Higgs coupling determination at the CEPC

Jiayin Gu (顾嘉荫)

Fudan University

The 2022 International Workshop on the High Energy Circular Electron Positron Collider October 24, 2022

mainly based on the CEPC Snowmass report [2205.08553]

Jiayin Gu (顾嘉荫)

 \blacktriangleright Build large colliders \rightarrow go to high energy \rightarrow discover new particles!

Higgs and nothing else?

- What's next?
 - Build an even larger collider ($\sim 100 \,\text{TeV}$)?
 - No guaranteed discovery!

Jiayin Gu (顾嘉荫)

Fudan University

 $\blacktriangleright \textbf{ Build large colliders} \rightarrow \text{go to high energy} \rightarrow \text{discover new particles!}$

do precision measurements \rightarrow discover new physics indirectly!

Higgs and nothing else?

LHC will definitely find new physics!

- What's next?
 - Build an even larger collider (~ 100 TeV)?
 - No guaranteed discovery!
 - Higgs factory! (A lepton collider at $\sqrt{s} \sim 240-250 \text{ GeV}$ or above.)
 - More than just a Higgs factory!

Results in the CDR

Jiayin Gu (顾嘉荫)

2205.08553

The Physics potential of the CEPC

Prepared for the US Snowmass Community Planning Exercise

(Snowmass 2021)

CEPC Physics Study Group

The run scenarios are updated!

- ▶ 240 GeV $(5.6 \text{ ab}^{-1}) \rightarrow 240 \text{ GeV} (20 \text{ ab}^{-1}) + 360 \text{ GeV} (1 \text{ ab}^{-1})$
- Also better Z-pole and WW-threshold runs.
- The SMEFT framework is improved
 - ► Higgs + WW global fit → Higgs + WW + Z-pole global fit
 - A better WW analysis with optimal observables.

4

The kappa framework (see Kaili's talk earlier)

► Larger statistics ⇒ better Higgs coupling determination!

Jiayin Gu (顾嘉荫)

Fudan University

	X^2		φ^4 and $\varphi^4 D^2$		$\psi^2 \varphi^3$		(LL)(LL)		(RR)(RR)		(LL)(RR)	
	Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{S\mu}_{\nu}G^{C\mu}_{\nu}$	9,	$(\varphi^{\dagger}\varphi)^{3}$	Que	$(\varphi^{\dagger}\varphi)(\overline{l}_{p}e_{r}\varphi)$	Q_{V}	$(\bar{l}_{p}\gamma_{p}l_{r})(\bar{l}_{s}\gamma^{\mu}l_{t})$	Q_{ee}	$(\tilde{e}_{\mu}\gamma_{\mu}e_{\tau})(\tilde{e}_{\nu}\gamma^{\mu}e_{\ell})$	Q_{1c}	$(\tilde{l}_{\mu}\gamma_{\mu}l_{\nu})(\tilde{e}_{\mu}\gamma^{\mu}e_{\mu})$
	90	1 ABC GA GA GA GC	9.0	$(\varphi^{\dagger}\varphi) \Box (\varphi^{\dagger}\varphi)$	Q.,,	$(\varphi^{\dagger}\varphi)(\bar{q}_{\mu}u_{\mu}\bar{\varphi})$	$Q_{ee}^{(1)}$	$(\bar{q}_{\mu}\gamma_{\mu}q_{\nu})(\bar{q}_{\nu}\gamma^{\mu}q_{\nu})$	Q_{in}	$(\theta_y \gamma_s v_r)(\theta_s \gamma^\mu s_i)$	Q_{he}	$(\tilde{l}_p \gamma_p l_r)(\bar{u}_s \gamma^\mu u_t)$
	Qu	STRWDWJeWKe	Que	$(\varphi^{\dagger}D^{*}\varphi)^{*}(\varphi^{\dagger}D_{*}\varphi)$	94	$(\varphi^{\dagger}\varphi)(\bar{q}_{\varphi}d_{\tau}\varphi)$	$Q_{ii}^{(0)}$	$(\mathbf{q}_{\boldsymbol{\mu}}\gamma_{\boldsymbol{\mu}}\tau^{I}\mathbf{q}_{\boldsymbol{\nu}})(\mathbf{q}_{\boldsymbol{\nu}}\gamma^{\boldsymbol{\mu}}\tau^{I}\mathbf{q}_{\boldsymbol{k}})$	Q_{M}	$(\tilde{d}_y \gamma_\mu d_r)(\tilde{d}_z \gamma^\mu d_l)$	Q_{1d}	$(\tilde{l}_{\mu}\gamma_{\mu}l_{\tau})(\tilde{d}_{a}\gamma^{\mu}d_{l})$
	0	JJKWIWJeWKy					$Q_{lg}^{(1)}$	$(\tilde{l}_p \gamma_p l_r) (\tilde{q}_r \gamma^\mu q_t)$	Q_{ca}	$(\tilde{e}_{\mu}\gamma_{\mu}e_{\nu})(\bar{a}_{\mu}\gamma^{\mu}u_{\ell})$	$Q_{\ell^{\mathrm{N}}}$	$(\bar{q}_j\gamma_j,q_r)(\bar{e}_j\gamma^{\mu}e_j)$
	Y2,2		10 ² Y.o.		a22n		$Q_{iq}^{(2)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r)(\bar{q}_i \gamma^\mu \tau^I q_i)$	Q_{ed}	$(\bar{e}_y \gamma_p e_r)(\bar{d}_s \gamma^s d_b)$	$Q_{qu}^{(1)}$	$(\bar{q}_t \gamma_t q_r)(\bar{s}_s \gamma^s u_t)$
2 1 T F**	0	Jach Chir	0	(I all's Sal all I	00	141 1 40 40			$Q_{ud}^{(1)}$	$(\hat{u}_{\mu}\gamma_{\mu}u_{r})(\tilde{d}_{e}\gamma^{\mu}d_{l})$	$Q_{q_1}^{(k)}$	$(\bar{q}_{\rm f}\gamma_{\rm s}T^Aq_{\rm r})(\bar{u}_{\rm s}\gamma^{\rm s}T^Au_{\rm l})$
$+ i \neq \emptyset \neq + i$	4,6	V 0 0 0	440	(ip) cyli ynys	44	(y+12)(y)(y)(y)(y)			$Q_{ud}^{(0)}$	$(\bar{u}_{\mu}\gamma_{\mu}T^{A}u_{r})(\bar{d}_{x}\gamma^{\mu}T^{A}d_{t})$	$Q_{g\ell}^{(1)}$	$(\bar{q}_i\gamma_i,q_r)(\bar{d}_i\gamma^{\mu}d_l)$
	4,0	\$\$\$G_0,000	Qea	$(l_{\mu}\partial^{\mu\nu}c_{\nu})\varphi B_{\mu\nu}$	44	$(\varphi^{i}iD_{\beta}^{i}\varphi)(l_{p}r^{i}\gamma^{p}l_{r})$					$Q_{g\ell}^{(0)}$	$(\bar{q}_{\rm p}\gamma_{\rm p}T^{\rm A}q_{\rm r})(\bar{d}_{\rm s}\gamma^{\rm p}T^{\rm A}d_{\rm f})$
$+ \chi_i \mathcal{Y}_{ij} \chi_j \phi_{+h_i}$	Q_{qW}	SpW.W.W.	QuG	(dram Lun')& C'	Que	$(\varphi^{*}(D_{\mu}\varphi)(\bar{e}_{\mu}\gamma^{\mu}e_{\nu})$	(LR)	(RL) and (LR)(LR)		B-vio	ating	
$+ \mathbf{b}_{q} ^2 + 1/(q)$	$Q_{\sqrt{N}}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I}\mu\nu$	Q_{uW}	$(\bar{q}_{\mu}\sigma^{\mu\nu}u_{\nu})\tau^{I}\tilde{\varphi}W^{I}_{\mu\nu}$	$Q_{iii}^{(1)}$	$(\varphi^{\dagger} i D_{\mu} \varphi)(\bar{q}_{\rho} \gamma^{\mu} q_{r})$	Quela	$(\bar{l}_{s}^{i}e_{\tau})(\bar{d}_{s}g^{i})$	Q_{dec}	$\varepsilon^{a\beta\gamma}\varepsilon_{jk}\left[\left(d_{\mu}^{a}\right)\right]$	TCu [#]	$[\langle q_{i}^{\gamma j} \rangle^{T} C l_{I}^{h}]$
	9,8	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{vS}	$(\bar{q}_{\rho}\sigma^{\mu\nu}u_{r})\overline{\varphi}B_{\rho\nu}$	$Q_{\mu q}^{(3)}$	$(\varphi^{I}iD^{I}_{\mu}\varphi)(q_{\nu}\tau^{I}\gamma^{\mu}q_{\tau})$	$Q_{enql}^{(1)}$	$(\bar{q}^i_\mu u_\nu) v_{\mu} (\bar{q}^k_\mu d_\ell)$	Q_{em}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_{p}^{\alpha j})\right]$	$TCq_{\mu}^{\pm k}$	$[(\mathbf{s}_i)^T C \mathbf{e}_i]$
	$Q_{\rho\bar{N}}$	$\varphi^{\dagger}\varphi \overline{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_{\mu}\sigma^{ra}T^{A}d_{r})\varphi G^{A}_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}iD_{\mu}\varphi)(\bar{u}_{\rho}\gamma^{s}u_{r})$	$Q_{paqd}^{[1]}$	$\langle q_j^2 T^{\prime 4} v_r \rangle e_{jk} \langle q_s^2 T^{\prime 4} d_l \rangle$	$Q_{\rm HH}^{(1)}$	$x^{\alpha\beta\gamma}x_{jk}x_{mm}[(q_p^{\alpha}$	TCq.	k] $[(q_i^{ee})^T Cl_\ell^n]$
	Q_{gWB}	$\varphi^{\dagger}\tau^{J}\varphi W^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_{\rm p}\sigma^{\mu\nu}d_{\rm r})\tau^I\varphiW^I_{\mu\nu}$	Q_{qd}	$(\varphi^{\dagger}i \overleftrightarrow{D}_{\mu} \varphi)(\widetilde{d}_{p}\gamma^{*}d_{r})$	$Q_{logs}^{(0)}$	$\langle l_{p}^{i}c_{r}\rangle c_{jk}(\hat{q}_{r}^{k}a_{t})$	$Q_{\rm eff}^{\rm SS}$	$\varepsilon^{\alpha\beta\gamma}(\tau^{\dagger}\varepsilon)_{\mu}(\tau^{\dagger}\varepsilon)_{cm}$	$[(q_F^{c_1})^T$	$Cq_{\tau}^{(h)}][(q_{\tau}^{(m)})^{T}Cl_{\tau}^{n}]$
	$Q_{\sqrt{N}B}$	$\varphi^l \tau^l \varphi \widetilde{W}^l_{\mu\nu} B^{\mu\nu}$	Q_{d3}	$(\bar{q}_j \sigma^{\mu\sigma} d_r) \varphi B_{\mu\nu}$	Q_{pul}	$i(\hat{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{\mu}\gamma^{\mu}d_{r})$	$Q_{inpu}^{(2)}$	$(\tilde{\ell}_p^i\sigma_{\mu\nu}e_{\nu})e_{jk}(\tilde{q}_s^k\sigma^{\mu\nu}u_l)$	$Q_{\ell m}$	$\varepsilon^{\alpha\beta\gamma} [(d^{\alpha}_{\mu})^{3}$	Cu_{i}^{d}	$(u_i^*)^T C v_i$

- Write down all D6 operators, eliminate redundant ones via field redefinition, integration by parts, equations of motion...
- 59 operators (76 parameters) for 1 generation, or 2499 parameters for 3 generations. [arXiv:1008.4884] Grzadkowski, Iskrzyński, Misiak, Rosiek, [arXiv:1312.2014] Alonso, Jenkins, Manohar, Trott.
- A global global fit with all measurements to all operator coefficients? (Not there yet!)
 - \blacktriangleright Here we focus on Higgs and electroweak measurements with $\sim 20\text{-}30$ parameters.

You can't really separate Higgs from the EW gauge bosons!

 $\begin{array}{l} \bullet \quad \mathcal{O}_{H\ell} = iH^{\dagger} \overrightarrow{D_{\mu}} H \overline{\ell}_{L} \gamma^{\mu} \ell_{L}, \\ \mathcal{O}_{H\ell}' = iH^{\dagger} \sigma^{a} \overrightarrow{D_{\mu}} H \overline{\ell}_{L} \sigma^{a} \gamma^{\mu} \ell_{L}, \\ \mathcal{O}_{He} = iH^{\dagger} \overrightarrow{D_{\mu}} H \overline{e}_{R} \gamma^{\mu} e_{R} \end{array}$

(or the ones with quarks)

- modifies gauge couplings of fermions,
- also generates hVff type contact interaction.

- $\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}, \\ \mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$
 - generate **aTGCs** $\delta g_{1,Z}$ and $\delta \kappa_{\gamma}$,
 - also generates *HVV* anomalous couplings such as hZ_μ∂_νZ^{μν}.

Jiayin Gu (顾嘉荫)

You also have to measure the Higgs!

- Some operators can only be probed with the Higgs particle.
- $|H|^2 W_{\mu\nu} W^{\mu\nu} \text{ and } |H|^2 B_{\mu\nu} B^{\mu\nu}$
 - $H \rightarrow v/\sqrt{2}$, corrections to gauge couplings?
 - Can be absorbed by field redefinition! This applies to any operators in the form |*H*|²*O*_{SM}.

$$c_{\rm SM} \mathcal{O}_{\rm SM}$$
 vs. $c_{\rm SM} \mathcal{O}_{\rm SM} + \frac{c}{\Lambda^2} |H|^2 \mathcal{O}_{\rm SM}$
= $(c_{\rm SM} + \frac{c}{2} \frac{v^2}{\Lambda^2}) \mathcal{O}_{\rm SM}$ + terms with h
= $c'_{\rm SM} \mathcal{O}_{\rm SM}$ + terms with h

- probed by measurements of the hγγ and hZγ couplings, or the hWW and hZZ anomalous couplings.
- or Higgs in the loop (different story...)
- Yukawa couplings, Higgs self couplings, ...

Jiayin Gu (顾嘉荫)

EFT Global fit

Global fit

- Usually ~ 20-30 parameters (instead of 2499) if we focus on Higgs and electroweak measurements.
- The Z (Z-pole) and W (e⁺e⁻ → WW) measurements are also crucial for Higgs coupling determination! (See Shengdu Chai's talk on Wednesday on e⁺e⁻ → WW with machine learning.)
- Limits on all the $\frac{c_i^{(6)}}{\Lambda^2}$
 - Results depend on operator bases, conventions, ...
- Present the results in terms of effective couplings ([arXiv:1708.08912], [arXiv:1708.09079], Peskin et al.)
 - ► g(hZZ), g(hWW) couplings have multiple contributions: $hZ^{\mu}Z_{\mu}$, $hZ^{\mu\nu}Z_{\mu\nu}$... defined as: $g(hZZ) \propto \sqrt{\Gamma(h \rightarrow ZZ)}$, $g(hWW) \propto \sqrt{\Gamma(h \rightarrow WW)}$.
- Both forms are used.

- 28-parameter fit projected on Higgs couplings and anomalous triple gauge couplings.
- ► $\delta g_H^{ZZ} \approx \delta g_H^{WW}$ from theoretical constraints (gauge invariance & custodial symmetry) and EW measurements.
- Non-negligible improvement from the 360 GeV run.

SMEFT global fit (reach on new physics scale)

- 20-parameter fit (assuming flavor universality in gauge-fermion couplings).
- See next page for the operator basis.

Fudan University

$\mathcal{O}_{H} = \frac{1}{2} (\partial_{\mu} H^{2})^{2}$	$\mathcal{O}_{GG}=g_{s}^{2} \mathcal{H} ^{2}G_{\mu u}^{A}G^{A,\mu u}$
$\mathcal{O}_{WW}=g^2 \mathcal{H} ^2 W^a_{\mu u} W^{a,\mu u}$	$\mathcal{O}_{y_u} = y_u H ^2 \bar{q}_L \tilde{H} u_R + \text{h.c.} (u \to t, c)$
$\mathcal{O}_{BB}=g^{\prime2} H ^2B_{\mu u}B^{\mu u}$	$\mathcal{O}_{y_d} = y_d H ^2 \bar{q}_L H d_R + \text{h.c.} (d \to b)$
$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_{y_e} = y_e H ^2 \overline{l}_L He_R + \text{h.c.} (e \to \tau, \mu)$
$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	$\mathcal{O}_{3W}=rac{1}{3!}g\epsilon_{abc}W^{a u}_{\mu}W^{b}_{ u ho}W^{c ho\mu}$
$\mathcal{O}_{W} = \frac{ig}{2} (H^{\dagger} \sigma^{a} \overleftrightarrow{D_{\mu}} H) D^{\nu} W^{a}_{\mu\nu}$	$\mathcal{O}_{B} = \frac{ig'}{2} (H^{\dagger} \overleftarrow{D_{\mu}} H) \partial^{\nu} B_{\mu\nu}$
$\mathcal{O}_{WB} = gg' H^{\dagger}_{\mu\nu} \sigma^a H W^a_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{H\ell} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H \bar{\ell}_L \gamma^{\mu} \ell_L$
$\mathcal{O}_{T} = \frac{1}{2} (H^{\dagger} \overrightarrow{D_{\mu}} H)^{2}$	$\mathcal{O}'_{H\ell} = iH^{\dagger}\sigma^{a}\widetilde{D_{\mu}}H\bar{\ell}_{L}\sigma^{a}\gamma^{\mu}\ell_{L}$
$\mathcal{O}_{\ell\ell} = (\bar{\ell}_L \gamma^\mu_\ell \ell_L) (\bar{\ell}_L \gamma_\mu \ell_L)$	$\mathcal{O}_{He} = i H^{\dagger} \overleftarrow{D_{\mu}} H \overline{e}_R \gamma^{\mu} e_R$
$\mathcal{O}_{Hq} = i H^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{q}_L \gamma^{\mu} q_L$	$\mathcal{O}_{Hu} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{u}_R \gamma^{\mu} u_R$
$\mathcal{O}_{Hq}^{\prime} = i H^{\dagger} \sigma^{a} \overrightarrow{D_{\mu}} H \overline{q}_{L} \sigma^{a} \gamma^{\mu} q_{L}$	$\mathcal{O}_{Hd} = i H^{\dagger} \widetilde{D_{\mu}'} H \overline{d}_R \gamma^{\mu} d_R$

- ▶ SILH' basis (eliminate \mathcal{O}_{WW} , \mathcal{O}_{WB} , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$)
- ▶ Modified-SILH' basis (eliminate \mathcal{O}_W , \mathcal{O}_B , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$) (used here)
- Warsaw basis (eliminate \mathcal{O}_W , \mathcal{O}_B , \mathcal{O}_{HW} and \mathcal{O}_{HB})

Results from the recent snowmass study

[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou

Jiayin Gu (顾嘉荫)

Fudan University

Impacts of (lack of) the Z-pole run

[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou

- Without good Z-pole measurements, the eeZh contact interaction may have a significant impact on the Higgs coupling determination.
- Current (LEP) Z-pole measurements are not good enough for CEPC Higgs measurements!
- The CEPC Z-pole measurements are!

Jiayin Gu (顾嘉荫)

Higgs coupling determination at the CEPC

Fudan University

Impact of a 350/360 GeV run

▶ 5.6 ab^{-1} at 240 GeV assumed.

- Measurements at 350/360 GeV provides additional handles on the anomalous couplings (*e.g.* hZ^μZ_μ vs. hZ^{μν}Z_{μν}).
- Also improves the measurements of aTGCs.

Jiayin Gu (顾嘉荫)

Triple Higgs coupling at one-loop order

[arXiv:1711.03978] Di Vita, Durieux, Grojean, JG, Liu, Panico, Riembau, Vantalon

$$\begin{split} & \kappa_{\lambda} \equiv \frac{\lambda_{hhh}}{\lambda_{hhh}^{\rm SM}}, \\ & \delta \kappa_{\lambda} \equiv \kappa_{\lambda} - 1 = \mathbf{C}_{6} - \frac{3}{2}\mathbf{C}_{H}, \\ & \text{with } \mathcal{L} \supset -\frac{\mathbf{C}_{6}\lambda}{v^{2}} (H^{\dagger}H)^{3}. \end{split}$$

- One loop corrections to all Higgs couplings (production and decay).
- 240 GeV: hZ near threshold (more sensitive to δκ_λ)
- at 350-365 GeV:
 - WW fusion
 - hZ at a different energy
- h → WW*/ZZ* also have some discriminating power (but turned out to be not enough).

Jiayin Gu (顾嘉荫)

Triple Higgs coupling from EFT global fits

Runs at two different energies (240 GeV and 350-365 GeV) are needed to obtain good constraints on the triple Higgs coupling in a global fit!

Jiayin Gu (顾嘉荫)

The CEPC is a Higgs factory!

- ▶ and also a factory of *Z*, *W* and top.
- In the SMEFT framework,
 - good electroweak measurements are crucial for the Higgs coupling determination,
 - the 360 GeV run also helps.
- More things to do in the future?
 - CP-odd operators (see Qiyu Sha's talk).
 - Loop contributions, both SM and BSM.
 - Dimension-8 operators?

What's the optimal run scenario?

► 240 GeV: 5.6 ab⁻¹? 20 ab⁻¹? 40 ab⁻¹?

Conclusion

Waiting for the CEPC to be built...

Jiayin Gu (顾嘉荫)

Fudan University

backup slides

Jiayin Gu (顾嘉荫

Fudan University

$e^+e^- ightarrow WW$ with Optimal Observables

- TGCs (and additional EFT parameters) are sensitive to the differential distributions!
 - One could do a fit to the binned distributions of all angles.
 - Not the most efficient way of extracting information.
 - Correlations among angles are sometimes ignored.
- What are optimal observables?

(See e.g. Z.Phys. C62 (1994) 397-412 Diehl & Nachtmann)

In the limit of large statistics (everything is Gaussian) and small parameters (linear contribution dominates), the best possible reaches can be derived analytically!

$$rac{d\sigma}{d\Omega} = S_0 + \sum_i S_{1,i} \, g_i , \qquad c_{ij}^{-1} = \int d\Omega rac{S_{1,i} S_{1,j}}{S_0} \cdot \mathcal{L}$$

The optimal observables are given by O_i = S_{1,i}/S₀, and are functions of the 5 angles.

[arXiv:1907.04311] de Blas, Durieux, Grojean, JG, Paul

Fudan University

Jiayin Gu (顾嘉荫)

$$\begin{array}{l} O^1_{\varphi q} \equiv \frac{y_1^2}{2} ~~ \bar{q} \gamma^\mu q ~~ \varphi^\dagger i \overleftrightarrow{D}_\mu \varphi, ~~ O_{uG} \equiv y_t g_s ~~ \bar{q} T^A \sigma^{\mu\nu} u ~ \epsilon \varphi^* G^A_{\mu\nu}, \\ O^3_{\varphi q} \equiv \frac{y_1^2}{2} ~~ \bar{q} \tau^I \gamma^\mu q ~~ \varphi^\dagger i \overleftrightarrow{D}_\mu^I \varphi, ~~ O_{uW} \equiv y_t g_W ~~ \bar{q} \tau^I \sigma^{\mu\nu} u ~ \epsilon \varphi^* W^I_{\mu\nu}, \\ O_{\varphi u} \equiv \frac{y_1^2}{2} ~~ \bar{u} \gamma^\mu u ~~ \varphi^\dagger i \overleftrightarrow{D}_\mu \varphi, ~~ O_{dW} \equiv y_t g_W ~~ \bar{q} \tau^I \sigma^{\mu\nu} d ~ \epsilon \varphi^* W^I_{\mu\nu}, \\ O_{\varphi ud} \equiv \frac{y_2^2}{2} ~~ \bar{u} \gamma^\mu d ~~ \varphi^T \epsilon ~ i D_\mu \varphi, ~~ O_{uB} \equiv y_t g_Y ~~ \bar{q} \sigma^{\mu\nu} u ~~ \epsilon \varphi^* B_{\mu\nu}, \\ \end{array}$$

- Also need to include top dipole interactions and *eett* contact interactions!
- Hard to resolve the top couplings from 4f interactions with just the 365 GeV run.
 - Can't really separate $e^+e^- \rightarrow Z/\gamma \rightarrow t\bar{t}$ from

$$e^+e^- \rightarrow Z' \rightarrow tt.$$

Is that a big deal?

Jiayin Gu (顾嘉荫)

Top operators in loops [arXiv:1809.03520] G. Durieux, JG, E. Vryonidou, C. Zhang

- Higgs precision measurements have sensitivity to the top operators in the loops.
 - But it is challenging to discriminate many parameters in a global fit!
- HL-LHC helps, but a 360 or 365 GeV run is better.
- Indirect bounds on the top Yukawa coupling.

Jiayin Gu (顾嘉荫)

Top operators in loops [arXiv:1809.03520] G. Durieux, JG, E. Vryonidou, C. Zhang

- $O_{tB} = (\bar{Q}\sigma^{\mu\nu}t) \tilde{\varphi}B_{\mu\nu} + h.c.$ is not very well constrained at the LHC, and it generates dipole interactions that contributes to the $h\gamma\gamma$ vertex.
- Deviations in $h\gamma\gamma$ coupling \Rightarrow run at $\sim 365 \text{ GeV}$ to confirm?

Jiayin Gu (顾嘉荫)

24

- 240, 365 GeV are better than 250, 350 GeV.
- ▶ Impacts of Z-pole measurements are not negligible. (eeZ(h) contact interaction enters $e^+e^- \rightarrow hZ$.)

Higgs coupling determination at the CEPC

Jiayin Gu (顾嘉荫)

Double-Higgs measurements ($e^+e^- \rightarrow Zhh \& e^+e^- \rightarrow \nu \bar{\nu}hh$) [arXiv:1711.03978]

- Destructive interference in $e^+e^- \rightarrow \nu \bar{\nu} hh!$ The square term is important.
- hh invariant mass distribution helps discriminate the "2nd solution."

Jiayin Gu (顾嘉荫)

Triple Higgs coupling from global fits [arXiv:1711.03978]

Jiayin Gu (顾嘉荫)

Fudan University

Higgs@FC WG September 2019

Jiayin Gu (顾嘉荫)