

Update on integrated luminosity systematics at CEPC: beam energy spread

I. Božović-Jelisavčić I. Smiljanić and G. Kačarević

Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

28. October 2022 T

The 2022 International Workshop on the High Energy Circular Electron Positron Collider

I. Bozovic

- Introduction
- Determination of the beam energy spread
 - Method of the beam energy spread determination
 - Impact on integrated luminosity
 - Impact on precision of EW observables
- Summary

- Challenging control of luminosity systematics at 10⁻⁴ at 91.2 GeV and 10⁻³ at 240 GeV
- Most sources from mechanics and MDI have been studied and documented in CEPC CDR and JINST 17 P09014, 2022
- In addition we discuss the possibility of experimental determination of the beam energy spread *(motivated by similar work at FCCee)*
- And its impact on luminosity systematics and precision EW observables at the Z-pole
- Only relevant design parameter is the luminometer aperture/fiducial volume, taken to be between 26 mrad and 105 mrad /53 mrad and 79 mrad

- High x-section, easy to identify, central process: $e^+e^- \rightarrow \mu^+\mu^-$ (~1.5 nb at Z-pole) to determine s'
- Several hundred thousand di-muon events at 91.2 GeV and 240 GeV CM energies using WHIZARD 2.6, in the central tracker acceptance from 8° to 172°
- Initial State Radiation (ISR) and detector angular resolution (Gaussan smearing), simulated individually to study their impact on the s'
- *s* ' can be retrieved from the reconstructed muons' polar angles:

 $\frac{s'}{s} = \frac{\sin\theta^+ + \sin\theta^- - |\sin(\theta^+ + \theta^-)|}{\sin\theta^+ + \sin\theta^- + |\sin(\theta^+ + \theta^-)|}$

- Larger BES leads to reduction of the number of di-muon events carrying near to maximal available energy
- Knowing this dependence from simulation enables determination of the effective BES (δ') once the count of di-muon events is known experimentally

- BES dominates the s' shape at energies close to the nominal CM energy
- Central tracker resolution in polar angle should not be larger than 0.5 mrad/500 μm

240 GeV

- The effective beam-spread can be determined from the count of the top-part of the s' distribution
- Statistical uncertainty of di-muon count translates to the statistical uncertainty of the beam-spread, while _ uncertainty of the fit introduces systematic uncertainty of the measurement

CEPC	$\mathcal{L} @ IP (cm^{-2}s^{-1})$	Nominal BES δ (%)	Number of events	Cross- section e^+e^- $\rightarrow \mu^+\mu^-$	Collecting time	Relative statistical uncertainty of BES	Total relative uncertainty of BES	$\Delta E_{\rm BES}$ (MeV)
Z^0 pole	$1.02 \cdot 10^{36}$	0.080	$2.5 \cdot 10^{5}$	1.5 nb	3 min	1.2%	25%	9
240 GeV	$5.2 \cdot 10^{34}$	0.134	$1.0 \cdot 10^{5}$	4.1 pb	5 days	2.3%	15%	24

Impact on Bhabha count

- ΔE_{BES} translates into longitudinal boost $\beta_{BES} = 2 \cdot \Delta E_{BES} / \sqrt{s}$
- Impacting the Bhabha count due to a loss of coincidence

- Asymmetric counting is favored (for larger BES uncertainties)
- BES relative precision of ~2·10⁻⁴ is not an issue; Contributes to $\Delta \mathscr{L}/\mathscr{L}=\Delta N/N$ as ~5·10⁻⁴ even for the symmetric counting in the full FV

Impact on precision of EW observables

- EW observable precision is evaluated as the standard error of the mean (SEM), SEM=RMS/VN, where N=10⁶ di-muon events, in order to minimize statistical effects of the samples' sizes
- Contribution of the total BES uncertainty at the Z⁰ pole is found to be: $\delta(\sigma_z)^2 2.6 \cdot 10^{-3}$, $\Delta \Gamma_z^2 30$ MeV, $\Delta m_z^2 < 100$ keV
- Uncertainties originated solely from the statistical uncertainty of the BES are significantly smaller: $\delta(\sigma_z)^{-1.5 \cdot 10^{-3}}$, $\Delta \Gamma_z^{-1}$ MeV, Δm_z^{-1} Solve keV

Summary

- A comprehensive list of the systematic uncertainties in integrated luminosity determination have been studied at the Z⁰-pole and 240 GeV
- It is complemented with the estimate of the BES measurement precision using di-muon production
- With the CEPC post-CDR design, BES can be determined with the total relative accuracy of 25% corresponding to 9 MeV beam energy uncertainty in only 3 minutes of data-taking at the Z⁰-pole
- The overall precision of the BES determination translates to the relative uncertainty of the integrated luminosity of $\sim 2 \cdot 10^{-4}$ for the asymmetric counting
- And to the systematic uncertainty of the EW observables at the Z⁰-pole: $\delta(\sigma_z)^2 2.6 \cdot 10^{-3}$, $\Delta \Gamma_z^2 0$ MeV, $\Delta m_z^2 < 100 \text{ keV}$

BACKUP

Uncertainties from mechanics and positioning

Considered detector-related uncertainties arising from manufacturing, positioning and alignment, basically affecting acceptance:

- uncertainty of the luminometer inner radius (Δr_{in}),
- spread of the measured radial shower position w.r.t. to the true impact position on the luminometer front plane (σ_r) ,
- uncertainty of the longitudinal distance between left and right halves of the luminometer (Δl),
- mechanical fluctuations of the luminometer position with respect to the IP caused by vibrations and thermal stress, radial and axial (σ_{xIP} , σ_{zIP})
- twist of the calorimeters corresponding to different rotations of the left and right detector axis with respect to the outgoing beam ($\Delta \phi$)

Parameter	Precision @240 GeV	Precision @91 GeV
Δr_{in} (µm)	10	1
$\sigma_r (mm)$	1.00	0.20
Δl (mm)	1.00	0.08
$\sigma_{_{XIP}}$ (mm)	1.0	0.5
σ_{zIP} (mm)	10	7
$\Delta \varphi$ (mrad)	6.0	0.8

MDI related uncertainties

Considered MDI related effects:

- uncertainty of the average net center-of-mass energy ($\Delta E_{CM})$ cross-section calculation
- asymmetry in energy of the e⁺ and e⁻ beams, given as the maximal deviation (ΔE) of the individual beam energy from its nominal value longitudinal boost w.r.t. the lab frame
- IP position displacements with respect to the luminometer, radial and axial (Δx_{IP} , Δz_{IP}), caused by the finite beam transverse sizes and beam synchronization, respectively affecting acceptance
- time shift in beam synchronization (τ) leading to IP longitudinal displacement Δz_{IP} affecting acceptance

Parameter	Precision @240 GeV	Precision @91 GeV
ΔE_{CM} (MeV)	240	9
ΔE (MeV)	120	5
Δx_{IP} (mm)	1.0	0.5
Δz_{IP} (mm)	10	2
τ (ps)	15	3

