

Higgs Combination at the CEPC

Kaili Zhang IHEP

The 2022 International Workshop on the High Energy Circular Electron Positron Collider

Oct. 24th, 2022

Higgs@CEPC

100km tunnel; 20iab data in 240GeV, 1iab in 360GeV.

CEPC (evolving) object performance

With certain detector parameter and certain reconstruction algorithm, CEPC Higgs measurements are predictable. Reconstruction overview: <u>arXiv:1806.04879</u>

New results:					
Jet:	arXiv:2104.05029				
Track:	arXiv:2209.00397				
dE/dx:	arXiv:2209.14486				
Cluster t	time: <u>arXiv:2209.02932</u>				

Individual sub channels

$\sigma(ZH): H \rightarrow \text{inclusive}$

- Possible by tagging Higgs with recoil mass
- Zhenxing: <u>arXiv:1601.05352</u>
 - Z \rightarrow ee, 1.4%; Z \rightarrow µµ, 0.9%;
 - model independently
 - $Z \rightarrow qq: 0.65\%$, by Janice
 - extrapolated from 1404.3164
 - Combined: 0.5%

bb, cc, gg

<u>Slides</u> in this workshop vvH, qqH by Yongfeng Zhu, <u>arXiv:2203.01469</u> eeH, mmH by Yu Bai, <u>arXiv:1905.12903</u>

- vvH, qqH used jet b-c likeness 2-d template fit
 - No direct truth information used in the analysis.
- eeH, mmH + recoil mass, 3-d fit
- Brief systematics, dependence on detector performance studied;

Z decay mode	$H \rightarrow b\bar{b}$	$H \rightarrow c\bar{c}$	$H \rightarrow gg$
$Z \rightarrow e^+ e^-$	1.57%	14.43%	10.31%
$Z \rightarrow \mu^+ \mu^-$	1.06%	10.16%	5.23%
$Z \rightarrow q\bar{q}$	0.35%	7.74%	3.96%
$Z \rightarrow \nu \bar{\nu}$	0.49%	5.35%	1.77%
combination	0.27%	4.03%	1.56%

$vvH \rightarrow bb$

- Crucial channel for Higgs width
- 2d fit M_{jj}^{reco} & Cos θ_{jj}
- $vvH \rightarrow bb$ and $ZH \rightarrow bb$
 - Interference ~10% of vvH. (generally, 60: 1:10)
 - CEPC add the interference term to vvH side currently;
 - $vvH \rightarrow bb$ and $ZH \rightarrow bb$ share the anti-correlation -45%. (-34% in ILC(1708.08912))
- $\sigma(vvH) * Br(H \rightarrow bb)$: 3.0%;
 - if fix ZH process, Initial $vvH \rightarrow bb$ uncertainty is 2.8%.

by Hao Liang.

- if float ZH process, $vvH \rightarrow bb$ would be 3.4%.
- Need use other ZH processes to constrain ZH.

 $H \rightarrow \gamma \gamma$

arXiv:2205.13269 by Fangyi Guo; Previous studied by Feng Wang, Yitian Sun;

Diphoton heavily rely on Ecal performance;

Channel	μ @ 5.6 ab^{-1}	μ @ 20 ab^{-1}
$q\bar{q}\gamma\gamma$	1.00 ± 0.0879	1.00 ± 0.0465
$\mu^+\mu^-\gamma\gamma$	1.00 ± 0.3571	1.00 ± 0.1920
$v \bar{v} \gamma \gamma$	1.00 ± 0.1142	1.00 ± 0.0605
Combined	1.00 ± 0.0688	1.00 ± 0.0364
		•

• BDT+mass 2d fit;

......., CEPC International Workshop, 2022

$H \rightarrow WW, ZZ$

Current CEPC use LCFIplus for Jet clustering; See jet separation in <u>10.1140/epjc/s10052-</u> <u>019-6719-2</u> and <u>arXiv:1812.09478</u>

- Leptonic, semi-leptonic WW by Libo Liao;
- Hadronic WW by Mila Pandurovic;

	Z	ee	μμ	vv	qq
ww	ev+ev				
	μν+μν				
	ev+μv				
	ev+qq				
	μv+qq				
	qq+qq				

Signal		Drasisian					
Z	Н	Precision					
H->WW							
	lvlv	9.2%					
ee	evqq	4.6%					
	μνqq	3.9%					
	lvlv	7.3%					
μμ	evqq	4.0%					
	μνqq	4.0%					
	qqqq	2.0%					
	evqq	4.7%					
vv	μνqq	4.2%					
	lvlv	11.3%					
qq	lvqq	2.2%(ILC)					
ZH bkg co	ntribution	3.0%					

- ZZ by Ryuta Kiuchi, Yanxi Gu and Min Zhong. arXiv:2103.09633,
- previous studied by Zhuoni Qian, Yuqian Wei;

Both WW ZZ can obtain improvements from full hadronic bb/cc/gg ZH backgrounds.

$H \rightarrow \mu\mu$ and $\tau\tau$

- $\mu\mu$ by Qi Liu, Kunlin Ran <u>CPC 46 093001</u>
- Previous studied by Zhenwei Cui;
- BDT+mass fit, based in 3T magnet;

Smearing	25%	50%	100%
μ	$1.00\substack{+0.21 \\ -0.20}$	$1.00\substack{+0.22\\-0.21}$	$1.00\substack{+0.25 \\ -0.24}$
Significance	5.5σ	5.1σ	4.4σ
Reduction in significance	10%	16%	28%

- *ττ*, by Dan Yu <u>arXiv:1903.12327</u>
- Develop LICH to identify lepton, Eff>99%
- Use $\log_{10}(D_0^2 + Z_0^2)$ + mass 2d fit to separate signal from WW
 - Impact parameter, Distance from beam spot

ZH fin	ZH final state	
$Z {\rightarrow} \mu^+ \mu^-$	$H{\rightarrow}\tau^{+}\tau^{-}$	2.6%
$Z {\rightarrow} e^+ e^-$	$H{\rightarrow}\tau^{+}\tau^{-}$	2.7%
$Z \rightarrow \nu \bar{\nu}$	$H {\rightarrow} \tau^+ \tau^-$	2.5%
$Z \rightarrow q \bar{q}$	$H{\rightarrow}\tau^{+}\tau^{-}$	0.9%
Comb	ination	0.8%

H \rightarrow invisible and $Z\gamma$

Invisible, <u>arXiv:2001.05912</u> by Yuhang Tan; Previous studied by Xin Mo;

In SM, H \rightarrow invisible refers $H \rightarrow ZZ \rightarrow \nu\nu\nu\nu$, 0.106%. For BSM contribution, limit set to 0.13%.

- $H \rightarrow Z\gamma$, by Wei-Ming Yao;
- Br 0.154%;

- $\Delta M(M_{qq\gamma} M_{qq}, or M_{\nu\nu\gamma} M_{\nu\nu})$ shown.
- Sensitivity 16%.

Existing results:240GeV, 5.6iab

(240GeV,5.6ab ⁻¹)	CDR	2022.10
<i>σ</i> (<i>ZH</i>)	0.50%	
$\sigma(ZH) * Br(H \rightarrow bb)$	0.27%	0.27%
$\sigma(ZH) * Br(H \rightarrow cc)$	3.3%	4.0%
$\sigma(ZH) * Br(H \rightarrow gg)$	1.3%	1.5%
$\sigma(ZH) * Br(H \rightarrow WW)$	1.0%	
$\sigma(ZH) * Br(H \rightarrow ZZ)$	5.1%	7.9%
$\sigma(ZH) * Br(H \rightarrow \tau \tau)$	0.8%	
$\sigma(ZH) * Br(H \rightarrow \gamma \gamma)$	6.8%	
$\sigma(ZH) * Br(H \rightarrow \mu\mu)$	17%	18%
$\sigma(vvH) * Br(H \rightarrow bb)$	3.0%	
$Br_{upper}(H \rightarrow inv.)$	0.41%	0.24%
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%	
Width	2.8%	

See previous slides for related publications. Changes mostly from better analysis strategy.

All existing results are based in (240 GeV,5.6ab⁻¹).

Now with the scenario upgrade published in Snowmass 2021, the new run will based in (240 GeV 20ab⁻¹ + 360 GeV 1ab⁻¹).

7 years 240 GeV

->

10 years 240 GeV + 5 years 360 GeV.

360GeV: Higher Energy Run

- 350~365GeV *tt* Run:
 - For Higgs: Larger vvH cross section; Benefit width measurement
 - More advantages for EW/Theoretical part;
- Current benchmark: 1ab⁻¹ @ 360GeV
 - 360GeV saves 10% energy with respect to 365 GeV
 - With current lumi, 5 years to collect 1iab data.
 - Also $t\bar{t}$ threshold scan plan
 - See <u>Zhan's report</u> for top mass scan measurement.

Plan from Fcc-ee: 0.2ab⁻¹ 350GeV Scan + 1.5ab⁻¹ 365GeV

Extrapolations

Using existing 240GeV to estimate 360GeV.....

Ideal model independent inclusive $Z \rightarrow \mu\mu: 0.92\% \rightarrow 1.72\%$

- 240GeV:
 - ZH: 196.9; vvH: 6.2; interference: ~10% of vvH; about 318:10:1; (Z->vv : vvH = 6.4:1)
- 360GeV: (vvH ~ 117% Z->vv), (eeH ~ 67% Z->ee)

fb	240	350	360	365	360/240
ZH	196.9	133.3	126.6	123.0	-36%
WW fusion	6.2	26.7	29.61	31.1	+377%
ZZ fusion	0.5	2.55	2.80	2.91	+460%
Total	203.6		159.0		
Total Events	4M		0.16M		

In total ~4M Higgs would be collected in CEPC 240+360. More fusion events, also eeH can not be ignored in 360GeV.

ZH/vvH interference already considered.

Extrapolations: backgrounds

10¹¹

I	360/240	365	360	350	240	pb
	-65%	319	325	336	930	ee(γ)
	-60%	2.1	2.1	2.2	5.3	μμ(γ)
	-57%	22.8	23.2	24.7	54.1	qq(γ)
	-40%	9.81	10.0	10.4	16.7	WW
	-43%	0.62	0.63	0.66	1.1	ZZ
		0.369	0.317	0.155	١	tŦ
	+27%	5.83	5.78	5.72	4.54	sZ
	+18%	6.04	6.00	5.89	5.09	sW

10 10¹⁰ 10⁴ 5.6 ab⁻¹ $e^+e^- \rightarrow W^+W^$ $e^+e^- \rightarrow evW$ of evts for t (qj)₀ 10³⊧ $e^+e^- \rightarrow ZZ$ $e^+e^- \rightarrow ZH$ 10 10⁴ 10 100 200 300 400

√s (GeV)

While 2fermion bkg and WW, ZZ bkg reduced, W/Z fusion and $t\bar{t}$ raise.

Generally, with larger phase space and smaller bkg cross sections, continuum background would reduce.

Processes are extrapolated to 360GeV in this ratio. Kinematic distributions are also scaled with phase space.

vvH->bb : 360 GeV, full sim

- Clear separation between ZH and vvH.
- Constrain from other ZH->bb(*ee*, $\mu\mu$, qq) considered.
- In current 1iab,
 - $\sigma(vvH) * Br(H \rightarrow bb): 1.10\%$
 - $\sigma(ZH) * Br(H \rightarrow bb): 0.90\%$
 - share the anti-correlation -15.8%.

This measurement gives very excellent constrain for

Higgs width.

22/10/24

Combination Framework

- Easy for extrapolation
- Multiple observables for workspace
 - Mass spectrum, BDT output, Flavor tagging likeness
 - Apply multi dimensional fit if possible
- Input correlation considered
 - σ *Br + Correlation Matrix = Complete Input.
 - Anti-correlation from measurement;
 - Major form: Higgs yields overlap
 - Cannot be ignored for some crucial channel, like vvH & ZH, H->bb

Results in Snowmass: 2205.08553

	240 GeV, 20 <i>ab</i> ⁻¹		20 ab^{-1} 360 Ge		ab^{-1}
	ZH	vvH	ZH	vvH	eeH
any	0.26%		1.40%	١	١
H→bb	0.14%	1.59%	0.90%	1.10%	4.30%
Н→сс	2.02%		8.80%	16%	20%
H→gg	0.81%		3.40%	4.50%	12%
H→WW	0.53%		2.80%	4.40%	6.50%
H→ZZ	4.17%		20%	21%	
$H \rightarrow \tau \tau$	0.42%		2.10%	4.20%	7.50%
$H ightarrow \gamma \gamma$	3.02%		11%	16%	
$H \rightarrow \mu \mu$	6.36%		41%	57%	
$Br_{upper}(H \rightarrow inv.)$	0.07%		١	١	
$H \rightarrow Z\gamma$	8.50%		35%	١	
Width	1.	.65%		1.10%	

Fcc:

\sqrt{s} (GeV)	24	0	36	5
Luminosity (ab^{-1})	5	5	1.	5
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}H$	HZ	$\nu\overline{\nu}\;H$
$H \rightarrow any$	± 0.5		± 0.9	
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \rightarrow c\bar{c}$	± 2.2		± 6.5	± 10
$H \rightarrow gg$	± 1.9		± 3.5	± 4.5
$ H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0
$H \rightarrow ZZ$	± 4.4		± 12	± 10
$H\to\tau\tau$	± 0.9		± 1.8	± 8
$H \rightarrow \gamma \gamma$	± 9.0		± 18	± 22
$\mid \mathrm{H} ightarrow \mu^+ \mu^-$	± 19		± 40	
$H \rightarrow invisible$	< 0.3		< 0.6	

Generally, CEPC and Fcc-ee results are comparable in Higgs precision measurement.

For Higgs coupling, also similar performance could be expected.

Couplings: *κ* framework

• Higgs coupling defined as:

$$\kappa_z^2 = \frac{g(HZZ)}{g_{SM}(HZZ)} = \frac{\sigma(ZH)}{\sigma_{SM}(ZH)} \quad ->0.5\%;$$

$$\sigma(vvH) * Br(H \to bb) \propto \frac{\kappa_w^2 * \kappa_b^2}{\Gamma_H}.$$

We expect excellent
$$\kappa_z$$
 measurement from $\sigma(ZH)$,
and all other channel suffered from Higgs width.
Extract width with branch ratio: Constrained 7- κ
Keep width independent: 10 κ

Higgs width

CEPC

- CEPC Higgs width is fitted in the 10κ framework.
- Adding one mass point would significantly improve the constrain.
 - Standalone 240GeV 20ab⁻¹ gives 1.65%, while 360GeV 1ab⁻¹ alone gives 3.65%.
 - These 2 points are independent.
 - Combined χ^2 fit gives:

Results not sensitive to the statistics for 360GeV run For Higgs, we do not need too much 360GeV events; But we do need it for the independent constrain.

 $\Delta(\Gamma_H) \approx 1.10\%$

As width in everywhere, width helps all kappas even better.

*: Here we do not have the assumption about the exotic decay. This treatment is different with Fcc-ee, which believes exotic Br can not be less than 0. If we take this assumption, the model-dependent width precision would be even better.

κ : CEPC latest

- Compared to HL-LHC, lepton colliders 1-2 order better in Higgs coupling.
- Adding 360GeV will significantly improve κ results.

For kappa0 and kappa3 fit and the comparison among future colliders, see [de Blas, J. et al. arXiv:1905.03764]

Correlation Matrix

Upper entries: CEPC alone; Lower entries: combining with HL-LHC (get reduced);

Synergy with other experiments

• [de Blas, J. et al. arXiv:1905.03764]

- Also kappa and EFT results are shown between CEPC240, HL-LHC, Fcc, ILC.....
- In the paper, only CEPC 240GeV 5.6iab results included.

kappa-0	HL-LHC	LHeC	HE	-LHC		ILC			CLIC		CEPC	FC	C-ee	FCC-ee/eh/hh
			S 2	S2′	250	500	1000	380	15000	3000		240	365	
<i>к</i> _W [%]	1.7	0.75	1.4	0.98	1.8	0.29	0.24	0.86	0.16	0.11	1.3	1.3	0.43	0.14
<i>к</i> _Z [%]	1.5	1.2	1.3	0.9	0.29	0.23	0.22	0.5	0.26	0.23	0.14	0.20	0.17	0.12
$\kappa_g [\%]$	2.3	3.6	1.9	1.2	2.3	0.97	0.66	2.5	1.3	0.9	1.5	1.7	1.0	0.49
κ _γ [%]	1.9	7.6	1.6	1.2	6.7	3.4	1.9	98*	5.0	2.2	3.7	4.7	3.9	0.29
$\kappa_{Z\gamma}$ [%]	10.	—	5.7	3.8	99 *	86*	85 *	$120\star$	15	6.9	8.2	81*	75 *	0.69
κ_c [%]	—	4.1	-	—	2.5	1.3	0.9	4.3	1.8	1.4	2.2	1.8	1.3	0.95
$\kappa_t [\%]$	3.3	—	2.8	1.7	—	6.9	1.6	—	_	2.7	-	—	_	1.0
<i>к</i> _b [%]	3.6	2.1	3.2	2.3	1.8	0.58	0.48	1.9	0.46	0.37	1.2	1.3	0.67	0.43
κμ [%]	4.6	_	2.5	1.7	15	9.4	6.2	320*	13	5.8	8.9	10	8.9	0.41
κ_{τ} [%]	1.9	3.3	1.5	1.1	1.9	0.70	0.57	3.0	1.3	0.88	1.3	1.4	0.73	0.44

Ironno 2 coonorio	HL-LHC+									
kappa-5 scenario	ILC ₂₅₀	ILC500	ILC_{1000}	CLIC380	CLIC_{1500}	CLIC ₃₀₀₀	CEPC	FCC-ee ₂₄₀	FCC-ee ₃₆₅	FCC-ee/eh/hh
κ_W [%]	1.0	0.29	0.24	0.73	0.40	0.38	0.88	0.88	0.41	0.19
$\kappa_Z[\%]$	0.29	0.22	0.23	0.44	0.40	0.39	0.18	0.20	0.17	0.16
$\kappa_{g}[\%]$	1.4	0.85	0.63	1.5	1.1	0.86	1.	1.2	0.9	0.5
κ _γ [%]	1.4	1.2	1.1	1.4*	1.3	1.2	1.3	1.3	1.3	0.31
$\kappa_{Z\gamma}$ [%]	10.*	10.*	10.*	10.*	8.2	5.7	6.3	10.*	10.*	0.7
$\kappa_c ~[\%]$	2.	1.2	0.9	4.1	1.9	1.4	2.	1.5	1.3	0.96
$\kappa_t [\%]$	3.1	2.8	1.4	3.2	2.1	2.1	3.1	3.1	3.1	0.96
$\kappa_b \ [\%]$	1.1	0.56	0.47	1.2	0.61	0.53	0.92	1.	0.64	0.48
κ_{μ} [%]	4.2	3.9	3.6	4.4*	4.1	3.5	3.9	4.	3.9	0.43
κ_{τ} [%]	1.1	0.64	0.54	1.4	1.0	0.82	0.91	0.94	0.66	0.46
BR _{inv} (<%, 95% CL)	0.26	0.23	0.22	0.63	0.62	0.62	0.27	0.22	0.19	0.024
BR _{unt} (<%, 95% CL)	1.8	1.4	1.4	2.7	2.4	2.4	1.1	1.2	1.	1.

$\Gamma_{m} =$	$\Gamma_{H}^{ ext{SM}}\cdot\kappa_{H}^{2}$
1 <i>H</i> —	$\overline{1 - (BR_{inv} + BR_{unt})}$

Scenario	BR _{inv}	BR _{unt}	include HL-LHC
kappa-0	fixed at 0	fixed at 0	no
kappa-1 kappa-2	measured measured	fixed at 0 measured	no no
kappa-3	measured	measured	yes

Though CEPC@360GeV not included in the synergy, we expect similar performance compared to Fcc-ee.

Evolving Combination

- Significant progress from Accelerator, Detector, and Object performance since CDR didn't enter the combination yet.
- Global optimization to handle the correlations
- Careful systematic estimation required by precise result ($H \rightarrow bb \ 0.14\%$)
- Far from the CEPC fully/ultimate potential. 4M Higgs!
 - More powerful tools can be imported. HEPFit, ML, Quantum computing......

• Your efforts are always appreciated!

Summary

- Latest CEPC Higgs combination, σ * Br and coupling results are shown.
- Extrapolation to 360GeV applied
 - 1.10% precision for width expected.

	240 Ge	V, 20 ab^{-1}	360 GeV, 1 ab^{-1}			
	ZH	vvH	ZH	vvH	eeH	
any	0.26%		1.40%	١	١	
H→bb	0.14%	1.59%	0.90%	1.10%	4.30%	
H→cc	2.02%		8.80%	16%	20%	
H→gg	0.81%		3.40%	4.50%	12%	
H→WW	0.53%		2.80%	4.40%	6.50%	
H→ZZ	4.17%		20%	21%		
$H \rightarrow \tau \tau$	0.42%		2.10%	4.20%	7.50%	
$H ightarrow \gamma \gamma$	3.02%		11%	16%		
$H \rightarrow \mu \mu$	6.36%		41%	57%		
$Br_{upper}(H \rightarrow inv.)$	0.07%		١	١		
$H \rightarrow Z\gamma$	8.50%		35%	١		
Width	1.	.65%	1.10%			

