BSM Higgs production $e^+e^- \rightarrow Z\phi$ at CEPC theory status

Based on EPJC81 11 (2021) [arXiv:2109.02884]

Masashi Aiko (KEK)

Collaborators: Shinya Kanemura (Osaka Univ.) Kentarou Mawatari (Iwate Univ.)

CEPC Workshop 2022 (2022/10/24 Online)

Introduction

Problems in the SM

- Baryon asymmetry of the universe •
- Dark matter •
- Neutrino tiny mass etc.
- SM must be extended to solve these problems.
- Extended Higgs model
- One $SU(2)_L$ doublet is an assumption in the SM. • The above problems can be solved.

Determination of the Higgs sector is important.

How to determine

- Direct searches of BSM Higgs bosons
- Indirect searches through precision measurements of SM-like Higgs boson

Extended Higgs models

Electroweak rho parameter

PDG2020

Representation of Higgs fields that relates to the EW symmetry breaking is constrained by $\rho \simeq 1$

$$\rho_{\rm tree} \equiv \frac{m_W^2}{m_Z^2 \cos^2 \theta_W} = \frac{\sum_i v_i^2 \left[I_i (I_i + 1) - Y_i^2 \right]}{2 \sum_i v_i^2 Y_i^2}$$

Extended Higgs models with $\rho_{\text{tree}} = 1$

- Higgs singlet model: doublet Φ + singlet S
- Two-Higgs doublet model (2HDM): two doublet Φ_1, Φ_2 •
- Higgs-septet model: doublet + septet ($I_i = 3, Y_i = 2$)
- Georgi-Machacek model: doublet + real and complex triplet Georgi and Machacek NPB262 (1985)

In this talk, we study 2HDM as a representative

Hisano, Tsumura PRD87 (2013), Kanemura, Kikuchi, Yagyu PRD88 (2013)

Two-Higgs doublet model

The model with two scalar doublet Φ_1 and Φ_2 with Y = 1/2

$$V(\Phi_{1}, \Phi_{2}) = m_{1}^{2} |\Phi_{1}|^{2} + m_{2}^{2} |\Phi_{2}|^{2} - m_{12}^{2} (\Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{1}{2} \lambda_{1} |\Phi_{1}|^{4} + \frac{1}{2} \lambda_{2} |\Phi_{2}|^{4} + \lambda_{3} |\Phi_{1}|^{2} |\Phi_{2}|^{2} + \lambda_{4} |\Phi_{1}^{\dagger} \Phi_{2}|^{2} + \frac{1}{2} \lambda_{5} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.], \quad \Phi_{i} = \begin{pmatrix} \omega_{i} \\ \frac{1}{\sqrt{2}} (v_{i} + h_{i} + iz_{i}) \end{pmatrix} + \frac{1}{2} \lambda_{2} |\Phi_{2}|^{4} + \lambda_{3} |\Phi_{1}|^{2} |\Phi_{2}|^{2} + \lambda_{4} |\Phi_{1}^{\dagger} \Phi_{2}|^{2} + \frac{1}{2} \lambda_{5} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.], \quad \Phi_{i} = \begin{pmatrix} \omega_{i} \\ \frac{1}{\sqrt{2}} (v_{i} + h_{i} + iz_{i}) \end{pmatrix} + \frac{1}{2} \lambda_{2} |\Phi_{2}|^{4} + \lambda_{3} |\Phi_{1}|^{2} |\Phi_{2}|^{2} + \lambda_{4} |\Phi_{1}^{\dagger} \Phi_{2}|^{2} + \frac{1}{2} \lambda_{5} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.], \quad \Phi_{i} = \begin{pmatrix} \omega_{i} \\ \frac{1}{\sqrt{2}} (v_{i} + h_{i} + iz_{i}) \end{pmatrix} + \frac{1}{2} \lambda_{2} |\Phi_{2}|^{4} + \lambda_{3} |\Phi_{1}|^{2} |\Phi_{2}|^{2} + \lambda_{4} |\Phi_{1}^{\dagger} \Phi_{2}|^{2} + \frac{1}{2} \lambda_{5} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.], \quad \Phi_{i} = \begin{pmatrix} \omega_{i} \\ \frac{1}{\sqrt{2}} (v_{i} + h_{i} + iz_{i}) \end{pmatrix} + \frac{1}{2} \lambda_{2} |\Phi_{2}|^{4} + \lambda_{3} |\Phi_{1}|^{2} |\Phi_{2}|^{2} + \lambda_{4} |\Phi_{1}^{\dagger} \Phi_{2}|^{2} + \frac{1}{2} \lambda_{5} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.], \quad \Phi_{i} = \begin{pmatrix} \omega_{i} \\ \frac{1}{\sqrt{2}} (v_{i} + h_{i} + iz_{i}) \end{pmatrix} + \frac{1}{2} \lambda_{2} |\Phi_{2}|^{4} + \lambda_{3} |\Phi_{1}|^{2} |\Phi_{2}|^{2} + \lambda_{4} |\Phi_{1}^{\dagger} \Phi_{2}|^{2} + \frac{1}{2} \lambda_{5} [(\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.],$$

Scalar

Discrete symmetry

Softly broken Z_2 symmetry suppresses tree-level flavor changing neutral currents.

h, H (CP-even), A (CP-odd), H^{\pm} (Singly charged)

	Φ_1	Φ_2	Q	L	u_R	d_R	e_R
Type-I	+	_	+	+	_	_	_
Type-II	+	-	+	+	-	+	+
Type-X	+	_	+	+	_	_	+
Type-Y	+	_	+	+	_	+	_

Four types of the Yukawa interactions

Barger et al. PRD41 (1990), Aoki et al. PRD80 (2009)

Higgs couplings in 2HDM

Higgs basis

Davidson, Haber, PRD72 (2005)

 H_1 only obtains the vacuum expectation value.

In the Higgs basis, the charged and CP-odd states are mass eigenstates, while the CP-even scalars are not mass eigenstates in general.

$$H_1 = \begin{pmatrix} G^+ \\ \frac{1}{\sqrt{2}}(v+h_1+iG^0) \end{pmatrix}, \quad H_2 = \begin{pmatrix} H^+ \\ \frac{1}{\sqrt{2}}(h_2+iA) \end{pmatrix}, \quad \mathcal{M}_{even}^2 = \begin{pmatrix} \mathcal{M}_{11}^2 & \mathcal{M}_{12}^2 \\ \mathcal{M}_{12}^2 & \mathcal{M}_{22}^2 \end{pmatrix}$$

Higgs couplings in 2HDM

Sum rule on the Higgs-gauge couplings

The two CP-even scalars are mixed.

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} c_{\beta-\alpha} \\ -s_{\beta-\alpha} \end{pmatrix}$$

There are two distinct scenario

- Scenario-I : h is the SM-like Higgs boson
- Scenario-II : *H* is the SM-like Higgs boson

SM-like Higgs boson's couplings are modified from the SM values.

$$\begin{pmatrix} H \\ h \end{pmatrix} \dots \dots \dots \bigwedge_{i} V = g_{hVV}^{SM} \begin{pmatrix} c_{\beta-\alpha} \\ s_{\beta-\alpha} \end{pmatrix} g^{\mu\nu}, \quad \sum_{i} g_{h_iVV}^2 = (g_{hVV}^{SM})^2 = \frac{m_V^2}{v^2} V$$

$$\begin{pmatrix} s_{\beta-\alpha} \\ c_{\beta-\alpha} \end{pmatrix} \begin{pmatrix} H \\ h \end{pmatrix}, \quad m_h \le m_H$$

J. Bernon et al. PRD93 (2016)

Higgs couplings in 2HDM

Higgs signal measurement

New physics effects are parametrized by scaling factors κ_i .

$$g_{h_iVV} = \kappa_V^{h_i} \frac{m_V}{v}, \quad g_{h_iff} = \kappa_f^{h_i} \frac{m_f}{v}$$

At LO in the 2HDM,

$$\kappa_V^h = s_{\beta-\alpha}, \quad \kappa_f^h = s_{\beta-\alpha} - \zeta_f c_{\beta-\alpha}$$
$$\kappa_V^H = c_{\beta-\alpha}, \quad \kappa_f^H = c_{\beta-\alpha} + \zeta_f s_{\beta-\alpha}$$

Higgs signal measurements favor Higgs alignment scenario with $s_{\beta-\alpha} = 1$ or $c_{\beta-\alpha} = 1$

_

Higgs alignment in Scenario-I

Higgs alignment

$$\tan 2(\beta - \alpha) = \frac{-2\mathcal{M}_{12}^2}{\mathcal{M}_{11}^2 - \mathcal{M}_{22}^2} \simeq 0, \quad \mathcal{M}_{even}^2 = \begin{pmatrix} \mathcal{M}_{11}^2 & \mathcal{M}_{12}^2\\ \mathcal{M}_{12}^2 & \mathcal{M}_{22}^2 \end{pmatrix}$$

Alignment w/ decoupling

$$\mathcal{M}_{11}^2 = f(\lambda_i)v^2, \quad \mathcal{M}_{12}^2 = g(\lambda_i)v^2,$$

The size of the numerator is constrained by perturbative unitarity. Lee, Quigg, Thacker PRD16 (1977)

When $M^2 \to \infty$, $\tan 2(\beta - \alpha) \to 0$. Gunion, Haber PRD67 (2003)

Additional Higgs bosons decouple from EW scale

 $m_{\Phi}^2 = M^2 + f_{\Phi}(\lambda_i)v^2 \to \infty$

If $\tan 2(\beta - \alpha) \neq 0$, additional Higgs bosons cannot decouple.

$$\mathcal{M}_{22}^2 = M^2 + h(\lambda_i)v^2, \quad M^2 = m_{12}^2/(s_\beta c_\beta)$$

- Appelquist, Carazzone PRD11 (1975)

Kanemura, Kikuchi, Yagyu NPB896 (2015)

Higgs alignment in Scenario-I

Higgs alignment

$$\tan 2(\beta - \alpha) = \frac{-2\mathcal{M}_{12}^2}{\mathcal{M}_{11}^2 - \mathcal{M}_{22}^2} \simeq 0, \quad \mathcal{M}_{\text{even}}^2 = \begin{pmatrix} \mathcal{M}_{11}^2 & \mathcal{M}_{12}^2\\ \mathcal{M}_{12}^2 & \mathcal{M}_{22}^2 \end{pmatrix}$$

Alignment w/o decoupling

$$\mathcal{M}_{11}^2 = f(\lambda_i)v^2, \quad \mathcal{M}_{12}^2 = g(\lambda_i)v^2,$$

 $g(\lambda_i)$ can be zero so that $\tan 2(\beta - \alpha) \rightarrow 0$

$$g(\lambda_i) = -\frac{1}{2} \left(\lambda_1 c_\beta^2 - \lambda_2 s_\beta^2 - \lambda_3\right)$$

Alignment w/o decoupling is a favorable scenario for BSM problems.

$$\mathcal{M}_{22}^2 = M^2 + h(\lambda_i)v^2, \quad M^2 = m_{12}^2/(s_\beta c_\beta)$$

 $_{345}c_{2\beta})s_{2\beta} \to 0, \quad \lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5$

The additional Higgs bosons remain on the EW scale, $m_{\Phi}^2 = M^2 + f_{\Phi}(\lambda_i)v^2$

e.g. Electroweak baryogenesis, Muon g-2, CDF anomaly on m_W

Higgs alignment in Scenario-II

Higgs alignment

$$\tan 2(\beta - \alpha) = \frac{-2\mathcal{M}_{12}^2}{\mathcal{M}_{11}^2 - \mathcal{M}_{22}^2} \simeq 0, \quad \mathcal{M}_{even}^2 = \begin{pmatrix} \mathcal{M}_{11}^2 & \mathcal{M}_{12}^2\\ \mathcal{M}_{12}^2 & \mathcal{M}_{22}^2 \end{pmatrix}$$

Alignment w/o decoupling

$$\mathcal{M}_{11}^2 = f(\lambda_i)v^2, \quad \mathcal{M}_{12}^2 = g(\lambda_i)v^2,$$

 $g(\lambda_i)$ can be zero so that $\tan 2(\beta - \alpha) \rightarrow 0$

$$g(\lambda_i) = -\frac{1}{2} \left(\lambda_1 c_\beta^2 - \lambda_2 s_\beta^2 - \lambda_{345} c_{2\beta} \right) s_{2\beta} \to 0, \quad \lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5$$

Since $m_h \leq m_H$, we cannot take decoupling limit. $m_h^2 = M^2 + f_h(\lambda_i)v^2$ with $c_{\beta-\alpha} = 1$

$$\mathcal{M}_{22}^2 = M^2 + h(\lambda_i)v^2, \quad M^2 = m_{12}^2/(s_\beta c_\beta)$$

The additional Higgs bosons remain at the EW scale, $m_{\Phi}^2 = M^2 + f_{\Phi}(\lambda_i)v^2$

Scenarios in 2HDM

Higgs production at lepton collider

Higgs strahlung process

Higgs strahlung process is the main target at future lepton colliders (CEPC, ILC, FCC-ee)

- . $\sigma(e^+e^- \rightarrow hZ)$ takes a maximal value at
- $\sigma(e^+e^- \rightarrow hZ)$ can be measured by using the recoil mass technique.

Z boson energy : $E_Z = (s + m_Z^2 - m_h^2)/(2\sqrt{s})$

We can directly access the g_{hZZ} coupling

 $\sigma(e^+e^- \to HZ)$ is suppressed by $c^2_{\beta-\alpha}$ due to the sum rule. p ω

$$g_{HVV} = rac{m_V}{v} c_{eta-lpha} \simeq 0$$
 *) In (

$$\sqrt{s} = 240 - 250$$
 GeV.

J. Yan et al. PRD94 (2016)

Scenario-II, $h \leftrightarrow H$ and $c_{\beta-\alpha} \leftrightarrow s_{\beta-\alpha}$

Higher-order calculation

$\sigma_{\text{LO}}^{\text{2HDM}} = s_{\beta-\alpha}^2 \sigma_{\text{LO}}^{\text{SM}} \rightarrow \text{The size of deviation is } \mathcal{O}(1)\%$

- LHC data indicate a SM-like scenario $s_{\beta-\alpha} \approx 1$.

NLO

Loop corrections \rightarrow The size of deviation is $\mathcal{O}(1)\%$

Each size of correction is comparable.

Experimental accuracy

 $\Delta\sigma(e^+e^- \rightarrow hZ) = 0.26\%$ at CEPC 240 GeV, 20 ab⁻¹ Snowmass: 2205.08553 (2022)

Higher-order calculations are essentially important.

(d)

(e)

`` vr

(f)

Higher-order calculation

From-factor decomposition

A. Denner et al. ZPC56 (1992) Aiko, Kanemura, Mawatari, EPJC81 (2021)

Helicity amplitude can be decomposed as

$$\mathcal{M}_{\sigma\lambda}(s,t) = \sum_{i=1}^{3} F_{i,\sigma}(s,t) \mathcal{M}_{i,\sigma\lambda}(s,t), \quad \mathcal{M}_{i,\sigma\lambda} =$$

Renormalized quantities

$$\begin{aligned} F_{i,\sigma}^{(1)} &= F_{i,\sigma}^{ZZ} + F_{i,\sigma}^{Z\gamma} + F_{i,\sigma}^{Ze\bar{e}} + F_{i,\sigma}^{hZZ} + F_{i,\sigma}^{hZ\gamma} + F_{i,\sigma} + F_{i,\sigma}^{hZ\gamma} + F_{i,\sigma}^{\Delta r} \\ &+ F_{i,\sigma}^{\Pi'_{ZZ}} + F_{i,\sigma}^{\Delta r} \end{aligned}$$

UV divergence: improved on-shell scheme Kanemura, Kikuchi, Sakurai, Yagyu, PRD96 (2017) Gauge dependencies are removed by utilizing the pinch technique IR divergence: regularized by finite photon mass, and photon mass dependence is removed by adding a real photon emission. Kniehl ZPC55 (1992); Denner et al. ZPC56 (1992)

Scenario-I with $s_{\beta-\alpha} = 1$

Aiko, Kanemura, Mawatari, EPJC81 (2021)

No deviation

Constraints

- Vacuum stability
- Perturbative unitarity
- S and T parameter

We find almost no difference among all Types.

Results

- A few percent deviations
- Decoupling •

T. Appelquist, J. Carazzone PRD11 (1975)

• The hZZ vertex gives a dominant contribution

Scenario-I with $s_{\beta-\alpha} = 1$

Aiko, Kanemura, Mawatari, EPJC81 (2021)

No deviation

Constraints

- Vacuum stability
- Perturbative unitarity
- S and T parameter

We find almost no difference among all Types.

Results

- A few percent deviations
- Decoupling • T. Appelquist, J. Carazzone PRD11 (1975)
- The hZZ vertex gives a dominant contribution

Scenario-I with $s_{\beta-\alpha} \neq 1$

Aiko, Kanemura, Mawatari, EPJC81 (2021)

2% deviation

Constraints

- Vacuum stability
- Perturbative unitarity
- S and T parameter

Results

- Loop effects are comparable
- Non-decoupling
 - The heavier masses lead to larger effects.
- The hZZ vertex gives a dominant contribution.

Scenario-I with $s_{\beta-\alpha} \neq 1$

Aiko, Kanemura, Mawatari, EPJC81 (2021)

2% deviation

Constraints

- Vacuum stability
- Perturbative unitarity
- S and T parameter

Results

- Loop effects are comparable
- Non-decoupling
 - The heavier masses lead to larger effects.
- The hZZ vertex gives a dominant contribution.

Aiko, Kanemura, Mawatari, EPJC81 (2021)

Deviation in $\sigma \times BR$

$$\Delta R_{XY}^{hZ} = \frac{\sigma_{\rm NP}(e^+e^- \to hZ) BR_{\rm NP}(h \to XY)}{\sigma_{\rm SM}(e^+e^- \to hZ) BR_{\rm SM}(h \to XY)} - 1$$

Results

- Each type of 2HDMs shows a different correlation.
- Type-I 2HDM, HSM and IDM show the almost same correlation.

Experimental accuracy 2205.08553

 $\Delta R_{hh}^{hZ} = 0.28 \%$, $\Delta R_{\tau\tau}^{hZ} = 0.84 \%$ at 2 σ

Sizable deviations to detect at the CEPC.

Correlation in Scenario-I: $\Delta R_{\tau\tau}^{hZ}$ vs. ΔR_{WW}^{hZ}

Aiko, Kanemura, Mawatari, EPJC81 (2021)

Results

Type-I 2HDM shows a different correlation from the HSM and the IDM.

2205.08553

Experimental accuracy

 $\Delta R_{WW}^{hZ} = 1.06$ % at 2 σ

If $m_{\Phi} \lesssim 1$ TeV, deviations can be detected at the CEPC.

Further discrimination

 $h \rightarrow \gamma \gamma$ might be useful. ($\Delta R_{\gamma \gamma}^{hZ} = 6.04 \%$ at 2σ) 11

 \rightarrow Combined study with the HL-LHC

Higgs strahlung in Scenario-II

Benchmark scenarios

Xie, Benbrik, Habjia, Taj, Gong, Yan, PRD103 (2021)

BPs	$s_{\beta-lpha}$	$\tan\beta$	$m_h \; [\text{GeV}]$	$m_H \; [\text{GeV}]$	$m_A \; [\text{GeV}]$	$m_{H^{\pm}}$ [GeV]
BP1-H	-0.06	2.83	95	125	169	170
BP2-H	-0.03	2.16	95	125	600	600

 $\Delta^{\rm weak}(e^+e^- \rightarrow$

Sizable deviations to detect at CEPC even with $c_{\beta-\alpha} \simeq 1$

$$\rightarrow ZH) = \sigma_{\rm NP}/\sigma_{\rm SM} - 1$$

Conclusions

- $e^+e^- \rightarrow Z\phi$ is a target process at future lepton colliders (CEPC, ILC, FCC-ee).
- The size of the deviation tells us a scale of new physics.
- The pattern of the deviation tells us the structure of Yukawa interactions.
- Theoretical calculations with NLO EW corrections are available in various models.

2HDM : Lopez-Val et al. PRD81 (2010); Xie et al. PRD103 (2021) IDM: Abouabid et al. JHEP 05 (2021) MSSM : Chankowski et al. NPB423 (1994); Driesen, Hollik, ZPC68 (1995); Driesen et al. ZPC71 (1996); Heinemeyer et al. EPJ C19 (2001) cMSSM: Heinemeyer et al. EPJ C76 (2016)

Extension of model space (HSM)

- Our work $\{$ Same renormalization scheme \rightarrow Model discrimination Helicity-dependent cross section

Conclusions

- $e^+e^- \rightarrow hZ$ is a target process at future lepton colliders (CEPC, ILC, FCC-ee).
- The size of the deviation tells us a scale of new physics.
- The pattern of the deviation tells us the structure of Yukawa interactions.
- Theoretical calculations with NLO EW corrections are available in various models.

Discussion

- Can we investigate almost gaugephobic Higgs boson via $e^+e^- \rightarrow ZH$?
- Validity of the narrow width approximation for Z boson. Chen et al. Chinese Phys. C43 (2019)
- NNLO EW corrections are smaller than the estimated experimental error?

Back up

HSM with $c_{\alpha} = 1$

HSM with $c_{\alpha} \neq 1$

IDM

