

Electroweak Phase Transition in Exotic Higgs Decays at the CEPC

University of Washington

CEPC Workshop 2022 October 24, 2022

Elham E Khoda

Introduction

In SM the EWSB happens via a smooth cross-over transition • Smooth transition between the states

This does not provide necessary condition for EW Baryogenesis

A new particle state near the EW scale can drive the electroweak phase transition (EWPT) strongly first order

What is the thermal history of the **ElectroWeak Symmetry Breaking (EWSB)** in the early universe?

EWSB and Exotics Higgs decay at CEPC

2 / 21

EWPT: New light scalar

1st order Phase Transition (PT) via a light particle (s) coupling with Higgs

New degree of freedom below ~ m_Z, it must be a singlet-like scalar (s) **Requirement:** sizeable coupling with the SM-like Higgs $h \rightarrow ss \rightarrow XXYY$

Elham E Khoda (UW)

EWSB and Exotics Higgs decay at CEPC

Stochastic Gravitational Wave Background

During 1st order PT:

- Appear as noise in GW detectors with a frequency (in the mHz region)
- Detectable by the future space-based interferometer LISA.

Elham E Khoda (UW)

EWSB and Exotics Higgs decay at CEPC

• Fluid velocities in the vicinity of colliding bubbles will generate gravitational waves (GWs)

Primordial peak The stochastic gravitational-wave background inherited from a first-order electroweak phase transition (red) compared to the much broader backgrounds expected from inflation (black) and cosmic strings (blue), as well as sensitivity curves of future experiments. Credit: P Simakachorn

Exotics Higgs at Future Lepton Colliders

CEPC: unpolarized electron-positron collisions

- CM energy = **240 GeV**
- Considered luminosity = **5** ab⁻¹

FCC-ee: unpolarized electron-positron collision

- CM energy = **240 GeV**
- Considered luminosity = **30** ab⁻¹

ILC: polarized electron-positron collisions

- beam polarization of $p(e^-,e^+) = (-0.8,+0.3)$
- CM energy = 250 GeV
- Considered luminosity = **2** ab⁻¹

Future Colliders

ns

Collider	Туре	\sqrt{s}	P [%]	N(Det.)	$\mathscr{L}_{\mathrm{inst}}$	L
		-	$[e^{-}/e^{+}]$		$[10^{34}]$ cm ⁻² s ⁻¹	[ab ⁻¹]
HL-LHC	pp	14 TeV	-	2	5	6.0
HE-LHC	pp	27 TeV	-	2	16	15.0
FCC-hh ^(*)	pp	100 TeV	-	2	30	30.0
FCC-ee	ee	M_Z	0/0	2	100/200	150
		$2M_W$	0/0	2	25	10
		240 GeV	0/0	2	7	5
		$2m_{top}$	0/0	2	0.8/1.4	1.5
		-				
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0
		1000 GeV	$\pm 80/\pm 20$	1	3.6/7.2	8.0
CEPC	ee	M_Z	0/0	2	17/32	16
		$2M_W$	0/0	2	10	2.6
		240 GeV	0/0	2	3	5.6
CLIC	ee	380 GeV	±80/0	1	1.5	1.0
		1.5 TeV	$\pm 80/0$	1	3.7	2.5
		3.0 TeV	$\pm 80/0$	1	6.0	5.0
LHeC	ep	1.3 TeV	-	1	0.8	1.0
HE-LHeC	ep	1.8 TeV	-	1	1.5	2.0
FCC-eh	ep	3.5 TeV	-	1	1.5	2.0

arXiv:1905.03764

Higgs production and decays

- ZH process reaches maximum at ~250 GeV, decreases asymptotically as 1/s
- VBF proceeds through t-channel, increases logarithmically as $In_2(s/M_V^2)$
- VBF dominated by W fusion due to small neutral-current Zee coupling

arXiv:1810.09037

EWSB and Exotics Higgs decay at CEPC

7 / 21

Cleanest Channel: Z boson visible decay to two leptons

• Higgs spectator

Known initial state:

 Subtracting the Z-boson 4-momentum enables the reconstruction of the Higgs 4-momentum

Recoil Mass:
$$m_{\text{recoil}} \equiv \sqrt{s - 2\sqrt{s}E_{\ell\ell} + m_{\ell\ell}^2}$$

Recoil mass should peak at Higgs mass

• Selection cut around Higgs mass will remove most if of the background

ZH: H—> ss

Better sensitivity in hadronic final states

Elham E Khoda (UW)

EWSB and Exotics Higgs decay at CEPC

Exotic decays of the 125 GeV Higgs boson

Limit comparison between HL-LHC, CEPC, ILC (H20) and FCC-ee

Exotic Higgs decay channel difficult to constrain at the LHC • Improvement in exotic decays from the lepton collider Higgs factories

95% C.L. upper limit on selected Higgs Exotic Decay BR

arXiv:1612.09284

EWSB and Exotics Higgs decay at CEPC

4b Analysis at ILC

Target of this study: $e^+e^- \rightarrow ZH, Z \rightarrow ee/\mu\mu, H \rightarrow \phi\phi \rightarrow 4b$

- Mediator mass range: 15 60 GeV
- Mediators decay promptly

Setup:

- Full ILD detector simulation with latest model
- ILC H20 scenario of $\sqrt{s} = 250$ GeV, Luminosity = 2 ab⁻¹
- Polarization: $P(e-,e+) = \{(-80\%,+30\%), (+80\%,-30\%)\}$

Basic Event Selection

- The number of isolated [muons / electrons] = 2
- The sum of b-probabilities of 4 jets > 3
- The recoil mass within (124, [160 / 180]) GeV

- Jet clustering & Flavor tagging: LCFIPlus
 - Durham forced to 4 jets
- b-probability is defined for each jet
- Output from LCFIPlus flavor tagging processor

Event Selection: Recoil Mass Cut

Cut conditions:

- Muon: 124 GeV < Recoil mass < 160 GeV
- Electron: 124 GeV < Recoil mass < 180 GeV

Final Optimization

- assumption of BR(H \rightarrow 4b) = 1%.
- The final cut conditions of mediator mass are determined to optimize the significance

•After the event selection, a clear peak can be seen in the mediator mass distribution on the

95% CL Limit on scalar mass

95% C.L. upper limit on BR(H \rightarrow 4b) ~ 0.1% for all m ϕ

ł	μ+	4b			ILD	Prelin	nir
			95% C.L. up	per limit on l	3R(H→4b)		
	mφ		(-0.8,+0.3)	(+0.8,-0.3)	combined		
		15	0.11%	0.14%	0.09%		
		30	0.14%	0.17%	0.11%		
		45	0.15%	0.20%	0.12%	mφ	ee
		60	0.14%	0.19%	0.11%	15	
e	e +	4b				30	
			95% C.L. up	per limit on I	3R(H→4b)	45	
	mφ		(-0.8,+0.3)	(+0.8,-0.3)	combined	60	
		15	0.19%	0.24%	0.15%		
		30	0.21%	0.25%	0.16%		
		45	0.24%	0.26%	0.18%		
		60	0.22%	0.26%	0.17%		

nary

Muon channel

Cut: (((flv[[0]==13&&flv[[1]==-13)&&(Sum\$(bprob) > 3.))&&(mrec>120&&mrec<160))&&(pairid[0]==pairidtrue)

CEPC Workshop 2021

mphi15 mphi30 mphi45 mphi60

4b Analysis at CEPC

Target of this study: $e^+e^- \rightarrow ZH$, $Z \rightarrow ee/\mu\mu$, $H \rightarrow ss \rightarrow 4b$

- Mediator mass range: 15 60 GeV
- Mediators decay promptly

Setup:

- $\sqrt{s} = 250$ GeV, Luminosity = 5 ab⁻¹
- Detector simulation with GEANT4 (CEPC_v4)
- Generator: Madgraph5 and Pythia8

• Jet clustering & Flavor tagging: LCFIPlus • Durham forced to 4 jets

Look at Xuliang Zhu's talk for more details

arXiv:2203.10184

BDT-based analysis

Trained the variables after some loose selections :

- Same flavor opposite sign lepton pair with $E_{\ell} > 20$ GeV
- $m_{\ell\ell}$ within the Z mass window [77.5, 104.5] GeV
- Recoiled mass of the lepton pair system should be within [124,140] GeV

BDT trained on 12 variables

Main discriminant: BDT Score —> used for setting limits

Process	Yields
$\ell\ell Hbb$	130.7 ± 104.4
$\ell\ell H$	15.1 ± 19.5
Non Higgs	14.3 ± 18.6
Total Bkg	160.1 ± 107.8
Signal ($m_s = 30 \text{ GeV}$)	2210.1 ± 1731.1

arXiv:2203.10184

The analysis considers some systematics uncertainties coming from:

- Background estimation
- b-tagging
- Jet Energy Resolution

Final Limits are < 0.1% for s between 15 GeV and 60 GeV

95% CL Limit on scalar mass

EWSB and Exotics Higgs decay at CEPC

Target of this study: $e^+e^- \rightarrow ZH$, $Z \rightarrow ee/\mu\mu$, $H \rightarrow ss \rightarrow 4\tau$ Studied exotics Higgs with m< 10 GeV • $\sqrt{s} = 250$ GeV, Luminosity = 5 ab⁻¹

Selection:

- $|m_{\ell\ell} m_{Z}| < 10 \,\text{GeV}$
- Charged track multiplicity within two hardest fat jets (R=1.3)

Elham E Khoda (UW)

EWSB and Exotics Higgs decay at CEPC

4 Tau Final state

19/21

95% CL Limit on scalar mass

Two Scenarios are consider:

- Perfect tracking
- Flat track reconstruction efficiency of 0.99

	Simulated events	Selected events	Efficiency	Events in 5 ab
Signal $(m_s = 7.5 \text{ GeV})$	$5 imes 10^5$	168995	0.338	$27039.2 \times Br$
SM background	$100 imes 10^5$	54	$5.4 imes 10^{-6}$	0.2997
Signal, $\epsilon_{tk} = 0.99$	5×10^5	162558	0.3251	$26009.3 \times Br$
SM background, $\epsilon_{tk} = 0.99$	100×10^5	63	$6.3 imes10^{-6}$	0.3497

Final Limits are < 0.013% for s between 5 - 10 GeV

arXiv:2110.13225

- Strong 1st order EWPT can be obtained by adding a light scalar particle (< m_z)
 - Generates stochastic gravitational-wave background

• We can search for these exotics scalar particles at the collider experiments

• Future e+e- collider like CEPC, FCC-ee, ILC will improve the sensitive of the hadronic final states (b, tau) significantly

Summary

arXiv:2203.08206

Thank You!

BACKUP

Decay		95% C			
Mode	LHC	HL-LHC	CEPC	ILC	FCC-ee
Æт	$0.23 \ [49, \ 50]$	0.056 [12-14]	0.0028 [16]	0.0025 [17]	0.005 [18]
$(b\bar{b}) + \not\!\!E_{\rm T}$	_	[0.2]	1×10^{-4}	2×10^{-4}	5×10^{-5}
$(jj) + \not\!\!\!E_T$	_	—	5×10^{-4}	5×10^{-4}	2×10^{-4}
$(\tau^+ \tau^-) + E_T$	_	[1]	$8 \times 10^{-4*}$	1×10^{-3}	3×10^{-4}
$b\bar{b}+E_{\rm T}$	_	[0.2] [39]	3×10^{-4}	4×10^{-4}	1×10^{-4}
$jj+ at \!$	_	_	5×10^{-4}	7×10^{-4}	2×10^{-4}
$\tau^+\tau^- + \not\!\!\!E_T$	_	_	$8 \times 10^{-4*}$	1×10^{-3}	3×10^{-4}
$(bar{b})(bar{b})$	1.7 [51]	(0.2)	4×10^{-4}	9×10^{-4}	3×10^{-4}
$(c\bar{c})(c\bar{c})$	_	(0.2)	8×10^{-4}	1×10^{-3}	3×10^{-4}
(jj)(jj)	_	[0.1]	1×10^{-3}	2×10^{-3}	7×10^{-4}
$(bar{b})(au^+ au^-)$	$[0.1]^*$ [52]	[0.15]	$4 \times 10^{-4*}$	6×10^{-4}	2×10^{-4}
$(\tau^+\tau^-)(\tau^+\tau^-)$) [1.2]* [53]	$[0.2 \sim 0.4]$	1×10^{-4} *	2×10^{-4}	5×10^{-5}
$(jj)(\gamma\gamma)$	_	[0.01]	1×10^{-4}	2×10^{-4}	3×10^{-5}
$(\gamma\gamma)(\gamma\gamma)$	$[7 \times 10^{-3}]$ [54]	$4 \times 10^{-4} *$	1×10^{-4}	1×10^{-4}	3×10^{-5}

Channel	HL-LHC	ILC	FCC-ee
E_T^{miss}	0.056	.0025	.005
$b\overline{b}b\overline{b}$	0.2	9×10^{-4}	3×10^{-4}
$b\overline{b}E_T^{miss}$	0.2	$2 imes 10^{-4}$	$5 imes 10^{-5}$
$jj\gamma\gamma$	0.01	$2 imes 10^{-4}$	3×10^{-5}

TABLE XII: Representative 95% CL limits on Higgs branching ratios to a pair of light scalars which then decay to the indicated channels.[50, 125]

95% CL limits on Higgs branching ratios

Elham E Khoda (UW)

