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The IDEA drift chamber
The IDEA drift chamber (DCH) is the tracker of FCC-ee and CEPC.

It is designed to provide efficient tracking, high precision momentum measurement and excellent particle identification by

exploiting the application of the cluster counting technique.
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MORE INFORMATION:
“The IDEA drift chamber”, prof. Nicola De Filippis

He based gas mixture
(90% He — 10% i-C,H,)
Full stereo configuration
with alternating sign stereo

angles ranging from 50 to
250 mrad

12+14.5 mm wide

square cells 5: 1 field
to sense wires ratio

56,448 cells

14 co-axial super-layers,
8 layers each (112 total)
in 24 equal azimuthal
(15°) sectors

MAIN GOALS

Gas containment — wire support functions separation:

the total amount of material in radial direction, towards the
barrel calorimeter, is of the order of 1.6% X0, wheteas in the
torward and backward directions it is equivalent to about 5.0%
X0, including the endplates instrumented with front end
electronics.

Feed-through-less wiring:

allows to increase chamber granularity and field/sense wire ratio
to reduce multiple scattering and total tension on end plates due
to wires by using thinner wires

Cluster timing:

allows to reach spatial resolution < 100 pm for 8 mm drift cells
in He based gas mixtures (such a technique is going to be
implemented in the MEG-II drift chamber under construction)

Cluster counting:

allows to reach dN _/dx resolution < 3% for
particle identification (a factor 2 better than dE/dx
as measured in a beam test)



Physics motivations: B decays I H
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number of events

Physics motivations: B; —» DK
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o(dE/dx)~2% will increase this number. Cluster
counting will provide a valid alternative



Particle identification with the traditional method of dE/dx

A particle passing through a material undergoes a series of inelastic collisions with the atomic electrons of the material.

As a result, each atom could be excited or ionised, while the particle loses a small fraction of its kinetic energy.

Measurements of the deposited energy are widely used for particle identification.

Gaseous counters provide signals whose pulse height is proportional to the number of electrons produced in the ionization process

along the track length inside the detector and thus proportional to the deposit energy.

Energy transferred by track

Teoreta | Energy loss distribution of
wean 01301l g muon traversing 200
Sid Dev  0.03953 . .
cells, 1 cm per side, filled
with 90 % He and 10%
iC,H,, simulated by

Garfield++.

The distribution of the deposit energy follows
the Landau distribution, since it allows the
possibility of large energy transfers in single
collisions that add a long tail (Landau tail) to
the high energy side, resulting in a asymmetric
shape whose mean value is significantly higher
than the most probable value.
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The mean value is not a good estimator for the energy deposition and usually a truncated mean (typically from 40

% up to 80 %) is used.



ALEPH

OPAL

Particle identification with dE/dx: example of Pld at Z°-pole
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Historical evolution of the particle identification with dE/dx
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KLOE DRIFT CHAMBER: helium based gas mixture

* Helium mixtures (less multi-electron clusters) need less truncation than Argon mixtures

* Resolution obtained is slightly above 2% by using 100 sample, an accepted fraction of 70% and helium based gas
mixture.




Particle identification with the cluster counting technique

The large and intrinsic uncertainties in the total energy deposition represent a limit to the particle separation capabilities.

Cluster counting technique can improve the particle separation capabilities!!!

The advantages of cluster counting with helium based gas mixture

Ncl number of primary ionizations is:

independent from cluster size fluctuations
insensitive to highly ionizing 6-rays
independent from gas gain fluctuations
a 2 m track in a He — mix gives Ncl > 2400 (for a m.i.p.):
Ogneyax /(dNcl/dx) = Ncl/2 < 2.0% (at 100% counting efficiency)
a factor > 2 better than dE/dx
resolution scales with L™°° (not L™°37 as in dE/dx)

Advantages of Helium

low primary ionization density = large time separation
low drift velocity = even larger time separation

low average cluster size

low single electron diffusion

Recipe

High front end bandwidth (= 1 GHz)
S/N ratio > 8
High sampling rate (> 2 GSa/s)
= 12 bit

In order to apply the cluster counting technique,

two main requirements have to be met:

1. Pulses from electron belonging to different
clusters must have a little chance of
overlapping in time,

2. The time distance between electrons coming
from the same cluster must be small enough
to prevent overcounting.



Particle identification with the cluster counting technique

A conceptually simply procedure

Singling out, in ever collected detector signal, the isolated
structures related to the arrival on the anode wire of the electrons
belonging to a single ionization act (dN/dx).
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A first test beam was performed at the PSI of Villigen to prove the feasibility of a primary cluster counting measurement in a

conventional drift detector filled with helium based gas mixture.
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The cluster counting technique: expected performances

Particle Separation (dE/dx vs dN/dx)

O &« N W & 00 O N o ©

[

P [GeVic] 4.3% dE/dx resolution
80% cluster counting efficiency

0.0

: \ No K/m separation T
2 with TOF over 2 m 20 ps
:'::; A =50 ps
=
z

loo 2 \ GeV

11

= 80% cluster counting efficiency.

= Expected excellent K/t separation over the entire

range except 0.85<p<1.05 GeV (blue lines)

= Could recover with timing layer
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Analytic evaluation, prof F.Grancagnolo
To be checked with simulations and
experimental data




Cluster counting for particle identification: simulation results

A simulation of the ionization process in 1 cm long side cell of 90% He and 10% iC,H,, has been performed in Garfield++ and
Geant4.

Geant4 software can simulate in detail a full-scale detector, but the fundamental properties and the performances of the sensible
elements have to be parameterized or an “ad hoc” physics model has to be implemented.

Starting point: studying the clusters number distribution and the energy loss distribution for muons, pions, electrons, protons and kaons in a
range of momentum from 200 MeV up to 1 TeV in Garfield++
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# of sigma

Simulations of the particle identification in Garfield++
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Then we evaluated the particle separation power implementing both methods:
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Simulations results confirm that the cluster counting gives better performances than dE/dx.
Our goal is to obtain the same results by using Geant4.



Simulations of the particle identification in Geant4: the algorithm

Three different algorithms have been implemented to simulate in Geant4, /n a fast and convenient way, the number of clustersand
clusters size distrihiitinne 11cinAa tha anarmv danncit nravidead hu (Geantd
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We implemented
Garfield++.

in Geant4 one of the three version of the algorithms, which give consistent results with the ones simulated by 1

# of sigma

# of sigma

Cluster counting for particle identification: Pld results

Particle separation from truncated mean dE/dx
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We are assuming a cluster counting efficiency of 100%.

The simulations
confirm the factor 2
better than the dE/dx,
besides the
performances given
by Geant4 are slightly
different from the
ones simulated by
Garfield++.
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Motivations for a beam test
16

Lack of experimental data on cluster density and cluster population for He based gas, particularly in the relativistic rise region to
compare predictions.

Despite the fact that the Heed model in GEANT4 reproduces reasonably well the Garfield predictions, why particle separation, both
with dE/dx and with dNcl/dx, in GEANT4 is different from Garfield?

Despite a higher value of the dNcl/dx Fermi plateau with respect to dE/dx, why this is reached at lower values of By with a steeper

slope?
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These questions are crucial for establishing the particle identification performance at FCCee, CEPC.

The only way to solve these issues is an experimental measurement!



Beam tests to validate the simulations results
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Conclusions

Particle identification via dE/dx has essentially made no progress since over 40 years.

Cluster counting could be a valid alternative to improve the Pld capabilities

Both analytical and montecarlo simulations suggest an improvement of a factor 2 of dN/dx versus dE/dx.
Absolute performance of particle separation power in the relativistic region (crucial for FCC-ee and CEPC)
needs to be assessed with experimental measurements.

A strongly motivated beam test campaign has begun. We are concentrating our efforts in demonstrating the
ability to efficiently count ionization clusters. The data analysis is ongoing (see Brunella D’Anzi talk).

The simulation will be implemented in the full simulation of the IDEA drift chamber.
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Thank you

The cluster counting team
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