

The Silicon Electron Multiplier Sensor

Victor Coco¹, Evangelos Leonidas Gkougkousis¹, <u>Marius Mæhlum Halvorsen^{1,2}</u>, Lucia Romano^{3,4} 'The 2022 International Workshop on the High Energy Circular Electron-Positron Collider, IHEP, Nanjing, October 24th, 2022

¹CERN, ²University of Oslo, ³Paul Scherrer Institut, ⁴ETH Zürich

Overview

- Introduction, framework and motivation
- Concept
- Simulation results
- Fabrication study
- Characterisation
- Outlook

Introduction to EP – R&D WP1.1 Hybrid sensors

- Planar sensors -
 - Radiation damage and trapping model validation through TCAD
 - Timing and efficiency at $<10^{17}$ n $_{eq}$ /cm² using fast neutrons and PS protons(thicknesses 50, 100, 200, 300 µm)
- LGADs _
 - Radiation damage mechanisms and modelling on different doping _ types (TIPP)
 - Arxiv preprint
 - Indium–Lithium gain layer radiation hardness investigations (Trento2021)
 - Process simulations and SiMS-Carbon/Boron (Trento2022)
- Silicon Electron Multiplier Sensor -
 - Structure optimisation and electrostatic simulations
 - Timing and transient simulations
 - Processing iterations (Metal Assisted Chemical Etching)
 - **NIM-A article**
 - RD50 november 2021, Trento2022
- Small Pitch 3Ds for tracking and timing (Trento2022)
 - β particle timing studies on irradiated and unirradiated devices
 - Test beam with SPS Pions (Tracking +Timing)

 - Proton and neutron irradiations $>10^{17} n_{eq}/cm^2$ New small pitch production optimised for gain at the electrode region
- ASIC design
 - small pitch, fast timing

Eloi Jakob Paula Vagelis Marius Victor Mohammadtaghi Pazos Rial Gkouakousis Haimberger Mæhlum Collins Coco Haiheidari Halvorsen

Motivation

from the CERN Strategic R&D Programme on Technologies for Future Experiments [CERN-OPEN-2018-006] and CEPC Conceptual Design Report: Volume 2- Physics & Detector [IHEP-CEPC-DR-2018-02]

[fineprint in CERN-OPEN-2018-006]	HL-LHC	SPS	FCC-ee	FCC-hh	CEPC
Fluence [n _{eq} /cm ² /y]	5x10 ¹⁶	10 ¹⁷	10 ¹⁰	10 ¹⁷	6x10 ¹²
Max Hit rate [cm ⁻² s ⁻¹]	2-4 G	8 G	20 M	20 G	11M
Material budget per layer [X ₀]	0.1-2%	2%	0.3%	1%	0.15%
Pixel size [µm ²]	50x50	50x50	25x25	25x25	16x16
Temporal hit resolution [ps] inner trackers	~50	~40	-	~10	-

Future inner tracker detectors will require

- Time resolutions below 50 ps
- Pixel pitch down to 25 µm
- Radiation hardness up to 10¹⁷ n_{eq}

Our approach

- Gain, doping independent
- Small pitch
- Small thickness, radiation hardness

Approach

- Additional electrodes in sensor substrate
- Bias to make high field regions for charge multiplication
- Geometry
 - Dense positioned silicon pillars
 - Metallic grids and dielectrics between pillars
- Advantages:
 - Small pitch
 - Good time resolution
 - No gain layer deactivation due to acceptor removal
- Simulations using Synopsys TCAD summarised in <u>article</u> 10.1016/j.nima.2022.167325

Quasi-stationary simulations

- Evaluate electric field and leakage current
- Pillar and bulk depletes
- High electric field in the pillars can be reached
 - Above 15 V/µm
 - Multiplication region.

Signal simulations and charge multiplication

- Charge cloud deposited in bulk center
- Charges drift and get multiplied in pillars.
 - Gain= Q_{collected}/Q_{injected} Weighting field of readout
- Weighting field of readout electrode is concentrated in the pillar
 - Shielded by multiplication electrode
- Weighting field of backside electrode
 - "Pad like"

Optimisation studies

- Explore parameter space
 - Pillar diameter
 - Pillar height
 - Electrode geometries
 - +++
- Pitch
 - Large pitch distorts the driftpaths

Electrodes

- Biassing scheme
- Electrode geometry
 - Electrode separation
 - Electrode dimensions
 - Number of electrodes
 - Single electrode configurations

[courtesy of CNM]

Fabrication

Deep Reactive Ion Etching (DRIE)

- Awarded the AIDA innova blue sky R&D to make a demonstrator with CNM
- Properties to explore in and after production
 - Feasibility of geometry
 - Electrode/wall guard, thickness of oxide, corner shapes...
 - SiO₂/Si interface, scalloping, ...
 - Electrical properties

Metal Assisted Chemical Etching (MacEtch)

- Demonstrator production with PSI
- Never tested on active media
 - Compatability with active media

[L. Romano *et al*; AdEM 22 (2020) 2000258]

PAUL SCHERRER INSTITUT

Metal Assisted Chemical Etching

- The MacEtch process
 - Metal pattern used as a catalyst for HF etching.
 - Recipe for X-ray optics developed at PSI
 - Romano,L (2020). Metal assisted chemical etching of silicon in the gas phase: a nanofabrication platform for X-ray optics, <u>https://doi.org/10.1039/C9NH00709A</u>
- MacEtch for prototyping
 - Single multiplication electrode structures
 - Allows dense pillars

[L. Romano et al; https://doi.org/10.1039/C9NH00709A]

Demonstrator production with MacEtch

Implanted Silicon wafer 2. wafer photoresist 1. Photolithography optimisation Photoresist Direct write laser Heidelberg DWL66+ -UV laser Feature sizes down to 300 nm 3. Patternise with direct write laser 4. Develop 20000000000 00000000000 20000000000 100000 diameter =1 µm pitch = $1.5 \,\mu m$

-

-

-

Lithography optimisation

- Tried different photoresists
- Optimise laser exposure parameters
 - Pattern features
 - Laser power
 - Development time

Metal deposition

- Metal deposition
 - e-beam evaporation, 12 nm Pt.
- Lift-off
 - Remove photoresist and excess metall
 - Optimise method
 - Solvent
 - Temperature
 - Ultrasonic intensity and frequency

Pt evaporation

Lift-off

Etching

- Expose patter to HF vapor
 Oxygen reduction at catalyst
 - $O_2 + 4H^+ \rightarrow 2H_2O + 4h^+$
 - Silicon dissolves through two possible paths:
 - $Si+4h^++4HF \rightarrow SiF_4+4H^+$

or

- $Si+2H_2O+4h^+ \rightarrow SiO_2+4H^+$
 - $SiO_2 + 2HF_2 + 2HF \rightarrow SiF_6^2 + 2H_2O$

Electrical contact

- Native oxide removal
- Evaporation of 100 nm aluminum
 - Front side and back side

Set-up at PSI

- Current–Voltage (IV) characteristics
- Supra Zeiss SEM
- Kleindiek nanotechnik micromanipulators
 - Sub-micrometer tungsten needles
- Keithley 236 Source Measure Unit
 - Triax cables to micro manipulators

Support from Anja Weber, Dimitrios Kazazis, Lucia Romano, Soichiro Tsujino

Tested structures

Two samples:

- A)
 - Pillar pattern
 - 1 μm wide pillars, hexagonal lattice with a pitch of 1.5 μm
- B)
 - strip structures

Probe pillars – One single pillar

Probe strip structures

Current status

- Wire bonding of test structures
 - IV-measurements
- TCAD simulations to compare with measurements
 - Second production
 - Implement lessons learned from first production

image taken at CERN QARTIab

Summary and Outlook

- A new solid state radiation detector concept has been presented along with results from the production study.
- It has been shown that MacEtch is compatible with pn-junctions and active media
- Next steps
 - Complete IV-characterisation of first production.
 - TCT-measurements
 - IR-laser
 - Mimic traversing particles
 - Beta source measurements
 - Second production

home.cern