Higgs→bb/cc/gg measurement at the CEPC and corresponding optimization study

Yongfeng Zhu

advisor : Manqi Ruan

IHEP

2022.10.24

Yongfeng Zhu advisor : Manqi Ruan (IHEP) Higgs→bb/cc/gg measurement at the CEPC and

Motivation

- The measurement of $Higgs \rightarrow b\bar{b}/c\bar{c}/gg$ signal strength is important for Higgs coupling studies.
- The flavor tagging performance and color singlet identification has significant impact on the measurement accuracy.

Contents

- The relative accuracy of signal strength measurement of $\nu\nu H(H \rightarrow b\bar{b}, c\bar{c}, gg)$.
 - key performance : flavor tagging
- The relative accuracy of signal strength measurement of $qqH(H \rightarrow b\bar{b}, c\bar{c}, gg)$.
 - key performance : flavor tagging
 - key performance : color singlet identification
- summary

Sample

• all SM processes at CEPC ($\sqrt{s} = 240 \, GeV$) with integrated luminosity of 5600 fb^{-1}

・ロット (母) ・ ヨ) ・ ヨ) ・ ヨ

The analysis procedure can be divided into two steps:

- select signal events with cut flow
- 2 calculate the signal strength accuracy

The analysis process of $\nu\nu H$ channel.

	ννHqą̄/gg	2f	SW	SZ	ww	ZZ	Mixed	ZH	$\frac{\sqrt{S+B}}{S}$ (%)
total	178890	8.01 <i>E</i> 8	1.95E7	9.07E6	5.08E7	6.39E6	2.18E7	961606	16.86
recoilMass (GeV) \in (74, 131)	157822	5.11 <i>E</i> 7	2.17E6	1.38E6	4.78E6	1.30 <i>E</i> 6	1.08 <i>E</i> 6	74991	4.99
visEn (GeV) ∈ (109, 143)	142918	2.37E7	1.35 <i>E</i> 6	8.81E5	3.60E6	1.03 <i>E</i> 6	6.29 <i>E</i> 5	50989	3.92
leadLepEn (GeV) $\in (0, 42)$	141926	2.08E7	3.65E5	7.24E5	2.81 <i>E</i> 6	9.72 <i>E</i> 5	1.34 <i>E</i> 5	46963	3.59
multiplicity ∈ (40, 130)	139545	1.66 <i>E</i> 7	2.36E5	5.24E5	2.62E6	9.07 <i>E</i> 5	4977	42751	3.29
leadNeuEn (GeV) $\in (0, 41)$	138653	1.46 <i>E</i> 7	2.24E5	4.72E5	2.49E6	8.69 <i>E</i> 5	4552	42303	3.12
Pt (GeV) ∈ (20, 60)	121212	248715	1.56E5	2.48E5	1.51 <i>E</i> 6	4.31 <i>E</i> 5	999	35453	1.37
PI (GeV) ∈ (0, 50)	118109	52784	1.05 <i>E</i> 5	74936	7.30E5	1.13E5	847	34279	0.94
-log10(Y23) ∈ (3.375, +∞)	96156	40861	26088	60349	2.25E5	82560	640	10691	0.76
InvMass (GeV) ∈ (116, 134)	71758	22200	11059	6308	77912	13680	248	6915	0.64
BDT ∈ (-0.02, 1)	60887	9140	266	2521	3761	3916	58	1897	0.47

Optimized matrix

- The b-likeness and c-likeness of two jets can be displaced in 2D graph.
- ② The cut on b-likeness and c-likeness can be find to maximize the value of $eff(b \rightarrow b) + eff(c \rightarrow c) + eff(udsg \rightarrow udsg)$, the trace of flavor tagging matrix.

Optimized matrix :

э

3 x x 3 x

< A ▶

events distribution based on optimized matrix :

Yongfeng Zhu advisor : Manqi Ruan (IHEP) Higgs→bb/cc/gg measurement at the CEPC and

$$-2 \cdot log(\ell) = \sum_{i=1}^{i=6} \frac{[S_b \cdot N_{b,i} + S_c \cdot N_{c,i} + S_{light} \cdot N_{light,i} + N_{bkg,i} - N_i]^2}{N_i}$$

- S_b : the signal strength of $\nu\nu Hb\bar{b}$
- $N_{b,i}$: the event number of $\nu\nu Hb\bar{b}$ in *ith* bin
- Ni: the total event number in i'th bin of vvHbb, vvH/cc, vvHgg and backgrounds
- N_{bkg,i} is the expected event number in ith bin of backgrounds,
- similar for S_c, S_{light}, N_{c,i}, and N_{light,i}

$$hessian matrix = \begin{bmatrix} \frac{\partial^2 log(l)}{\partial S_g \partial S_c} & \frac{\partial^2 log(l)}{\partial S_g \partial S_b} & \frac{\partial^2 log(l)}{\partial S_g \partial S_g} \\ \frac{\partial^2 log(l)}{\partial S_b \partial S_c} & \frac{\partial^2 log(l)}{\partial S_b \partial S_b} & \frac{\partial^2 log(l)}{\partial S_b \partial S_g} \\ \frac{\partial^2 log(l)}{\partial S_c \partial S_c} & \frac{\partial^2 log(l)}{\partial S_c \partial S_b} & \frac{\partial^2 log(g)}{\partial S_c \partial S_g} \end{bmatrix}$$

- The error covariance is obtained from the hessian matrix.
- The relative accuracy of signal strength is the square roots of the diagonal elements of the covariance matrix, it is 0.49%/5.75%/1.82% for vvHbb/cc/gg.

The analysis process of $q\bar{q}H$ channel.

	qqHqq/gg	2f	SW	SZ	ww	ZZ	Mixed	ZH	$\frac{\sqrt{S+B}}{S}$ (%)
total	527488	8.01 <i>E</i> 8	1.95E7	9.07 <i>E</i> 6	5.08E7	6.39E6	2.18E7	613008	5.71
multiplicity $\in (27, +\infty)$	527488	3.04 <i>E</i> 8	1.46E7	3.37 <i>E</i> 6	4.85E7	6.00E6	1.81 <i>E</i> 7	577930	3.77
$leadLepEn \in (0, 59)$	527036	2, 98 <i>E</i> 8	6.76E6	2.44 <i>E</i> 6	3.93E7	5.40E6	1.79 <i>E</i> 7	531411	3.65
visEn ∈ (199, 278)	510731	1.21 <i>E</i> 8	1.29 <i>E</i> 6	551105	2.14E7	3.06E6	1.71E7	180571	2.52
$leadNeuEn \in (0, 57)$	509623	5.68E7	716161	168030	2.04E7	2.93E6	1.65 <i>E</i> 7	176387	1.94
thrust ∈ (0, 0.86)	460535	7.81 <i>E</i> 6	473732	132126	1.88E7	2.60E6	1.54 <i>E</i> 7	167863	1.47
$-log(Y_{34}) \in (0, 5.8875)$	451468	4.90 <i>E</i> 6	181432	119836	1.74E7	2.40E6	1.45E7	165961	1.40
HiggsJetsA \in (2.18, 2 π)	326207	2.83 <i>E</i> 6	110156	58613	4.54 <i>E</i> 6	870276	3.74 <i>E</i> 6	96560	1.08
$ZJetsA \in (1.97, 2\pi)$	279030	1.37 <i>E</i> 6	33491	37101	2.39E6	496611	2.00 <i>E</i> 6	74005	0.93
ZHiggsA ∈ (2.32, 2π)	274530	1.32 <i>E</i> 6	17026	33847	2.28E6	468340	1.91 <i>E</i> 6	69620	0.92
circle	268271	1.20E6	10193	31567	2.13E6	424514	1.79E6	65434	0.90
BDT ∈ (0.02, 1)	192278	378300	40	307	271436	141446	244126	30022	0.57

optimized matrix

3 k 3

The signal strength accuracy is 0.35%/7.74%/3.96% for $q\bar{q}Hb\bar{b}/c\bar{c}/gg$.

13/29

Z decay mode	$H \rightarrow b\bar{b}$	H → c̄c	$H \rightarrow gg$
$Z \rightarrow e^+e^-$	1.57%	14.43%	10.31%
$Z \rightarrow \mu^+ \mu^-$	1.06%	10.16%	5.23%
$Z \rightarrow q\bar{q}$	0.35%	7.74%	3.96%
$Z \rightarrow \nu \bar{\nu}$	0.49%	5.35%	1.77%
combination	0.27%	4.03%	1.56%

▲□▶▲□▶▲□▶▲□▶ = のQ@

key performance : flavor tagging

Yongfeng Zhu advisor : Manqi Ruan (IHEP) Higgs→bb/cc/gg measurement at the CEPC and

E ▶ 4

$$M_{mig} = \frac{Tr_{mig} - Tr_{opt}}{Tr_{l} - Tr_{opt}} \cdot (M_{l} - M_{opt}) + M_{opt}, Tr_{mig} >= Tr_{opt}$$

$$M_{mig} = \frac{Tr_{mig} - Tr_{opt}}{Tr_{1/3} - Tr_{opt}} \cdot (M_{1/3} - M_{opt}) + M_{opt}, Tr_{mig} < Tr_{opt}$$

		b	с	g
	b	1	0	0
true	С	0	1	0
	g	0	0	1
	i	dentifie perfe	ed as	

-				
		b	с	g
	b	1/3	1/3	1/3
true	с	1/3	1/3	1/3
	g	1/3	1/3	1/3
		identif	ied as	
		no	ne	

 $\nu \bar{\nu} H$

- The perfect flavor tagging performance can improve the $\nu \bar{\nu} H(H \rightarrow b\bar{b}/c\bar{c}/gg)$ signal strength accuracy by 2%/63%/13%.
- If the values of vertex detector parameters, including material budget, inner radius, and spatial resolution, is 0.5/2 times compared to the CEPC baseline, the *Tr_{mig}* will changes from 2.35 to 2.54/2.16 accordingly. The detail can be found in the following pages.

- The perfect flavor tagging performance can improve the $\nu \bar{\nu} H(H \rightarrow b\bar{b}/c\bar{c}/gg)$ signal strength accuracy by 35%/122%/181%.
- If the values of vertex detector parameters is 0.5/2 times compared to the CEPC baseline, the *Tr_{mig}* will changes from 2.12 to 2.31/1.93 accordingly.

The dependency of flavor tagging performance on vertex detector design.

Z. Wu et al 2018 JINST 13 T09002

Table 1. The baseline design parameters of the CEPC vertex system.

	R(mm)	Z(mm)	single-point	material
			resolution(µm)	budget
Layer 1	16	62.5	2.8	0.15%/X ₀
Layer 2	18	62.5	6	0.15%/X ₀
Layer 3	37	125.0	4	0.15%/X ₀
Layer 4	39	125.0	4	0.15%/X ₀
Layer 5	58	125.0	4	0.15%/X ₀
Layer 6	60	125.0	4	0.15%/X ₀

< A > <

3 N 4

the right plot : the correlation between c-tagging efficiency times purity and vertex detector parameters The dependency of Tr_{miq} on vertex detector parameters.

In $\nu \bar{\nu} H$ channel,

$$Tr_{mig} = 2.35 + 0.05 \cdot \log_2 \frac{R_{material}^0}{R_{material}} + 0.04 \cdot \log_2 \frac{R_{resolution}^0}{R_{resolution}} + 0.10 \cdot \log_2 \frac{R_{radius}^0}{R_{radius}}$$
$$R_{material}^0 : \text{ the default material budget} \quad R_{material} : \text{ the modified material budget}$$

In *qqH* channel,

$$Tr_{mig} = 2.12 + 0.05 \cdot \log_2 \frac{R_{material}^0}{R_{material}} + 0.04 \cdot \log_2 \frac{R_{resolution}^0}{R_{resolution}} + 0.10 \cdot \log_2 \frac{R_{radius}^0}{R_{radius}}$$

Tab	le	2.	Reference	geometries.
-----	----	----	-----------	-------------

Material per layer/ X_0 0.075 0.15 0.3 Spatial resolution/µm 1.4 - 3 2.8 - 6 5 - 10.7 R_{in}/mm 8 16 23 Tr_{mig} for $q\bar{q}H$ 2.31 2.12 1.93 Tr 5 - 2.54 2.25 2.16		Scenario A (Aggressive)	Scenario B (Baseline)	Scenario C (Conservative)
Spatial resolution/ μ m 1.4 - 3 2.8 - 6 5 - 10.7 R _{in} /mm 8 16 23 Tr _{mig} for $q\bar{q}H$ 2.31 2.12 1.93 Tr = for $x \bar{x} \bar{x} H$ 2.54 2.35 2.16	Material per layer/ X_0	0.075	0.15	0.3
R_{in}/mm 8 16 23 Tr_{mig} for $q\bar{q}H$ 2.31 2.12 1.93 Tr for $v\bar{v}H$ 2.54 2.35 2.16	Spatial resolution/µm	1.4 - 3	2.8 - 6	5 - 10.7
Tr_{mig} for $q\bar{q}H$ 2.31 2.12 1.93	R _{in} /mm	8	16	23
Π_{mig} 101 VVN 2.54 2.55 2.16	Tr _{mig} for q̄ạ Tr _{mig} for vv	H 2.31 H 2.54	2.12 2.35	1.93 2.16

< 4 → <

글 🖌 🔺 글 🕨

Tr_{mig}

Yongfeng Zhu advisor : Manqi Ruan (IHEP) Higgs→bb/cc/gg measurement at the CEPC and

æ

Tr_{mig}

<ロ> (日) (日) (日) (日) (日)

key performance : color singlet identification (i.e. jet clustering and jet matching)

We use the angle between reconstructed boson and MC truth boson to evaluate the CSI performance.

note : The CSI evaluator in this report is just a demonstrator.

э

(日)

Summary :

The total signal strength of H → bb̄, cc̄, gg can be measured to a relative accuracy of 0.27%/4.03%/1.56%, combining all four different channels of μμH, eeH, vvH and qqH.

Z decay mode	$H \rightarrow b\bar{b}$	H → c̄c	$H \rightarrow gg$
$Z \rightarrow e^+e^-$	1.57%	14.43%	10.31%
$Z \rightarrow \mu^+ \mu^-$	1.06%	10.16%	5.23%
$Z \rightarrow q\bar{q}$	0.35%	7.74%	3.96%
$Z \rightarrow \nu \bar{\nu}$	0.49%	5.35%	1.77%
combination	0.27%	4.03%	1.56%

• The flavor tagging and color singlet identification (CSI) are the critical performances for these benchmarks. Their impact on the

anticipated physics reach is evaluated.

- for vvH channel
 - The flavor tagging is critical for the νννH(H → bb̄/cc̄/gg) measurement. Using an ideal flavor tagging, the anticipated accuracy could be improved by 2%/63%/13%.
- for qqH channel
 - With perfect flavor tagging, the anticipated accuracy of q\[array]H(H→b\[b]/c\[c]/gg) could be improved by 35%/122%/181%.
 - If we can quantify the CSI performance and select the events with good CSI performance, the q\[a]H(H→b\[b]/c\[c]/gg) accuracy can be improved by 6%/77%/90%.
- A good color singlet identification, or even a reliable color singlet identification performance evaluator at reconstruction level, is highly appreciated.

https://arxiv.org/abs/2203.01469

Many thanks !

Back Up

э

イロト イロト イヨト イヨト

systematic uncertainties

We categorize the leading systematic uncertainties into three groups:

- The first group includes the reconstructed energy/momentum scale of the physics objects, which are significantly smaller than the statistical uncertainties.
- The second group are those comparable to the statistical uncertainty, especially the integrated luminosity.
- The third group are those that can be significantly larger than the statistical uncertainty, including CSI and the jet configuration.

The detailed discussion can be found in https://arxiv.org/abs/2203.01469.

・ 同 ト ・ ヨ ト ・ ヨ ト

Backup

э

<ロ> (日) (日) (日) (日) (日)