bar{c}$	2.91%	+12%, -12%
$H \to \tau^+ \tau^-$	6.32%	+5.7%, -5.7%
$H \to \mu^+ \mu^-$	2.19×10^{-4}	+6.0%, -5.9%
$H \to WW^*$	21.5%	+4.3%, -4.2%
$H \rightarrow ZZ^*$	2.64%	+4.3%, -4.2%
$H o \gamma \gamma$	2.28×10^{-3}	+5.0%, -4.9%
$H \rightarrow Z\gamma$	1.53×10^{-3}	+9.0%, -8.8%
$H \rightarrow gg$	8.57%	+10%, -10%
Γ_H	4.07 MeV	+4.0%, -4.0%

2 fermion backgounds

Process	$\int L$	Final states	X-sections (fb)	Comments
$e^+e^- o e^+e^-$	5 ${\sf ab^{-1}}$	e^+e^-	24770.90	

http://cepcsoft.ihep.ac.cn/guides/Generation/docs/ExistingSamples/#240-gevhttps://iopscience.iop.org/article/10.1088/1674-1137/43/4/043002/pdf

lxslc7 : /cefs/data/DstData/CEPC240/CEPC_v4_update

Cut Based Approach

- Same flavor opposite sign lepton pair with energy larger than 20 GeV
- Invariant lepton pair mass should be within the Z mass window [77.5,104.5] GeV
- Recoiled mass of the lepton pair system should be within [124,140] GeV
- 4 jets are required to be reconstructed. Reconstructed S particle is decided by pairing them 2 by 2 and find the set with smallest mass difference.
- Number of energetic particles(energy > 0.4 GeV) in the 4jets should be larger than 40
- B-inefficiency : GBDT-based b-jet tagging algorithm. $L_{b1}, L_{b2}, L_{b3}, L_{b4}$ should satisfy $L_{b1} \times L_{b2} \times L_{b3} \times L_{b4}$

$$Log 10 \left(\frac{L_{b1} \times L_{b2} \times L_{b3} \times L_{b4}}{L_{b1} \times L_{b2} \times L_{b3} \times L_{b4} + (1 - L_{b1}) \times (1 - L_{b2}) \times (1 - L_{b3}) \times (1 - L_{b4})} \right) < -4.0$$

Thanks to Yu Bai.

Y. Bai et al., Chinese Phys. C 44, 013001 (2020).

Cut Based Approach

Signal Selection Efficiencies:

Signal Distribution:

Cut Based Approach

大文道研究听 Tsung-Dao Lee Institute

- Signal:
 - Singlet mass at 30 GeV
- Background:
 - IIH_bb (dominant)
 - Other IIH process
 - Non Higgs process

Selection	Signal ($m_s = 30 \text{ GeV}$)	$\ell\ell Hbb$	other $\ell\ell H$	non Higgs
Original	8865	2.92×10^4	2.41×10^4	3.79×10^{7}
Lepton pair selection	6042	1.83×10^{4}	1.20×10^4	1.32×10^{6}
Lepton pair mass	5537	1.65×10^{4}	1.07×10^{4}	6.17×10^{5}
Jet selection and pairing	4054	7947	4661	3698
B-inefficiency	2210	131	15	14

Cutflow Table

BDT Approach

- Trained the variables after some loose selections :
- Same flavor opposite sign lepton pair with energy larger than 20 GeV
- Invariant lepton pair mass should be within the Z mass window [77.5,104.5] GeV
- · Recoiled mass of the lepton pair system should be within [124,140] GeV

10 BDTs are trained with 10 different mass points from 15GeV to 60 GeV

Variables used in

training

lep_pt

• jet_energy

jet_inv_mass

opening_angle

jet_recoil_mass

• S mass

btag_ineff

• Y12

Y23

Y34

• Y45

Y56

MARCH 21, 2012 BY UPAUDEL

jetcoshel

• sscosphi

Output of BDT classifier is used as the discriminant and used in the fitting and limit setting.

TT 11 12 1 1 1 1 1

Helicity angle calculations

A useful quantity in many analyses is the helicity angle. In the reaction Y -> X -> a + b, the helicity angle of particle a is the angle measured in the rest frame of the decaying parent particle, X, between the direction of the decay daughter a and the direction of the grandparent particle Y.

Tsung-Dao Lee Institute arXiv:2203.10184

BDT Approach

• Example of BDT inputs with 30GeV signal

BDT Score

Systematic Uncertainty

- Systematic uncertainty from luminosity and lepton identification are considered to be small.
- Event yield of all kinds of backgrounds are conservatively considered by varying event yields by 5% for dominant process and 100% for other processes.
- Flavor tagging uncertainty is estimated on ZZ->qq+mumu control sample and yields 0.78% for 2jet analysis, we conservatively set this term to 1%.
- Jet energy resolution is estimated by varying energy of each jet with a Gaussian function according to the CEPC calorimeter energy resolution.

P.-Z. Lai et al 2021 JINST 16 P07037

Limit Setting with TRExFitter

Current Limits of cut-based and BDT approach.

Summary

- A search for exotic decays of the Higgs boson into a pair of spin-zero singlet-like particles is done with 5 ab-1 simulation data with CEPC.
- SnowMass White Paper Submitted: https://arxiv.org/abs/2203.10184
- BDT based analysis gives better sensitivity than the cut-based analysis approach.
- This realistic study yields a weaker exclusion limit compared to the theoretical projections
- The study with 4b final states could conclusively test the possibility of an SFOEWPT in the extended-SM with a light singlet of mass as low as 20 GeV.

Future Plans

- Jet energy resolution uncertainty, aiming at a more specific and detailed study
- Journal publication plan at the end of this year hopefully

Thanks!

Backup

• Jet energy resolution reference.

P.-Z. Lai et al 2021 JINST 16 P07037

Jet energy resolution is performed by extrapolating the curve to low energy region and apply smearing.

https://doi.org/10.1088/1748-0221/16/07/P07037

Backup

Backup

$m_1[GeV]$	a_2	b_3	b_4	D_{-} width	BR
	0.00379269019	0.00087284094	3.16227766017e-05	7.3774e-05	0.01780479
5	0.00033598183	0.00693322201	8.91250938133e-07	1.0348e-06	0.00025421
10	0.02511886432	0.01954047457	0.00125892541179	0.0030277	0.42627589
10	0.00199526231	0.04908345294	1.58489319246e-05	2.1351e-05	0.00521904
15	0.05011872336	0.00389883725	0.00446683592151	0.011795	0.73632455
13	0.00375837404	0.19540474574	7.94328234724e-05	5.9206e-05	0.01422012
20	0.00630957344	0.49083452948	0.00025118864315	0.0001866	0.04347394
25	0.01	0.97934363956	0.00063095734448	0.00044524	0.09859974
30	0.01678804018	1.55215506742	0.00125892541179	0.0011898	0.22613126
35	0.02511886432	2.46	0.00251188643151	0.0025006	0.38033656
40	0.02660725059	3.89883725345	0.00398107170553	0.0025799	0.38771480
45	0.04216965034	4.90834529482	0.00630957344480	0.0058611	0.58957125
50	0.04216965034	7.77920304401	0.01	0.0050107	0.55126677
55	0.06309573445	9.79343639562	0.01584893192461	0.0089054	0.68549957
60	0.05956621435	15.5215506742	0.02511886431509	0.0045989	0.53001523

Table. Parameters and related BRs that satisfy a strong 1-st order electroweak phase transition. The orange shading represent parameter when BR is at its upper bound, and blue shading represent the lower bound.

Mass	BDT Limits	Theory
20GeV	0.0005	0.0006
30GeV	0.0006	0.0005

Limits from BDT and Theory

Backup

Backup

10 BDTs are trained with 10 different signal samples from 15GeV to 60 GeV

Number of events in one training:

