https://indico.ihep.ac.cn/event/17020/sessions/10729/#20221028

Update on LumiCal for the Ø20mm Racetrack beampipe

Outline, Systematics $\rightarrow 10^{-4}$

RaceTrack beam-pipe
 IP Ø20 mm; X splitting 20 – 35 – 39 mm;
 Y Ø20 mm to dual Ø20 mm pipes

Bhabha cross section by BHlumi

boosted, beam crossing 33 mRad

- ✓ fiducial region: min materials, at z=630mm with Flange $θ_{min}$ > 25 mRad. |y_{z=650mm}|>15 mm → σ(Bhabha) = 78 nb
- ✓ estimate event rate, occupancy, pileup systematics
 bunch crossing 32 ns, High-Lumi Z, L= 10³⁶ /cm²s

■ Luminosity → 10⁻⁴ precision GEANT on smearing factors:

- ✓ Multiple Scattering, beam-pipe
- ✓ Magnet field, helix rotation
- @ preshower, radiative Bbabha, contamination

Racetrack beampipe LumiCal

Racetrack beampipe

○ beam-pipe r =10 mm, flat y = ± 10 mm

- o 33 mRad beam-crossing,
- o boost horizontal, e[±] lost into beampipe

LumiCal sandwiched

- **|y|>15 mm**
- Vertical Si-wafers :

e[±] theta tracking

• LYSO calo :

3x3x50 mm³ bars

Updated LumiCal

2022.05 report

Luminosity by counting Bhabha events

BHLUMI X-section, racetrack @CEPC

BHLUMI QED calculation

10 ³∍ **1. BHLUMI** CMS m₇=92. 3 GeV **BARE1 X section:** Th1< θ_1 ' and θ_2 '<Th2, s'> 0.5s 10 ² -**2. Boost +x** : 33 mRad e+,e- beam crossing 10 Th1 Th₂ **3. X-section** : count event fraction in fiducial region 0.02 0.04 0.06 0.08 0.1 $\theta(p2)$ (Rad) evhbk 10mrad r25.hrz 100 Ymm Multi. Scattering, rad. Bhabha, Boost +x, 80 (Acc1)=457232 wider back-back distributions 33 mRad Beam crossing 60 scattered e+,e-40 10 ' 20 sym. to outgoing pipe All gen CM frame θ 20 mRad Lab frame 0 100 10 ⁶ - θ , s'/s > 0.5 -20 $\mathsf{R} > \mathsf{R}_{\mathsf{b},\mathsf{pipe}}$ 80 232 -40 5 -60 10 Open-angle $-\pi$ 40 -80 bhlumi CMS gener of scattered e+ e-20 -100 -100-80 -60 -40 -20 0 20 4 10 ⁴ 0 (bhlumi CMS Z=1 -20 10 ³--40 -60 -80 boosted, 33mRad crossing -100 -0.01 -0 0.01 0.02 0.03 0.04 0.05 -100-80 -60 -40 -20 0 20 40 60 80 100 $\Delta R (e^+, e^-) Rad$ (Lab Z=1m) X mm

Events

Bhlumi generated

Smeared 100µRad as Multiple scattering

8

Bhabha event pile-up rate @High-Lumi Z

- 1. High-Lumi Z (2021 design) L_{max}/IP = **115 x 10³⁴/cm²s**
- 2. Bhabha both e+, e- detected, X-sec = **245.9 nb Event rate** = (246x10⁻³³) x (115 x 10³⁴) /sec = **280 kHz**
- 3. Event rate / 32ns bunch crossing = 0.009 events /b.c.

4. Pile-up: next b.c., @adjacent cell in peak region

Pile-up Fraction = 0.018*6cells/2sides = 0.054

Pile-up event rate = 0.009*0.054 = **5x10**-4

50 GeV e- shower in 3x3 mm² cells

event fraction /(cell of 3x3mm²) maximum at beampipe edge = 0.018

c.f. LEP

 $L = 1 \times 10^{32}$

X-sec= 100nb

Rate= **10 Hz**

M.S. & preshower caused by beampipe

		2mm beam-pipe, material budget						
• B	Seam Pipe	tanθ= 2mm/L	1/ tanθ	Be X0=353mm	Al X0=89mm	Cu X0=14.4mm	CosQ	
_	possible 1mm Be ??	15mRad L= 133 mm	66.66	0.378 X0	1.498 X0	9.259 X0	.9999	
p		20mRad L= 100 mm	49.99	0.283 X0	1.123 X0	6.944 X0	<mark>.9998</mark>	
-	<0.2 X0	25mRad L= 80 mm	39.99	0.227 X0	0.899 X0	5.554 X0	<mark>.9997</mark>	
	Preshower @ z < 1m	30mRad L= 67 mm	33.32	0.189 X0	0.749 X0	4.628 X0	.9996	
• •		35mRad L= 57 mm	28.56	0.162 X0 (LEP)	0.642 X0	3.967 X0	.9994	
B	Background to	50mRad L= 40 mm	19.98	0.113 X0	0.449 X0	2.775 X0	.9996	
t	racker	65mRad L= 31 mm	15.36	0.087 X0	0.345 X0	2.134 X0	.9996	
		80mRad L= 25 mm	12.46	0.071 X0	0.280 X0	1.732 X0	.9996	

Be 2mm pipe

Al 2mm pipe

11

smeared by Multi. Scat, Preshower

50 GeV muon, electrons **Muon:** mutiple scattering only **Electron:** M.S. + EM bramsstrahlung

E.M. shower → shower mulitplicity & widen position resolution

Ref: Be 1 mm pipe, $1/\tan \theta = 50$ 50 GeV 20mRad electrons

y cm 5 65mRad 50mRad 30mRad 21mRad 20mRac 75 65 70 80 85 90 cm

vs. CDR 28mm tube, 28-40mm cone pipe

z.r = 344.18 – 660.22 mm

o 50 GeV electron traversing Al-pipe : (0.5 mm Al – 0.5 mm Air – 0.35 mm Air) • Multiple scattering deviation simulated for ϕ =28 mm

exiting Al-pipe Si-layer attached, *no air-qap* (nearest)

50 GeV (θ,φ)	σ (Z)	σ(θ)	1/tan(θ)
e (40 mR <i>,</i> 0º)	86 µm	8.9 μRad	25.0
e (55 mR, 0º)	37 μm	7.3 μRad	18.2
e (60 mR <i>,</i> 0º)	28 µm	6.5 μRad	16.6
e (70 mR, 0º)	19 µm	5.8 μRad	14.3

 θ to z: r/z =tan θ

• Al-pipe tilt 12.6 mRad (*\varphi 28 to 40 mm*) • *Si-layer parallel to Al-pipe*, gap = 1mm

→ air-gap from IP ~ 50 mm

mu (θ,φ)	σ(Ζ) Si ^{1st}	<mark>σ(θ) Si^{1st}</mark>	1/tan(θ)
(35 mR, 90º)	475 μm	28 µRad	28.6
(40 mR, 90°)	301 µm	24 µRad	25.0
(50 mR, 90°)	161 µm	22 µRad	20.0

Mag. Field bending Bz = 3T

1 GeV electron, 3T Helix

1GeV electron @25mRad 1 mm Al pipe, 25mm Flange M.S. +3T Helix z=675mm

Task: full GEANT on BHLUMI events

by linear track fitting of e⁺, IP, e⁻ positions