

Review of 3D pixel technology

Gian-Franco Dalla Betta^{1,2} (gianfranco.dallabetta@unitn.it)

{ ¹ University of Trento, ² TIFPA INFN }, Trento, Italy

Outline

- Introduction & Background
- 3D pixels for HL-LHC
- 3D-trenched pixels for tracking + timing
- Conclusions

S. Parker et. al. NIMA 395 (1997) 328

Electrode distance (L) and active substrate thickness (Δ) are decoupled \rightarrow L<< Δ by layout

High radiation hardness at relatively low voltage (power)

C. Kenney et. al. IEEE TNS 48(6) (2001) 2405

DISADVANTAGES:

- Non uniform spatial response (electrodes and low field regions)
- Higher capacitance with respect to planar (~3-5x for ~ 200 μ m thickness)
- Complicated technology (cost, yield)

G.-F. Dalla Betta

Signal Efficiency

C. Da Via, G.-F. Dalla Betta, S. Parker, "Radiation Sensors with 3D electrodes", CRC PRESS, 2019

Signal Efficiency = Ratio of max. signal after irradiation and before irradiation

$$SE = \frac{1}{1 + 0.6L \frac{K_{\tau}}{v_D} \Phi}$$

C. Da Via, S. Watts, NIMA 603 (2009) 319

[6.41] ATLAS IBL Collaboration, JINST 7 (2012) P11010
[6.42] G.-F. Dalla Betta, et al., NIMA 765 (2014) 155
[6.44] M. Fernandez et al. NIMA 732 (2013) 137
[6.43] I. Haughton et al., NIMA 806 (2016) 425
[6.52] G.-F. Dalla Betta, et al., IEEE NSS (2015) N3C3-5

(c)

- Alternating etch cycles (SF₆) and passivation cycles (C_4F_8)
- High aspect ratio (>20:1 or better for trenches) and good uniformity

(b)

(a)

Main milestone: ATLAS IBL 3D pixels

0.9

0.82

Double-sided 3D's by CNM and FBK

G.-E. Dalla Betta

- First demonstration of small volume production
- Excellent performance up to > $5 \times 10^{15} n_{eq} \text{ cm}^{-2}$

ATLAS IBL, JINST 7 (2012) P11010

S. Grinstein, Sh. Tsiskaridze, A. Micelli, C. Gemme

CEPC 2022

INFN

stituto Nazionale di Fisica Nuclear

Also used in ATLAS AFP and CT-PPS

G.-F. Dalla Betta

Pixel Roadmap: LHC \rightarrow **HL-LHC**

- To maintain occupancy at ~% level and increase the spatial resolution → Reduce pixel size
- 50x50 or 25x100 µm², compatible with next ROC generation (CMOS 65 nm) from CERN RD53 Collaboration

Challenges at HL-LHC

- Luminosity of 5x10³⁴ cm⁻²s⁻¹
- Higher hit-rate capability

(up to 200 events per bunch-crossing)

• Radiation fluence up to $\sim 2x10^{16} n_{eq}/cm^2$

for the innermost pixel layers

Implications for small-pitch 3D's

Modified technology/design for:

- smaller pixels with reduced interelectrode spacing (~30 um)
- narrower electrodes (~5 um)
- thinner active region (~150 um)

Intense R&D programs with 3 processing facilities since 2014

CNM small-pitch 3D pixels with double-sided process

0

G.-E. Dalla Betta

• CNM 3D pixel detector, 50x50 μm² cells

- (Partial) readout with FEI4 ROC
- Proton irradiation up to $\sim 3 \times 10^{16} n_{eq}/cm^2$
- Beam tests at CERN SPS

J. Lange et al., JINST 13 (2018) P09009

3D CNM, Different Geometries, d=230 µm, 0° tilt 180 V_{97%} [V] 160 140 120 100 M-NU-1 IBL. PS0 NM-NU-2 IBL. PS0 80 /3-C1 KIT1 N5-C2. KIT1 60 W4-E, KIT2 W4-C1, PS1 40 W4-C1 PS3 20 O 1.5 I - 10 k 5 10 15 20 Fluence [10¹⁵ n_{eq}/cm²]

CEPC 2022

di Trento

G.-F. Dalla Betta

New single-side approach to 3D pixels

Double-sided process not favoured for thin sensors, especially on 6" wafers

10

G.-F. Dalla Betta et al., NIMA 824 (2016) 386 and 388

- Thin sensors on handle wafer: SiSi DBW
- Ohmic column depth > active layer depth (for backside bias)
- Junction columns depth < active layer depth (for high V_{bd})
- Reduction of hole diameters to ~5 um
- Holes (at least partially) filled with poly-Si
- Post-processing: handle wafer thinning and metal deposition

Fabrication details @ FBK

12

G.-E. Dalla Betta

CEPC 2022 Istituto Nazionale di Fisica Nucleare

3D diodes: leakage current and capacitance

- Very low leakage current and high breakdown voltage
- Capacitance: ~ 20, 50, 85 fF per pixel, depending on geometry

13

S. Terzo et al., Frontiers in Physics 9:624668

G.-F. Dalla Betta

Electrical tests on pixels by temporary metal

It's important to check the device quality at wafer level before bump bonding

14

- Multiple rows of pixels (strips) are shorted by temporary metal for electrical tests
- Detailed monitoring of process defects
- Sum of I-V's provides total currents
- Temporary metal removed after testing

di Trento

Efficiency of irradiated modules at beam test

15

- RD53A assemblies with different 3D sensor geometries
- At 10¹⁶ n_{eq}/cm² a hit efficiency of 96% at normal beam incidence reached below 100 V

100

Larger voltages (~150 V) required at 1.8x10¹⁶ n_{eq}/cm²

G.-F. Dalla Betta

G. Bardelli et al., IWORID 2022

G.-F. Dalla Betta

Power dissipation

16

• At the voltages of interest for a high hit efficiency, the power dissipation is still low

S. Terzo et al., Frontiers in Physics 9:624668

G.-F. Dalla Betta

Pre-production phase for ATLAS ITk

17

- Layer 0 of ATLAS ITk will use 3D sensors:
- Barrel (25 x 100 μm² 1E)
 - CNM, 4-inch wafers (~500 sensors)
- Endcap (50 x 50 μm²):
 - FBK and SINTEF, 6-inch wafers

(800 sensors each)

- FBK delivered pre-production in 2021
- CMS also opted for using 3D sensors in the innermost layer, and is finalizing the R&D

- Feasibility proved on 3D diodes with standard process
- Good electrical characteristics
- Beta source test at UNM (room temperature)
- Moderate gain is observed above 40 V, up to ~2.3 at 70 V
- Requires dedicated effort for technology optimization

G.-F. Dalla Betta et al., IEEE NSS 2019 N30-02

G.-F. Dalla Betta

3D pixels for timing

• 3D sensors are also expected to be fast ...

S. Parker et al., IEEE TNS 58 (2011) 404

- Increasing interest in the past few years
- CNM 50x50 μm² single cells DS-3D (230 and 285 μm thick) tested by several groups
 - G. Kramberger et al., NIMA 934(2019) 26C. Betancourt et al., MDPI Instruments 6 (2022)P. Fernandez Martinez et al. Pisa Meeting 2022
- Beta source setups, LGADs as reference
- Best result ~25 ps timing resolution

di Trente А 55 µm 55 µm 150 µm

Biasing electrode

(p*)

G.-E. Dalla Betta

Collecting electrode

(n*)

3D-trenched pixel sensors

22

 Layouts with columnar electrodes have non uniform electric and weighting field distributions → go for trenches
 L. Anderlini et al., JINST 17 (2020)

55 µm

G. Forcolin et al., NIMA 981 (2020) 164437

G.-F. Dalla Betta

Beam test @ PSI (10/2019)

24

Time resolution of 3D-trench silicon pixels with MIPs (test-beam & lab) at room temperature (*Intrinsic time resolution of 3D-trench silicon pixels for charged particle detection*, 2020 JINST 15 P09029)

PSI π M1, π^+ beam, 270 MeV/c

 $\sigma_t \approx 20 \ ps$ (after correction for MCP contribution) confirmed in corresponding laboratory measurements (with ⁹⁰Sr source)

π⁺ beam, 180 GeV/c

A. Lampis et al., IWORID 2022

G.-F. Dalla Betta

Conclusions

- 3D pixel sensors have gone through an impressive progress in the past few years, aimed at the ATLAS and CMS tracker upgrades at HL-LHC
- Small-pitch 3D pixel modules with RD53A ROC have demonstrated to be radiation hard up to a fluence of ${\sim}2x10^{16}~n_{eq}/cm^2$
- High signal efficiency was proved to much larger fluences on test structures of similar geometries
- 3D sensors also appealing for tracking + timing, ~25 ps timing resolution demonstrated on single cell test structure
- 3D-Trenched Electrode pixel sensors are also being developed, showing excellent timing performance (~10 ps) on test structures, now to be tested on the first pixel assemblies (32x32) with TIMESPOT1 ROC