Extended scalar sectors and dark matter at e^+e^- colliders

Michał Iglicki University of Warsaw

CEPC workshop 24 October 2022

Extended scalar sector

- Standard Model: simple scalar sector
- many signals of BSM physics
 - gravity
 - dark matter
 - dark energy
 - ν oscillations
 - muon g 2 (?)
 - W boson mass (?)
 - . . .
- is the scalar sector really so simple?
 - SM + real singlet(s)
 - 2HDM
 - 2HDM + singlet (N2HDM)
 - SM + triplet(s)
 - ...

$$\begin{split} V(\phi) &= m^2 \phi^\dagger \phi + \lambda (\phi^\dagger \phi)^2 \\ \phi - \text{complex } SU(2) \text{ doublet} \end{split}$$

for a short review and references see Steggemann '20

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 王曰 釣�?

Extended scalar sector

- Standard Model: simple scalar sector
- many signals of BSM physics
 - gravity
 - dark matter
 - dark energy
 - ν oscillations
 - muon g 2 (?)
 - W boson mass (?)
 - . . .
- is the scalar sector really so simple?
 - SM + real singlet(s)
 - 2HDM
 - 2HDM + singlet (N2HDM)
 - SM + triplet(s)
 - . . .

$$\begin{split} V(\phi) &= m^2 \phi^\dagger \phi + \lambda (\phi^\dagger \phi)^2 \\ \phi - \text{complex } SU(2) \text{ doublet} \end{split}$$

for a short review and references see Steggemann '20

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 王曰 わ�?

Dark matter (DM)

Evidence for dark matter

- rotation curves
- CMB fluctuations \Rightarrow MOND
- gravitational lensing
- colliding clusters

• ...

source of the data: astro-ph/9909252

source: https://apod.nasa.gov/apod

DM believed to be beyond the Standard Model

□ ▶ ▲ 三 ▶ ▲ 三 ▶ ▲ 三 ▶ ● < □

How to see something invisible?

- indirect detection: gamma rays
- direct detection: XENON etc.
- colliders: missing energy analysis

How to see something invisible?

Future e^+e^- colliders

- signal to background ratio much better than at hadron colliders
- initial state precisely known (no parton distribution functions involved)
- circular colliders preferable at small E, linacs at high $E (\gtrsim 500 \text{ GeV})$
- near-future plans:

< E ▶ < E ▶ E = のへ()

Collider search for new physics

• invisible decays of *H* (missing-energy analysis)

▲ 돈 ▶ ▲ 돈 ▶ . 돈 돈 = ♪ � � � �

B. Grządkowski, M. Iglicki, K. Mękała, A. F. Żarnecki '20

- 3 simple (but not simplified) DM models of different spins: 0, 1, 1/2
- consider a mechanism of DM production at e^+e^- colliders
- take current experimental constraints into account
- check...
 - ...what range of parameters is still allowed?
 - ...how many DM-production events can we expect at future colliders?
 - ...whether it is possible to disentangle models of different spins?

during calculations, collider parameters of ILC are used

伺 ト イヨ ト イヨ ト ヨ ヨ つくべ

Theoretical models

The main properties of the models:

- simple, but renormalizable and QFT-consistent
- common parameter space
- DM connected to SM by the Higgs portal: $\kappa |H|^2 |S|^2$
- mixing in the scalar sector

real-part fluctuations of a new singlet S and the Higgs doublet H

$$\times \mathcal{R} \equiv \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

two Higgs-like mass eigenstates: h_1 ($m_1 = 125$ GeV) and h_2 ($m_2 = ?$)

The models:

- pseudo-Goldstone (scalar) DM model (s = 0) \rightarrow dark scalar A
- vector DM model (s = 1)
- fermion DM model (s = 1/2)

 \rightarrow dark gauge vector X_{μ}

 \rightarrow dark Majorana fermion ψ

④▶ 《 토 ▶ 《 토 ▶ 《 토 ■ ○ ○ ○

Theoretical models

Considered process

$$\begin{aligned} Q^2 &= s - 2E_Z\sqrt{s} + m_Z^2 \\ &\equiv m_{\rm rec}^2 \\ {\sf DM} &= A, \; X_\mu, \; \psi \end{aligned}$$

note: in principle $\Gamma_{1,2}$ model-dependent

the differential cross section:

$$\begin{split} \frac{d\sigma}{dm_{\rm rec}^2} &\sim \sigma_{\rm SM}(m_{\rm rec}^2) \cdot \sin^2 \alpha \cos^2 \alpha \cdot \left| \frac{1}{m_{\rm rec}^2 - m_1^2 + im_1\Gamma_1} - \frac{1}{m_{\rm rec}^2 - m_2^2 + im_2\Gamma_2} \right|^2 \\ &\times \sqrt{1 - 4\frac{m_{\rm DM}^2}{m_{\rm rec}^2}} \cdot \begin{cases} 1 & ({\rm pGDM}) \\ 1 - 4\frac{m_{\rm DM}^2}{m_{\rm rec}^2} + 12\left(\frac{m_{\rm DM}^2}{m_{\rm rec}^2}\right)^2 & ({\rm VDM}) \\ 2\frac{m_{\rm DM}^2}{m_{\rm rec}^2}\left(1 - 4\frac{m_{\rm DM}^2}{m_{\rm rec}^2}\right) & ({\rm FDM}) \end{cases} \end{split}$$

□ ▶ ▲ 三 ▶ ▲ 三 ▶ ▲ 三 ▶ ● < □

Considered process: shape of the differential cross section

Limits and constraints

- 1. perturbativity (h_i -DM): $g_x, y_x < 4\pi \Rightarrow v_s > m_{\text{DM}}/4\pi$
- 2. $h^2 \Omega_0^{\text{DM}} = 0.12 \pm 0.0012 \Rightarrow \text{ constraint on } \langle \sigma v \rangle_{\text{ann}} \Rightarrow \text{ constraint on } \kappa^2$ Planck Col. '18
- 3. ID experiments \Rightarrow limit on $\langle \sigma v \rangle_{ann} \Rightarrow$ limit on m_{DM}

4. DD experiments and ν telescopes \Rightarrow limit on $\sigma^{DD} \Rightarrow$ limit on κ^2

- 5. LHC $\Rightarrow |\sin \alpha| \leq 0.3$ Robens, Stefaniak '16
- 6. LHC \Rightarrow BR $(h_1 \rightarrow \text{DM}) < 19\%$

XENON Col. '18 IceCube Col. '16

同ト * ミト * ミト 三日 * のへで

Fermi-LAT & DES Cols. '16

CMS Col. '18

Results: methodology

- constraints:
 - $|\sin \alpha| \lesssim 0.3$
 - relic density (Ω_0^{DM}) constraint on κ^2
 - $v_s < \frac{m_{\rm DM}}{4\pi}$
 - $v_s < \frac{m_{\rm LVM}}{4\pi}$ direct detection (DD) limit on κ^2 BR $(h_1 \rightarrow DM) < 19\%$ taken into account numerically

- free parameters: m_2 , m_{DM} , $\sin \alpha$, $v_s \rightarrow \kappa^2$
- $\kappa^2 = \kappa^2(\Omega_0^{\text{DM}}) \Rightarrow 3 \text{ parameters left}$
- cross section maximized with respect to $\sin \alpha$ $\Rightarrow \sin \alpha \rightarrow \sin \alpha_{\max} = 0.3$, free parameters: m_2 , m_{DM}

<ロ> <同> < 三> < 三> < 三> < 三> < 三</p>

Results: maximal cross section for pGDM

CEPC workshop, 24 October 2022

Results: maximal cross section for VDM

Results: maximal cross section for FDM

CEPC workshop, 24 October 2022

16/2

Results: allowed and forbidden regions

 $\left[\begin{array}{c} \left(1 + \frac{1}{2} +$

White: FDM allowed, Yellow: FDM forbidden

all plots combined:

 \Rightarrow there exist regions where

- only pGDM and VDM are allowed
- only pGDM is allowed

• nothing is allowed

CEPC workshop, 24 October 2022

Results: fermion vs vector

< E ▶ < E ▶ E = りへ()

Results: pseudo-Goldstone vs fermion

CEPC workshop, 24 October 2022

글 🕨 🔺 글 🕨

Results: pseudo-Goldstone vs vector

< E ▶ < E ▶ E = りへ()

—— in general ———

- Standard Model of particle physics certainly not complete
- e^+e^- colliders especially useful in search for scalar-mediated BSM physics

------ our work -------

We introduce 3 simple models:

- pseudo-Goldstone dark matter model (s = 0)
- vector dark matter model (s = 1)
- fermion dark matter model (s = 1/2)

which are QFT-consistent and share common parameter space

Comparing models of various spins we conclude that...

- ...maximal cross section is similar in all 3 cases ($\sim 1.2 \cdot 10^5$ events / 20 y)
- \bullet ...signal-to-background ratio can be $\sim 10\%$
- ...allowed range of parameters is largest for pGDM
- ...there are regions where cases of different spins could be disentangled

But...

- ...if parameters far from optimal, DM of any spin hard to be detected
- ...the collider is necessary

—— in general ———

- Standard Model of particle physics certainly not complete
- e^+e^- colliders especially useful in search for scalar-mediated BSM physics

—— our work ———

We introduce 3 simple models:

- pseudo-Goldstone dark matter model (s = 0)
- vector dark matter model (s = 1)
- fermion dark matter model (s = 1/2)

which are QFT-consistent and share common parameter space

Comparing models of various spins we conclude that...

- ullet ...maximal cross section is similar in all 3 cases ($\sim 1.2\cdot 10^5$ events / 20 y)
- \bullet ...signal-to-background ratio can be $\sim 10\%$
- \bullet ...allowed range of parameters is largest for pGDM
- ...there are regions where cases of different spins could be disentangled

But...

- ...if parameters far from optimal, DM of any spin hard to be detected
- ...the collider is necessary

a lot of BACKUP SLIDES

Theoretical models - comparison

	pseudo-Goldstone DM model	vector DM model	FERMION DM MODEL
symmetry group	$\mathcal{G} = \mathcal{G}_{SM} \times \mathbb{Z}_2 \times U(1)_X$	$\mathcal{G} = \mathcal{G}_{SM} \times U(1)_X$	$\mathcal{G} = \mathcal{G}_{SM} imes \mathbb{Z}_4$
new states (<mark>G_{SM}-even</mark>)	complex scalar S ($q = (1,1)$)	gauge vector X_{μ} complex scalar S ($q=1$)	LH fermion χ (q = 1) real scalar S (q = 2)
Lagrangian	$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{DM} - V(H, S)$		
scalar potential	$V(H,S) = -\mu_H^2 H ^2 + \lambda_H H ^4 -\mu_S^2 S ^2 + \lambda_S S ^4 + M ^2 G ^2 + 2 G ^2 + G ^2)$	$V(H,S) = -\mu_H^2 H ^2 + \lambda_H H ^4 - \mu_S^2 S ^2 + \lambda_S S ^4$	$V(H,S) = -\mu_{H}^{2} H ^{2} + \lambda_{H} H ^{4} - \frac{\mu_{S}^{2}}{2}S^{2} + \frac{\lambda_{S}}{4}S^{4} + \frac$
	$+\kappa H ^2 S ^2+\mu^2(S^2+S^{+2})$	$+\kappa H ^2 S ^2$	$+\frac{n}{2} H ^2S^2$
SSB	$\begin{split} H &\to (\pi^+, v + h + i\pi^0)^T/\sqrt{2} \\ S &\to (v_s + \phi + iA)/\sqrt{2} \end{split}$	$ \begin{array}{l} H \rightarrow (\pi^+, v + h + i\pi^0)^T / \sqrt{2} \\ S \rightarrow (v_s + \phi + i\sigma) / \sqrt{2} \end{array} \end{array} $	$ \begin{array}{c} H \rightarrow (\pi^+, v+h+i\pi^0)^T/\sqrt{2} \\ S \rightarrow v_s + \phi \end{array} $
Higgs sector mixing	$\begin{pmatrix} h \\ \phi \end{pmatrix} = \mathcal{R} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \qquad \operatorname{tg} 2\alpha = \frac{\kappa v v_s}{\lambda_H v^2 - \lambda_S v_s^2}$		
dark state	$A \equiv \sqrt{2} \mathcal{I}m S (m_A^2 = -4\mu^2)$	$X_{\mu} (m_X^2 = g_x^2 v_s^2)$	$\psi \equiv \chi + \chi^c (m_\psi^2 = y_x^2 v_s^2)$
dark matter interactions	$\begin{array}{c} A \\ h_{i} \\ h_{i} \\ h_{i} \\ h_{j} \\ h_{j} \end{array} \\ \begin{array}{c} A \\ A $	$h_{i} - \cdots - \int_{2im_{X}g_{x}\mathcal{R}_{2i}}^{X} 2im_{X}g_{x}\mathcal{R}_{2i}$ $h_{i} \qquad X$ $h_{i} \qquad X$ $h_{i} \qquad X$ $h_{j} \qquad X$	$h_i i y_x \mathcal{R}_{2i}$
input parameters: $v, m_1, v_s, m_2, \sin \alpha, m_{\text{DM}} \longrightarrow \kappa \equiv \frac{(m_1^2 - m_2^2) \sin 2\alpha}{2vv_s} \Rightarrow \text{DM}$ purely gravitational if $m_1 = m_2$			
assumed to be SM-like イロト イヨト イヨト イヨト ショコ つへぐ			
CEPC workshop, 24	October 2022 Michał Iglicki	Extended scalar sectors and DM at e	e^+e^- colliders 1/20

Pseudo-Goldstone DM model

Standard Model gauge group

- $U(1)_X$ softly broken to \mathbb{Z}'_2
- Complex scalar S introduced, $\mathbb{Z}_2: S \to S^*, \mathbb{Z}'_2: S \to -S$
- Lagrangian

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + (\partial^{\mu}S)^{*}(\partial_{\mu}S) - V(H,S)$$

 $U(1)_X$ -breaking term

4回 > 4 E > 4 E > E E 9 Q O

$$V(H,S) = -\mu_H^2 |H|^2 + \lambda_H |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \kappa |H|^2 |S|^2 + \mu^2 (S^2 + S^{*2})$$

Higgs potal coupling

global symmetry

 $U(1)_X$ -breaking term $V(H,S) = -\mu_H^2 |H|^2 + \lambda_H |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \kappa |H|^2 |S|^2 + \mu^2 (S^2 + S^{*2})$ Higgs portal coupling • SSB $H \to (\pi^+, v + h + i\pi^0)^T / \sqrt{2}$ $S \to (v_s + \phi + iA) / \sqrt{2}$ • We introduce h_1 , h_2 $\operatorname{tg} 2\alpha = \kappa v v_{s} / (\lambda_{H} v^{2} - \lambda_{S} v_{s}^{2})$ $\begin{pmatrix} h \\ \phi \end{pmatrix} = \begin{vmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{vmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$ $m_1^2 = \lambda_H v^2 (1 + \sec 2\alpha) + \lambda_S v_s^2 (1 - \sec 2\alpha)$ $m_2^2 = \lambda_H v^2 (1 - \sec 2\alpha) + \lambda_S v_c^2 (1 + \sec 2\alpha)$ $V(H,S) \longrightarrow \frac{1}{2}m_1^2h_1^2 + \frac{1}{2}m_2^2h_2^2 - 2\mu^2A^2 + \frac{m_1^2\sin^2\alpha + m_2^2\cos^2\alpha}{8v^2}A^4$ $-\sum_{i=1,2} \frac{1}{2} \frac{m_i^2 \mathcal{R}_{2i}}{v_s} A^2 h_i + \sum_{i,j=1,2} \frac{1}{4} (\mathcal{R}_{2i} \mathcal{R}_{2j} \lambda_s - \mathcal{R}_{1i} \mathcal{R}_{1j} \kappa) A^2 h_i h_j$ $+ \text{const} + \mathcal{O}([h_1, h_2]^3)$

• $A\equiv\sqrt{2}~\mathcal{I}\!m\left(S\right)$ is a massive dark particle, $m_{A}^{2}=-4\mu^{2}$

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{DM} - V(H, S)$$
$$\mathcal{L}_{DM} = -\frac{1}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} + (\mathcal{D}^{\mu}S)^{*} (\mathcal{D}_{\mu}S)$$
$$V(H, S) = -\mu_{H}^{2} |H|^{2} + \lambda_{H} |H|^{4} - \mu_{S}^{2} |S|^{2} + \lambda_{S} |S|^{4} + \frac{\kappa |H|^{2} |S|^{2}}{\text{Higgs portal coupling}}$$

→ □ → → 三 → → 三 = → へへへ

$$\begin{split} \mathcal{L}_{\mathrm{DM}} &= -\frac{1}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} + (\mathcal{D}^{\mu}S)^* (\mathcal{D}_{\mu}S) \\ V(H,S) &= -\mu_H^2 |H|^2 + \lambda_H |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \underbrace{\kappa |H|^2 |S|^2}_{\text{Higgs portal coupling}} \end{split}$$

• SSB $H \to (\pi^+, v + h + i\pi^0)^T/\sqrt{2}$ $S \to (v_s + \phi + i\sigma)/\sqrt{2}$ • We introduce h_1, h_2

$$\mathcal{L}_{\mathsf{DM}} \longrightarrow -\frac{1}{4} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} + \frac{1}{2} \partial^{\mu} \phi \ \partial_{\mu} \phi + \frac{g_x^2 v_s^2}{2} X^{\mu} X_{\mu} + \frac{g_x^2}{2} X^{\mu} X_{\mu} \phi^2 + g_x^2 v_s X^{\mu} X_{\mu} \phi$$

$$V(H,S) \longrightarrow \frac{1}{2} m_1^2 h_1^2 + \frac{1}{2} m_2^2 h_2^2 + \operatorname{const} + \mathcal{O}\left([\operatorname{field}]^3\right)$$

• X_{μ} is a massive dark particle, $m_X^2 = g_x^2 v_s^2$

Fermion DM model

• Gauge group: $\mathcal{G} = \underbrace{SU(3)_c \times SU(2)_L \times U(1)_Y}_{X_4} \times \mathbb{Z}_4$

Standard Model gauge group

- Left-handed fermion χ and real scalar S introduced, $\mathbb{Z}_4: \chi \to i\chi, \ S \to -S$
- Lagrangian

$$\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{DM} - V(H, S)$$
$$\mathcal{L}_{DM} = i\bar{\chi}\partial\chi + \frac{1}{2}\partial^{\mu}S \partial_{\mu}S - \frac{y_x}{2}(\bar{\chi}^c\chi + \bar{\chi}\chi^c)S$$
$$V(H, S) = -\mu_H^2|H|^2 + \lambda_H|H|^4 - \frac{\mu_S^2}{2}S^2 + \frac{\lambda_S}{4}S^4 + \frac{\kappa}{2}|H|^2S^2$$

Higgs portal coupling

$$\mathcal{L}_{\mathsf{DM}} = i\bar{\chi}\partial\!\!\!/\chi + \frac{1}{2}\partial^{\mu}S\,\partial_{\mu}S - \frac{y_x}{2}(\bar{\chi}^c\chi + \bar{\chi}\chi^c)S$$
$$V(H,S) = -\mu_H^2|H|^2 + \lambda_H|H|^4 - \frac{\mu_S^2}{2}S^2 + \frac{\lambda_S}{4}S^4 + \underbrace{\frac{\kappa}{2}|H|^2S^2}_{\text{Higgs portal coupling}}$$

- $H
 ightarrow (\pi^+, v+h+i\pi^0)^T/\sqrt{2} \qquad S
 ightarrow v_s + \phi$ pduce $h_1, \ h_2$ SSB
- We introduce h_1 , h_2

$$\mathcal{L}_{\mathsf{DM}} \longrightarrow \frac{i}{2} \bar{\psi} \partial \!\!\!/ \psi + \frac{1}{2} \partial^{\mu} \phi \ \partial_{\mu} \phi - \frac{y_x v_s}{2} \bar{\psi} \psi - \frac{y_x}{2} \bar{\psi} \psi \phi$$
$$V(H,S) \longrightarrow \frac{1}{2} m_1^2 h_1^2 + \frac{1}{2} m_2^2 h_2^2 + \operatorname{const} + \mathcal{O}\left([\operatorname{field}]^3\right)$$

 $\bullet\,$ Majorana fermion $\psi\equiv\chi+\chi^c$ is a massive dark particle, $m_\psi^2=y_x^2v_s^2$

(三) ▲ 三) ▲ 三) ▲ ○ ○ ○

$$\begin{split} V_{\rm pGDM}(H,S) &= -\mu_H^2 |H|^2 + \lambda_H |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \kappa |H|^2 |S|^2 + \mu^2 (S^2 + S^{*2}) \\ V_{\rm VDM}(H,S) &= -\mu_H^2 |H|^2 + \lambda_H |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \kappa |H|^2 |S|^2 \\ V_{\rm FDM}(H,S) &= -\mu_H^2 |H|^2 + \lambda_H |H|^4 - \frac{\mu_S^2}{2} S^2 + \frac{\lambda_S}{4} S^4 + \frac{\kappa}{2} |H|^2 S^2 \end{split}$$

- asymptotic positivity of the scalar potential
 - $\lambda_S > 0$, $\lambda_H > 0$ • $\kappa > -2\sqrt{\lambda_H \lambda_S} \quad \leftarrow$ always satisfied:

$$\kappa = \frac{(m_1^2 - m_2^2)\sin 2\alpha}{2vv_s} > -\sqrt{\left[\frac{(m_1^2 - m_2^2)\sin 2\alpha}{2vv_s}\right]^2 + \frac{m_1^2m_2^2}{v^2v_s^2}} = -2\sqrt{\lambda_H\lambda_S}$$

• minimum at $v, v_s > 0$ (μ^2 only for pGDM):

- $\kappa^2 < 4\lambda_H h \lambda_S$
- $\mu^2 < 0$
- $2\lambda_S \mu_H^2 \kappa(\mu_S^2 2\mu_Z^2) > 0$
- $2\lambda_H(\mu_S^2 2\mu^2) \kappa\mu_H^2 > 0$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 三日 ● ○ ○ ○

Input parameters

$$\begin{split} V_{\rm pGDM}(H,S) &= -\mu_H^2 |H|^2 + \lambda_H |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \kappa |H|^2 |S|^2 + \mu^2 (S^2 + S^{*2}) \\ V_{\rm VDM}(H,S) &= -\mu_H^2 |H|^2 + \lambda_H |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \kappa |H|^2 |S|^2 \\ V_{\rm FDM}(H,S) &= -\mu_H^2 |H|^2 + \lambda_H |H|^4 - \frac{\mu_S^2}{2} S^2 + \frac{\lambda_S}{4} S^4 + \frac{\kappa}{2} |H|^2 S^2 \end{split}$$

- Input parameters: $v, m_1, v_s, m_2, \sin \alpha, m_{DM}$
- Other parameters of the models in terms of the input parameters:

• $m_2 = m_1 \Rightarrow \kappa = 0 \Rightarrow$ no Higgs portal \Rightarrow DM completely decoupled

▶ < E ▶ < E ▶ E = 900</p>

Relic density constraint on indirect detectionSteigman et al.

- If $\langle \sigma v \rangle^{\rm ID} = \sigma_0 (m_{\rm DM}/T)^{-n}$ then $h^2 \Omega_0^{\rm DM} \sim (n+1) (m_{\rm DM}/T_f)^{n+1} / \sigma_0$
- Correct $h^2 \Omega_0^{\text{DM}} \longleftrightarrow \langle \sigma v \rangle \Big|_{\text{now}} = (T_0/T_f)^n \cdot \underbrace{(n+1) \cdot 1.9 \cdot 10^{-9} \text{ GeV}^{-2}}_{\langle \sigma v \rangle |}$
- $T_f \sim m_{\rm DM}/25$, hence

$$\kappa^2 = 3.5 \cdot 10^{-10} \text{ GeV}^{-4} \frac{D_1 D_2}{m_{\text{DM}} (m_{\text{DM}}^2 - m_b^2)^{3/2}} \cdot \begin{cases} 1/12 & \text{pGDM} \\ 1 & \text{VDM} \\ \frac{8m_\psi}{9T_f} \approx 22 & \text{FDM} \end{cases}$$

Indirect detecion limit_{Fermi-LAT}

• pGDM, VDM: $n = 0 \Rightarrow m_{DM} \gtrsim 30 \text{ GeV}$

• FDM: $n = 1 \Rightarrow \langle \sigma v \rangle |_{now}$ orders of magnitude lower than the limit

同ト * ミト * ミト 三日 * のへで

Direct detection limit XENON1T

Direct detection limit XENON1T

Direct detection - the pseudo-Goldstone caseAzevedo et al.

DD vs Ω_0^{DM} limit for pGDM

CEPC workshop, 24 October 2022

IceCube and DD limitsWikström, Edsjö

- DM annihilation rate in the Sun: Γ_A
- Capture rate: C_C
- $\bullet\,$ Change of DM's amount N in the Sun

$$\dot{N} = \frac{C_C}{C} - \frac{C_A N^2}{C_A N^2}$$

where
$$C_A \equiv 2 \cdot \Gamma_A / N^2 = ext{const}$$

Solution

$$N(t) = \sqrt{C_C/C_A} \cdot \tanh(t\sqrt{C_C C_A})$$

• For large t

$$N(t) \to \sqrt{C_C/C_A}$$
$$\Rightarrow \qquad \boxed{\Gamma_A = \frac{1}{2}C_C}$$

- C_C expressible in terms of DM-nucleon cross section
- Γ_A calculable from muon flux measurements

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 王曰 釣�?

Limits on the invisible branching ratiocms

$$\begin{aligned} \sigma_{1} &\approx \sigma_{1} \cdot \mathbb{1}_{2 \, m_{\mathsf{DM}} < m_{1} < \sqrt{s} - m_{Z}} + \sigma_{2} \cdot \mathbb{1}_{2 \, m_{\mathsf{DM}} < m_{2} < \sqrt{s} - m_{Z}} \\ \sigma_{1} &\equiv \sigma_{\mathsf{SM}}(m_{1}) \cdot \cos^{2} \alpha \cdot \mathsf{BR}(h_{1} \to \mathsf{DM}) \\ \sigma_{2} &\equiv \sigma_{\mathsf{SM}}(m_{2}) \cdot \sin^{2} \alpha \cdot \mathsf{BR}(h_{2} \to \mathsf{DM}) \end{aligned}$$

Conditions:

(1)
$$\sigma_1 < 0.19 \,\sigma_{SM}(m_1)$$

(2) $\log \left[\frac{\sigma_2}{\sigma_{SM}(m_2)} \right] < 0.0011 \cdot \frac{m_2}{1 \text{ GeV}} - 0.63 \qquad (\sqrt{s} = 13 \text{ TeV})$

For $\sin \alpha < 0.3$ condition (2) always satisfied:

$$\frac{\sigma_2}{\sigma_{\rm SM}(m_2)}\Big|_{\sqrt{s}=13 \text{ TeV}} = \sin^2 \alpha \cdot {\rm BR}(h_2 \to {\rm DM}) < 10^{-1} < 10^{0.0011 \cdot \frac{m_2}{1 \text{ GeV}} - 0.63}$$

Limits on the invisible branching ratiocms

Conditions:

(1)
$$\sigma_1 < 0.19 \sigma_{SM}(m_1)$$
(2) $\log \left[\frac{\sigma_2}{\sigma_{SM}(m_2)} \right] < 0.0011 \cdot \frac{m_2}{1 \text{ GeV}} - 0.63 \quad (\sqrt{s} = 13 \text{ TeV})$

For sin $\alpha < 0.3$ condition (2) always satisfied:

$$\frac{\sigma_2}{\sigma_{\rm SM}(m_2)}\Big|_{\sqrt{s}=13~{\rm TeV}} = \sin^2 \alpha \cdot {\rm BR}(h_2 \to {\rm DM}) < 10^{-1} < 10^{0.0011 \cdot \frac{m_2}{1~{\rm GeV}} - 0.63}$$

$$\begin{split} \frac{d\sigma}{dm_{\rm rec}^2} &= \frac{d\sigma}{dQ^2} = \frac{\sigma_{\rm SM}(Q^2)v^2}{32\pi^2} \frac{Q^4 \cdot \mathcal{X}}{\left[(Q^2 - m_1^2)^2 + (m_1\Gamma_1)^2\right]\left[(Q^2 - m_2^2)^2 + (m_2\Gamma_2)^2\right]} \times \\ & \times \sqrt{1 - 4\frac{m_{\rm DM}^2}{Q^2}} \cdot \begin{cases} 1 & (p{\rm GDM}) \\ 1 - 4\frac{m_{\rm DM}^2}{Q^2} + 12\left(\frac{m_{\rm DM}^2}{Q^2}\right)^2 & ({\rm VDM}) \\ 2\frac{m_{\rm DM}^2}{Q^2}\left(1 - 4\frac{m_{\rm DM}^2}{Q^2}\right) & ({\rm FDM}) \end{cases} \\ & \Gamma_1 \xrightarrow{m_2 \to m_1} \cos^2 \alpha \ \Gamma_{h \to \rm SM} + \sin^2 \alpha \ \Gamma_{h \to \rm DM} \\ \Gamma_2 \xrightarrow{m_2 \to m_1} \sin^2 \alpha \ \Gamma_{h \to \rm SM} + \cos^2 \alpha \ \Gamma_{h \to \rm DM} \end{cases} \\ & \mathcal{X} \equiv (\cos \alpha \sin \alpha)^2 \frac{(m_1^2 - m_2^2)^2 + (m_1\Gamma_1 - m_2\Gamma_2)^2}{v^2v_s^2} \Big|_{m_1 = m_2} \neq 0 \\ & \text{but } \kappa = \frac{(m_1^2 - m_2^2)\sin 2\alpha}{2vv_s} \xrightarrow{m_2 \to m_1} 0 \quad ! \end{split}$$

< ロ > < 回 > < 三 > < 三 > < 回 > < 回 > < ○

Considered process: degenerated case. The propagator

$$\begin{split} \Pi_{ij} &\equiv \Pi_{ij}(Q^2) \equiv i \cdot \mathcal{I}m \, [\text{self energy}] \\ \Pi_{ii}(m_i^2) &= i m_i \Gamma_i \end{split}$$

the matrix element:

$$\mathcal{M} = \mathcal{M}_{e^+e^- \to Zh_i}(Q^2) \cdot \Delta_{ij}(Q^2) \cdot \mathcal{M}_{h_j \to XX}(Q^2) =$$

= $\mathcal{M}_{e^+e^- \to Zh}(Q^2) \cdot \underbrace{\mathcal{R}_{1i} \cdot \Delta_{ij}(Q^2) \cdot \mathcal{R}_{2j}}_{\widehat{\Delta}(Q^2)} \cdot \mathcal{M}_{h \to XX}(Q^2) ,$

the propagator:

$$\widehat{\Delta}(Q^2) = \mathcal{R}_{1i}\mathcal{R}_{2j} \cdot \frac{1}{\det D} \underbrace{\left[\begin{matrix} Q^2 - m_2^2 + \Pi_{22} & -\Pi_{12} \\ -\Pi_{21} & s - m_1^2 + \Pi_{11} \end{matrix} \right]_{ij}}_{ij} = \\ = \sin\alpha\cos\alpha \cdot \frac{(m_1^2 - m_2^2) - \left[(\Pi_{11} - \Pi_{22}) - (\operatorname{tg}\alpha \cdot \Pi_{12} - \operatorname{ctg}\alpha \cdot \Pi_{21})\right]}{(Q^2 - m_1^2 + \Pi_{11})(Q^2 - m_2^2 + \Pi_{22}) - \Pi_{12}\Pi_{21}}$$

▲ 문 ► ▲ 문 ► .

$$\widehat{\Delta}(Q^2) = \sin\alpha \cos\alpha \cdot \frac{(m_1^2 - m_2^2) - [(\Pi_{11} - \Pi_{22}) - (\operatorname{tg}\alpha \cdot \Pi_{12} - \operatorname{ctg}\alpha \cdot \Pi_{21})]}{(Q^2 - m_1^2 + \Pi_{11})(Q^2 - m_2^2 + \Pi_{22}) - \Pi_{12}\Pi_{21}}$$

• If $|m_1 - m_2| \gg \Gamma_1, \Gamma_2$, then \leftarrow in practice, only this case relevant

$$\hat{\Delta}(Q^2) \approx \sin \alpha \cos \alpha \cdot \frac{m_1^2 - m_2^2}{(Q^2 - m_1^2 + \Pi_{11})(Q^2 - m_2^2 + \Pi_{22})} \\ \approx \sin \alpha \cos \alpha \cdot \left[\frac{1}{Q^2 - m_1^2 + im_1\Gamma_1} - \frac{1}{Q^2 - m_2^2 + im_2\Gamma_2} \right] \\ \equiv \hat{\Delta}^{(\mathsf{BW})}(Q^2)$$

• If $m_1 \sim m_2$, an explicit calculation shows that

$$\begin{split} \left[(\Pi_{11} - \Pi_{22}) - (\operatorname{tg} \alpha \cdot \Pi_{12} - \operatorname{ctg} \alpha \cdot \Pi_{21}) \right] \Big|_{m_1 = m_2} &= 0 \\ \Rightarrow \quad \widehat{\Delta}(Q^2) \Big|_{m_1 = m_2} &= 0 \end{split}$$

The h_1 's and h_2 's decay widths

$$\Gamma_{h_i \to ab} \equiv \frac{\Pi_{ii}^{ab}(m_i^2)}{im_i}$$

$$\Downarrow$$

•
$$\Gamma_{h_i \to \text{DM}} = \frac{\mathcal{R}_{2i}^2}{v_s^2} \frac{m_i^3}{32\pi} \sqrt{1 - \frac{4m_{\text{DM}}^2}{m_i^2}} \begin{cases} 1 & (\text{pGDM}) \\ 1 - 4\frac{m_{\text{DM}}^2}{m_i^2} + 12\left(\frac{m_{\text{DM}}^2}{m_i^2}\right)^2 & (\text{VDM}) \\ 2\frac{m_{\text{DM}}^2}{m_i^2}\left(1 - 4\frac{m_{\text{DM}}^2}{m_i^2}\right) & (\text{FDM}) \end{cases}$$

• $\Gamma_{h_i \to SM} = \mathcal{R}_{1i}^2 \cdot \gamma(m_i) (\gamma - \text{decay width of SM Higgs particle of given mass})$

•
$$\Gamma_{h_1 \to h_2 h_2} = \sin^2 \alpha \cos^2 \alpha (m_1^2 + 2m_2^2)^2 \left(\frac{\cos \alpha}{v_s} + \frac{\sin \alpha}{v}\right)^2 \frac{\sqrt{m_1^2 - 4m_2^2}}{32\pi m_1^2} \approx$$

 $\approx \frac{\sin^2 \alpha \cos^4 \alpha}{v_s^2} (m_1^2 + 2m_2^2)^2 \frac{\sqrt{m_1^2 - 4m_2^2}}{32\pi m_1^2}$
• $\Gamma_{h_2 \to h_1 h_1} = \sin^2 \alpha \cos^2 \alpha (2m_1^2 + m_2^2)^2 \left(\frac{\sin \alpha}{v_s} - \frac{\cos \alpha}{v}\right)^2 \frac{\sqrt{m_2^2 - 4m_1^2}}{32\pi m_2^2} \approx$
 $\approx \frac{\sin^2 \alpha \cos^4 \alpha}{v^2} (2m_1^2 + m_2^2)^2 \frac{\sqrt{m_2^2 - 4m_1^2}}{32\pi m_2^2}$

CEPC workshop, 24 October 2022

<ロ> <同> < 目> < 目> < 目> < 目 < のへの</p>