Impact of flavor tagging & CSI on $H \rightarrow bb/c\bar{c}/gg$ signal strength accuracy measurement

Yongfeng Zhu

advisor : Manqi Ruan

CEPC Workshop, 2022.10.28

Motivation :

•

- The measurement of $H \rightarrow b\bar{b}/c\bar{c}/gg$ signal strength is improtant for Higgs coupling studies.
- In the measurement of the relative accuracy of $H \rightarrow b\bar{b}/c\bar{c}/gg$ signal strength, the flavor tagging performance and color singlet identification have significant impact on the final results.
 - The vertex detector design has impact on flavor tagging performance.

The relative accuracy of $H \rightarrow bb/c\bar{c}/gg$ signal strength.

CEPC baseline detector,

all SM samples corresponding to 240 GeV, 5.6 ab^{-1} , full simulation,

l+l-Higgs, vvHiggs, qqHiggs,

The analysis procedure can be divided into two steps : first step : select signal with cut flow second step : calculate the signal strength accuracy

arXiv: 2203.01469

$\nu \bar{\nu} Higgs$ selection

		$ u ar{ u} H q ar{q}/g g$	2f	SW	SZ	WW	ZZ	Mixed	ZH	$\frac{\sqrt{S+B}}{S}(\%)$	signal-to-background
	total	178890	8.01E8	1.95E7	9.07E6	5.08E7	6.39E6	2.18E7	961606	16.86	l'ante background
	recoilMass (GeV) $\in (74, 131)$	157822	5.11E7	2.17E6	1.38E6	4.78E6	1.30E6	1.08E6	74991	4.99	ratio
	$visEn (GeV) \\ \in (109, 143)$	142918	2.37E7	1.35E6	8.81E5	3.60E6	1.03E6	6.29E5	50989	3.92	
	$leadLepEn (GeV) \\ \in (0, 42)$	141926	2.08E7	3.65 E5	7.24E5	2.81E6	9.72E5	1.34E5	46963	3.59	
	$\begin{array}{l} multiplicity \\ \in (40, 130) \end{array}$	139545	1.66E7	2.36E5	5.24E5	2.62E6	9.07E5	4977	42751	3.29	
	$leadNeuEn (GeV) \\ \in (0, 41)$	138653	1.46E7	2.24E5	4.72E5	2.49E6	8.69E5	4552	42303	3.12	
	Pt (GeV) $\in (20, 60)$	121212	248715	1.56E5	2.48E5	1.51E6	4.31E5	999	35453	1.37	
	$\frac{Pl}{GeV}$	118109	52784	1.05E5	74936	7.30E5	1.13E5	847	34279	0.94	
	$-\log 10(Y23)$	96156	40861	26088	60349	2.25E5	82560	640	10691	0.76	0.22
	InvMass (GeV) $\in (116, 134)$	71758	22200	11059	6308	77912	13680	248	6915	0.64	0.52
	$BDT \in (-0.02, 1)$	60887	9140	266	2521	3761	3916	58	1897	0.47	2 91
1	2 (0.02, 2)										

4

Table 1. The event selection of $\nu \bar{\nu} H(H \rightarrow q\bar{q}/gg)$.

the second step

The identified flavor combinations based on flavor tagging performance matrix.

The signal strength accuracy of $\nu \bar{\nu} H \rightarrow b \bar{b} / c \bar{c} / gg$ be calculated as 0.49%/5.75%/1.82%.

results :

	Z decay mode	$H \to b\bar{b}$	$H \to c \bar{c}$	$H \to gg$
arXiv:1905.12	$Z \rightarrow e^+ e^-$	1.57%	14.43%	10.31%
arxiv.1505.12	$Z \to \mu^+ \mu^-$	1.06%	10.16%	5.23%
	$Z \to q\bar{q}$	0.35%	7.74%	3.96%
	$Z \to \nu \bar{\nu}$	0.49%	5.75%	1.82%
	combination	0.27%	4.03%	1.56%

Table 3. The signal strength accuracies for different channels.

the dependency of $H \rightarrow b\bar{b}/c\bar{c}/gg$ accuracy on flavor tagging performance

 $\nu \bar{\nu} H$

Obtain different flavor tagging performance matrices.

$$\begin{split} M_{mig} &= \frac{Tr_{mig} - Tr_{opt}}{Tr_{I} - Tr_{opt}} \cdot (M_{I} - M_{opt}) + M_{opt} \\ M_{mig} &= \frac{Tr_{mig} - Tr_{opt}}{Tr_{1/3} - Tr_{opt}} \cdot (M_{1/3} - M_{opt}) + M_{opt} \end{split}$$

$$\begin{split} M_I: & \text{perfect flavor tagging matrix} \\ Tr_I: & \text{the trace of perfect flavor tagging matrix} \\ M_{opt}: & \text{optimized flavor tagging matrix} \\ Tr_{opt}: & \text{the trace of optimized flavor tagging matrix} \end{split}$$

_				
		b	С	g
	b	1	0	0
true	С	0	1	0
	g	0	0	1
	i	dentifie	ed as	

			1		
n	0	rt	0	~	H
μ	C		C		L

		b	С	g		
	b	1/3	1/3	1/3		
true	С	1/3	1/3	1/3		
	g	1/3	1/3	1/3		
identified as none						

relative accuracy at different migration matrices

perfect flavor tagging performance can improve $H \rightarrow b\bar{b}/c\bar{c}/gg$ signal strength accuracy by 2%/63%/13%

qqH

perfect flavor tagging performance can improve $H \rightarrow b\bar{b}/c\bar{c}/gg$ signal strength accuracy by 35%/122%/181%

The dependency of flavor tagging performance on vertex detector parameters

Z. Wu et al 2018 JINST 13 T09002

In $q\bar{q}H$ channel :

$$Tr_{mig} = 2.12 + 0.05 \cdot \log_2 \frac{R_{material}^0}{R_{material}} + 0.04 \cdot \log_2 \frac{R_{resolution}^0}{R_{resolution}} + 0.10 \cdot \log_2 \frac{R_{radius}^0}{R_{radius}}$$

 $R_{material}^{0}$: the default material budget of vertex detector $R_{material}$: the changed material budget

In $\nu \bar{\nu} H$ channel :

 $Tr_{mig} = 2.35 + 0.05 \cdot \log_2 \frac{R_{material}^0}{R_{material}} + 0.04 \cdot \log_2 \frac{R_{resolution}^0}{R_{resolution}} + 0.10 \cdot \log_2 \frac{R_{radius}^0}{R_{radius}}$

 Table 2. Reference geometries.

	Scenario A (Aggressive)	Scenario B (Baseline)	Scenario C (Conservative)
Material per layer/ X_0	0.075	0.15	0.3
Spatial resolution/µm	1.4 - 3	2.8 - 6	5 - 10.7
R _{in} /mm	8	16	23
trace in $q\bar{q}H$ chann	el 2.31	2.12	1.93
trace in $\nu \bar{\nu} H$ chann	el 2.54	2.35	2.16

the dependency of $qqH \rightarrow bb/c\bar{c}/gg$ accuracy on color singlet identification (CSI)

CSI : the reconstruction of W/Z/Higgs when they decay to two jets

note : The CSI in this report is a demonstrator to illustrate the importance of CSI. Our next step is to construct a CSI evaluator at the reconstruction level.

Summary :

The relative accuracy of $H \rightarrow b\bar{b}/c\bar{c}/gg$ signal strength has been measured at the CEPC with full simulation of all SM samples corresponding to 240 GeV.

	$H \rightarrow b \bar{b}$	$H \rightarrow c \bar{c}$	$H \rightarrow gg$
$5.6ab^{-1}$	0.27%	4.03%	1.56%
$20ab^{-1}$	0.14%	2.13%	0.82%

- The perfect flavor tagging performance could improve the accuracy of $H \rightarrow b\bar{b}/c\bar{c}/gg$ by 2%/63%/13% in the $\nu\bar{\nu}Higgs$ channel and 35%/122%/181% in the $q\bar{q}H$ channel.
- The vertex detector design has great impact on flavor tagging performance.
- The good CSI performance or CSI evaluator at the reconstruction level is essential for the improvement of measurement accuracy.

Backup

The signal strength accuracy of H->bb/cc/gg at CEPC, ILC and FCC-ee.

	bb	CC	99
CEPC	0.27%	4.03%	1.56%
ILC, 250 GeV, $2ab^{-1}$	0.7%	4%	
FCC-ee, 240 GeV, 5 <i>ab</i> ⁻¹	0.3%	2.2%	1.9%

This plot is used to illustrate that the event selection procedure can suppress the backgrounds with good CSI performance.

Systematic uncertainties

We categorize the leading systematic uncertainties into three groups:

- The first group includes the reconstructed energy/momentum scale of the physics objects, which are significantly smaller than the statistical uncertainties.
- The second group are those comparable to the statistical uncertainty, especially the integrated luminosity.
- The third group are those that can be significantly larger than the statistical uncertainty, including CSI and the jet configuration.

The detailed discussion can be found in https://arxiv.org/abs/2203.01469.