

Fast simulation of the 4th detector at CEPC with Delphes

Xu Gao¹, Siman Liu¹, Youhui Yun³ Gang Li², Linghui Wu², Weimin Song¹

Jilin University¹

IHEP²

Nanjing University³

Outline

- Introduction
- Implementation and validations of the CEPC new detector with Delphes
 - Tracker
 - Particle Identification(PID)
 - Calorimeter
- Analysis examples for e^+e^- collision
- Summary

Introduction to Dephes

- Delphes is a modular framework that simulates the response of a multipurpose detector
- Simulations included:
 - Charged particle propagation in B field with full covariance
 - EM/Had showers and energy resolution
 - Ideal particle-flow
 -
- Physics objects provided:
 - Tracks, photons, neutral hadrons
 - Lepton/photon isolation
 - Jets, missing energy

Photon conversion and confusion among showers not included

Simulation of the 4th detector at CEPC

- Why simulate new CEPC detector using Delphes?
 - Fast: Delphes are two or three orders of magnitude faster than the fully GEANT based simulations
 - Good enough: detector response in Delphes is good enough for most phenomenological studies
- For physics study at the CEPC detector:
 - Implement the detector with a tcl card
 - Provide a dedicated PID module
 - Provide more flexibility between lepton/photon isolation and jet clustering
 - Provide a few analysis examples
 - ...

Resolution of tracker

The results consistent with full simulation

Tracker performance

Total events =100 k, efficiency ≈94 % Resolution of invariant mass : 0.45 GeV Recoil mass: 125.24 GeV, resolution: 0.25 GeV (no beam energy spread)

dN/dx

Consider effect of cluster counting efficiency as a function of dN/dx in xy plane

 $\varepsilon_{counting} = \frac{dN/dx_{meas}}{dN/dx_{real}}$

Cluster counting efficiency curve is determined with 2% noise taken into account

PID performance is obtained with Delphes by using above counting efficiency

Ideal vs considering cluster counting efficiency

k/pi separation powser ($|\cos\theta| < 0.854$)

Only considering π and K later 8

PID efficiency of kaon

ToF only

- ϵ^{K} is Kaon PID efficiency
- n_{sel}^{K} is number that K is identified as K
- n_{tot}^K is number of K

dominant in the low momentum range

dominant in the high momentum range

Combine dN/dx and ToF

Efficiency > 90% when pt less than 20 GeV

Efficiency > 96% when $|\cos\theta|$ less than 0.9

Calorimeter

The resolution formula as a function of energy:

- For ECAL, a_E =0.03, b_E =0.01
- For HCAL, a_H =0.4, b_H =0.02
- Noise term neglected temperately

Consider $H \rightarrow \gamma \gamma$, $H \rightarrow gg \rightarrow 2$ jets, check the invariant mass spectrum

Resolutions of photon and Jet

Resolution = 0.96 \pm 0.01 GeV

Resolution = 4.31 ± 0.04 GeV

Exclusive analysis examples for e^+e^- collision

- Lepton/photon pair selection should go first before jet-clustering
- Lepton/photon pair selection is realized by modifying algorithms in Delphes
- Different and very important features compared with analyses at pp collision

 $e^+e^- \rightarrow Z(\mu^+\mu^-)H(di-jets)$

 $e^+e^- \rightarrow Z(di-jets)H(\gamma\gamma)$

Summary

- Simulation of CEPC the 4th detector with Delphes is ready to use
 - The detector layout is implemented and validated
 - Some necessary modifications of Delphes code were done for ee collision
 - PID : probabilities of different hypotheses of tracks provided for analyzers
 - Guarantee there is no overlap between lepton/photon isolation and jet clustering with ee-kt
 - Github repository: https://github.com/oiunun/Delphes_CEPC.git
- Still many works need to do
 - More validations
 - Angular resolutions of photons and tracks
 - Updates according to detector optimization.
 - More realistic simulation of dN/dx and cluster counting efficiency curve will be improved

• ...

• Welcome to use it and feedback!

Thanks!

Backup

Tracker layout

Detector	Layer	Radius(mm)	Halfz(m)	Material budget[x/X0]
VXD	1	16	0.2	0.0015
	2	18	0.2	0.0015
	3	38	0.2	0.0015
	4	40	0.2	0.0015
	5	58	0.2	0.0015
	6	60	0.2	0.0015
Shell	1	65	0.2	0.0015
SIT	1	120	0.241	0.0065
	2	270	0.455	0.0065
	3	420	0.721	0.0065
	4	570	0.988	0.0065
Inner wall	1	600	2.98	0.00104
DC	80	600-1800	2.98	0.002
Outer wall	1	1800	2.98	0.01346
SET	1	1815	2.98	0.0065

Tracker layout

Detector	Rin(mm)	Rout(mm)	Z(m)	Material budget[x/X0]
DSK1A	29.5	120	0.241	0.0065
DSK1B	29.5	120	-0.241	0.0065
DSK2A	30.5	270	0.455	0.0065
DSK2B	30.5	270	-0.455	0.0065
DSK3A	32.5	420	0.721	0.0065
DSK3B	32.5	420	-0.721	0.0065
DSK4A	34	570	0.988	0.0065
DSK4B	34	570	-0.988	0.0065
ETD1	600	1822	3.0	0.0065
ETD2	600	1822	-3.0	0.0065

The calculation of the probability

Define chi-square:

 $(\chi^i)^2 = (\chi_1^i)^2 + (\chi_2^i)$ (It follows a Chi-square distribution of 2 degrees of freedom)

Compare the probabilities

The most likely assumption is taken

The calculation of χ

• dN/dx
$$\chi_1^i = \frac{(dN/dx)_{meas} - (dN/dx)_{exp}^i}{(\sigma)_{dN/dx}^i}$$

- dN/dx and $(\sigma)_{dN/dx}$ are functions of $\beta\gamma$ • $dN/dx_{exp} = f(\beta\gamma) * \varepsilon_{counting}$ (f is the theoretical function that only depends on $\beta\gamma$) • $(\sigma)_{dN/dx} = \varepsilon_{counting} * \sqrt{f(\beta\gamma)}$
- In the formula:
 - $(dN/dx)_{exp}$ and $(\sigma)_{dN/dx}$ are calculated with $\beta\gamma$'s for 5 particle hypotheses
 - $(dN/dx)_{meas}$ follows a Poisson distribution with mean and sigma calculated with the truth $\beta\gamma$

• TOF
$$\chi_2^i = \frac{(tof)_{meas} - (tof)_{exp}^i}{(\sigma)_{tof}^i}$$

• $(tof)_{exp} = \frac{L}{v} = \frac{L}{\beta c}$ $\beta = \frac{p}{\sqrt{p^2 + (m^i)^2}}$

• $(tof)_{meas}$: follows a Gaussian distribution with mean = $(tof)_{exp}$ and $(\sigma)_{tof}$ • $(\sigma)_{tof} = 30ps$

ToF:

$$(\sigma)_{tof}$$

mean
 $mean = (tof)_{exp}$

mean

mean = $(dN/dx)_{exp}$

dN/dx:

 $(\sigma)_{dN/dx}$