QCD needs for e^+e^- precision physics

A. Freitas University of Pittsburgh

Need for theory input

- Comparison of EWPOs with SM to **probe new physics** \rightarrow multi-loop (mostly electroweak) corrections in full SM
- Extraction of EWPOs (pseudo-observables) from real observables → backgrounds (in full SM), QED/QCD, MC tools
- "Other" eletroweak parameters ("input" parameters) $\rightarrow m_t, \alpha_s$, etc. extracted from other processes

Z-pole observables

• Deconvolution of initial-state QED radiation: $\sigma[e^+e^- \rightarrow f\bar{f}] = \mathcal{R}_{ini}(s, s') \otimes \sigma_{hard}(s')$ Soft photons (resummed) + collinear photons Exclusive description: MC tools

• Subtraction of γ -exchange, γ -Z interference, box contributions:

$$\sigma_{\text{hard}} = \sigma_{Z} + \underbrace{\sigma_{\gamma} + \sigma_{\gamma Z} + \sigma_{\text{box}}}_{Z \text{-pole contribution:}} \text{ computed in SM}$$

$$\sigma_{Z} = \frac{R}{(s - \overline{M}_{Z}^{2})^{2} + \overline{M}_{Z}^{2}\overline{\Gamma}_{Z}^{2}} + \sigma_{\text{non-res}}$$

Z decay

Factorization of massive and QED/QCD FSR:

$$\overline{\Gamma}_{f} \approx \frac{N_{c}\overline{M}_{Z}}{12\pi} \Big[\Big(\mathcal{R}_{V}^{f} |g_{V}^{f}|^{2} + \mathcal{R}_{A}^{f} |g_{A}^{f}|^{2} \Big) \frac{1}{1 + \operatorname{Re} \Sigma_{Z}^{\prime}} \Big]_{s = \overline{M}_{Z}^{2}}$$

 $\begin{array}{ll} \mathcal{R}^{f}_{V}, \ \mathcal{R}^{f}_{A} \text{: Final-state QED/QCD radiation;} \\ \text{known to } \mathcal{O}(\alpha_{\text{s}}^{4}), \ \mathcal{O}(\alpha^{2}), \ \mathcal{O}(\alpha\alpha_{\text{s}}) & \text{Kataev '92} \\ & \text{Chetyrkin, Kühn, Kwiatkowski '96} \\ & \text{Baikov, Chetyrkin, Kühn, Rittinger '12} \end{array}$

 g_V^f, g_A^f, Σ_Z' : Electroweak corrections

Z decay

Factorization of massive and QED/QCD FSR: $\overline{\Gamma}_{f} \approx \frac{N_{c}\overline{M}_{Z}}{12\pi} \Big[\Big(\mathcal{R}_{V}^{f} |g_{V}^{f}|^{2} + \mathcal{R}_{A}^{f} |g_{A}^{f}|^{2} \Big) \frac{1}{1 + \operatorname{Re}\Sigma_{Z}^{\prime}} \Big]_{s = \overline{M}_{Z}^{2}}$ $\overset{z}{\sim} \underbrace{\overline{\zeta}_{V}}_{z \in \overline{\zeta}_{Y}} = \underbrace{\overline{\zeta}_{V} \otimes \overline{\zeta}_{Y}}_{z \in \overline{\zeta}_{Y}} + \text{finite}, \quad \text{with} \quad \otimes = \underbrace{\overline{\zeta}_{V} \otimes \overline{\zeta}_{Y}}_{z \in \overline{\zeta}_{Y}} \Big]_{z \in \overline{M}_{Z}^{2}}$

Additional non-factorizable contributions, e.g.

 \rightarrow Known at $\mathcal{O}(\alpha \alpha_{s})$ Czarnecki, Kühn '96 Harlander, Seidensticker, Steinhauser '98

 \rightarrow Currently not known at $\mathcal{O}(\alpha^2)$, $\mathcal{O}(\alpha \alpha_s^2)$, etc.

- $\rightarrow \mathcal{O}(0.01\%)$ uncertainty on Γ_{Z}, σ_{Z} , maybe larger for A_{b}
- \rightarrow How to account for in MC simulations?

- Measurement of $A_{\mathsf{FB}}^{b,c}$ requires
 - b/\overline{b} (c/\overline{c}) discrimination
 - Measurement of b (c) angle
- Mismatch between observed and parton-level b (c) angle due to QCD radiation (requires accurate modeling)
- Contamination from gluon splitting $g \rightarrow bb$ ($g \rightarrow cc$)
- Impact of hadronization/fragmentation (need more precise models and fragmentation functions)

arXiv:2010.08604

- New developments for A_{FB}(b/c): QCD corrections and uncertainties can be reduced significantly using acollinearity (ξ) cuts ⇒ important reduction in systematics, but how much ?
- Further improvements expected from better heavy flavor tagging capabilities and a more accurate measurement of the heavy quark flight direction
- More sophisticated b/c tagging techniques => minimal charm/light background effects
- g->QQ splitting: huge control samples, smaller effect with back-to-back configuration and double tagging
- Note that all these measurements can be done with exclusive decays. A Tera-Z facility will provide ≈10⁸ B⁺ exclusive decays

introduction 00

"missing" pieces: gluon fragmentation (1)

• $g \rightarrow Q \bar{Q}$ splitting tricky in parton showers

(no soft enhancement, coll. divergence shielded by masses)

- HF production is perturbative process
- analyse 4b and 2b2c final states combine two softest equal flavour HFs into "gluon" and measure the $g \rightarrow Q\bar{Q}$ splitting function

will yield information about shower evolution parameter and correct scale definition for α_s

IPPP

tuning & data 00000●000 introduction 00

"missing" pieces: gluon fragmentation (2)

• e^-e^+ (like LEP) dominated by quark jets: \longrightarrow questionable handle on details of gluon fragmentation

(examples: enhanced diquark-popping? (leading) baryons? realisation of LPHD in gluons?)

- measurement strategy:
 - "Mercedes star" with two id'd heavy quark jets
 → third jet is gluon jet
 - jet-shape measurements: sub-jettiness & friends
 - hadron yields inside jet
 - leading hadron identity $/x_p$
 - di-baryon/di-strange correlations inside jet

$\underline{ee} \rightarrow ff$ above Z pole

With $\mathcal{O}(ab^{-1})$ at $\sqrt{s} \sim 161$ GeV and $\sqrt{s} \sim 240$ GeV:

- < 10⁻³ precision for $\sigma[e^+e^- \to f\bar{f}]$ (similar for A_{FB})
- sensitivity to new physics, e.g. Z' bosons or lepto-philic DM
- NNLO corrections for full process $e^+e^- \rightarrow f\bar{f}$ needed (+ partial higher orders)
 - Leading missing contribution: Mixed QCD×EW corrections \rightarrow related to QCD×EW corrections for $pp \rightarrow \ell^+ \ell^-$
- Buonocore et al. '21 Bonciani et al. '21 Buccioni et al. '22

Comparison of EWPOs with theory

- To probe new physics, compare EWPOs with SM theory predictions
- Need to take theory error into account:

	Current exp.	Current th. [†]	CEPC	FCC-ee
M_{W} [MeV]	15	4 *	0.5	0.4
Γ_Z [MeV]	2.3	0.4	0.1	0.1
$R_{\ell} = \Gamma_{\rm Z}^{\rm had} / \Gamma_{\rm Z}^{\ell} [10^{-3}]$	25	5	2	1
$R_b = \Gamma_Z^b / \Gamma_Z^{\text{had}} [10^{-5}]$	66	10	4.3	<6
$\sin^2 heta_{ m eff}^\ell$ [10 ⁻⁵]	16	4.5	<1	0.5

* computed from G_{μ} [†] full NNLO and leading NNNLO

 \blacksquare Theory error estimate is not well defined, ideally $\Delta_{th} \ll \Delta_{exp}$

- Common methods:
- Count prefactors (α , N_c , N_f , ...)
- Extrapolation of perturbative series
- Renormalization scale dependence
- Renormalization scheme dependence

Projected theory uncertainties

- To probe new physics, compare EWPOs with SM theory predictions
- Need to take theory error into account:

	Current exp.	Future th. [†]	CEPC	FCC-ee
M_{W} [MeV]	15	1 *	0.5	0.4
Γ_Z [MeV]	2.3	0.1	0.1	0.1
$R_{\ell} = \Gamma_{\rm Z}^{\rm had} / \Gamma_{\rm Z}^{\ell} [10^{-3}]$	25	1.5	2	1
$R_b = \Gamma_Z^b / \Gamma_Z^{\text{had}} [10^{-5}]$	66	5	4.3	<6
$\sin^2 heta_{ ext{eff}}^\ell$ [10 $^{-5}$]	16	1.5	<1	0.5

* computed from G_{μ}

[†] Theory scenario: $\mathcal{O}(\alpha \alpha_s^2)$, $\mathcal{O}(N_f \alpha^2 \alpha_s)$, $\mathcal{O}(N_f^2 \alpha^2)$, leading 4-loop ($N_f^n = \text{at least } n \text{ closed fermion loops}$) most challenging for $Z \to q\bar{q}$

hgg: [CEPC: 2.4%, FCC-ee: 1.6%]

- $\mathcal{O}(\alpha_s^2)$ and $\mathcal{O}(\alpha_s^3)$ (in large m_t -limit) QCD corrections Baikov, Chetyrkin '06 Schreck, Steinhauser '07
- $\mathcal{O}(\alpha)$ EW Aglietti, Bonciani, Degrassi, Vicini '04; Degrassi, Maltoni '04

Theory error (dominated by QCD): $\Delta_{th} \approx 3\%$ With $\mathcal{O}(\alpha_s^4)$ in large m_t -limit (4-loop massless QCD diags.): $\Delta_{th} \approx 1\%$

 $\begin{array}{ll} \text{Parametric error:} & \delta \alpha_{\text{S}} = 0.001 & \rightarrow \Delta_{\text{par}} \approx 3\% \\ & \delta \alpha_{\text{S}} = 0.0001 \rightarrow \Delta_{\text{par}} \approx 0.3\% \end{array}$

Impact of input parameter uncertainties on SM predict	tion
for precision observables:	Snow

Snowmass EF EWK report '22

	II C-GigaZ	C-GigaZ ECC-ee		Param. error		
		100.00	scen. 1	scen. 2		
M_{W} [MeV]	2.5	0.4	2.8	0.6		
${\sf F}_Z$ [MeV]	0.12	<0.1	0.3	0.1		
R_ℓ [10 ⁻³]	6	1	3.2	1.3		
$\sin^2 heta_{ m eff}^\ell$ [10 $^{-5}$]	1	0.5	3.2	1.3		
Г _{<i>h→bb</i>} [%]	2	1.3	1.4	0.6		
$F_{h ightarrow WW}$ [%]	2	0.8	0.2	0.1		
$\Gamma_{h ightarrow gg}$ [%]	2.6	1.8	1.5	0.6		
Parametric innu	te δ	m+ [MeV]	300	50		
r didiriente inpu	ιο. δ	$\delta m_t [MeV]$		13		
				10		
	$\delta \Lambda$	$\delta M_{\sf Z}$ [MeV]		0.1		
	δN	$\delta M_{\sf H}$ [MeV]		10		
	δc	$\delta lpha_{ m S} [10^{-3}]$		0.2		
	$\delta(\Delta c$	$\delta(\Delta lpha) [10^{-4}]$		0.3		

Fermion masses

Reviews: 1906.05379, 2012.11642

•
$$m_t$$
: From $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s} \sim 350$ GeV

today:

$$\delta m_{t}^{\overline{\text{MS}}} = []_{exp}$$

$$\oplus [50 \text{ MeV}]_{QCD}$$

$$\oplus [10 \text{ MeV}]_{mass def.}$$

$$\oplus [70 \text{ MeV}]_{\alpha_{s}}$$

$$> 100 \text{ MeV}$$

Beneke et al. '15

Fermion masses

Reviews: 1906.05379, 2012.11642

•
$$m_{\rm t}$$
: From $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s} \sim 350~{\rm GeV}$

today:

future:

$$\delta m_{t}^{\overline{\text{MS}}} = []_{exp}$$

$$\oplus [50 \text{ MeV}]_{QCD}$$

$$\oplus [10 \text{ MeV}]_{mass def}$$

$$\oplus [70 \text{ MeV}]_{\alpha_{s}}$$

[20 MeV]_{exp}

- \oplus [30 MeV]_{QCD} (resumm., N⁴LO ??)
- \oplus [10 MeV]_{mass} def.

$$V_{\text{Imass def.}}$$

$$\oplus$$
 [15 MeV] $_{lpha_{
m S}}$ ($\delta lpha_{
m S} \lesssim$ 0.0002)

> 100 MeV

 $\lesssim 50~{\rm MeV}$

Fermion masses

Reviews: 1906.05379, 2012.11642

•
$$m_t$$
: From $e^+e^- \rightarrow t\bar{t}$ at $\sqrt{s} \sim 350 \text{ GeV}$

today:

future:

$$\begin{split} \delta m_{t}^{\overline{\text{MS}}} &= []_{\text{exp}} & [20 \text{ MeV}]_{\text{exp}} \\ & \oplus [50 \text{ MeV}]_{\text{QCD}} & \oplus [30 \text{ MeV}]_{\text{QCD}} & (\text{resumm., N}^{4}\text{LO }??) \\ & \oplus [10 \text{ MeV}]_{\text{mass def.}} & \oplus [10 \text{ MeV}]_{\text{mass def.}} \\ & \oplus [70 \text{ MeV}]_{\alpha_{s}} & \oplus [15 \text{ MeV}]_{\alpha_{s}} & (\delta \alpha_{s} \lesssim 0.0002) \\ & > 100 \text{ MeV} & \lesssim 50 \text{ MeV} \end{split}$$

•
$$m_b, m_c$$
: From quarkonia spectra using Lattice QCD
 $\delta m_b^{\overline{\text{MS}}} \sim 30 \text{ MeV}, \ \delta m_c^{\overline{\text{MS}}} \sim 25 \text{ MeV}$ LHC HXSWG '16
 \rightarrow estimated improvements $\delta m_b^{\overline{\text{MS}}} \sim 13 \text{ MeV}, \ \delta m_c^{\overline{\text{MS}}} \sim 7 \text{ MeV}$
Lepage, Mackenzie, Peskin '14

Strong coupling

• α_s:

d'Enterria et al., Snowmass '22

- Most precise determination using Lattice QCD:
 - $\alpha_{\rm S} = 0.1184 \pm 0.0006$ HPQCD '10
 - $\alpha_{\mathrm{S}} = 0.1185 \pm 0.0008$ ALPHA '17
 - $\alpha_{\rm S}=0.1179\pm0.0015$ Takaura et al. '18
 - $\alpha_{\rm S}=0.1172\pm0.0011$ Zafeiropoulos et al. '19
 - \rightarrow future improvements: $\delta \alpha_{s} < 0.0005$
- e^+e^- event shapes: $\alpha_s \sim 0.113...0.119$
 - \rightarrow Large non-pertubative power corrections
 - → Improvement with better observables (jet ratios, groomed thrust, ...)?

• Hadronic τ decays: $\alpha_{s} = 0.119 \pm 0.002$

PDG '18

 \rightarrow Non-perturbative uncertainties in OPE and from duality violation

Pich '14; Boito et al. '15,18

Strong coupling

• α_s:

• Electroweak precision ($R_{\ell} = \Gamma_Z^{had} / \Gamma_Z^{\ell}$): $\alpha_s = 0.120 \pm 0.003$ PDG '18

→ No (negligible) non-perturbative QCD effects FCC-ee: $\delta R_{\ell} \sim 0.001$ ⇒ $\delta \alpha_{s} \sim 0.00015$ Theory input: N³LO EW corr. + leading N⁴LO

to keep $\delta_{\sf th} R_\ell \lesssim \delta_{\sf exp} R_\ell$

Caviat: R_{ℓ} could be affected by new physics

Electromagnetic coupling

•
$$\Delta \alpha \equiv 1 - \frac{\alpha(0)}{\alpha(M_Z)} \approx 0.059 = 0.0315_{\text{lept}} + 0.0276_{\text{had}}$$

a) $\Delta \alpha_{had}$ from $e^+e^- \rightarrow had$. using dispersion relation

 \rightarrow Current precision $\sim 10^{-4}$ Davier et al. '19; Jegerlehner '19; Keshavarzi, Nomura, Teubner '19

b) $\Delta \alpha_{had}$ from Lattice QCD (challenging but much progress)

Burger et al. '15 Cè et al. '22

lat. + pQCD'[Adler]Hlat. + KNT18[data] R-ratio KNT18/19 нон DHMZ19 Ю Jegerlehner 19 _√⊑∽ 0.0255 0.0260 0.0265 0.0270 0.0275 0.02800.02850.0290 $\Delta \alpha_{\rm had}^{(5)}(M_Z^2)$

Future improvements for methods (a) and (b):

- More precise exp./lattice data
- Full 4-loop pQCD for R-ratio / Adler function (for $|Q^2| \gg \Lambda_{QCD}$)
- More precise inputs for m_b, m_c, α_s
- $ightarrow \delta(\Delta lpha_{
 m had}) \lesssim 5 imes 10^{-5}$ likely achievable

y min y

Electromagnetic coupling

•
$$\Delta \alpha \equiv 1 - \frac{\alpha(0)}{\alpha(M_Z)} \approx 0.059 = 0.0315_{\text{lept}} + 0.0276_{\text{had}}$$

c) Direct det. of $\Delta \alpha_{\text{had}}$ from $e^+e^- \rightarrow \mu^+\mu^-$ off the Z peak Janot '15
 $|\mathcal{M}_{ij}|^2 \propto |g_i^{\ell}|^2 |g_j^{\ell}|^2 + (s - M_Z^2) \alpha(M_Z) |g_{i,j}^{\ell}|^2 + \dots$
 \uparrow
determined
from Z pole
 \rightarrow Use $A_{\text{FB}}^{\mu\mu}$ at $\sqrt{s_1} \sim 88$ GeV and
 $\sqrt{s_2} \sim 95$ GeV to reduce systematics
 $\rightarrow \delta(\Delta \alpha_{\text{had}}) \sim 3 \times 10^{-5}$ for $\mathcal{L}_{\text{int}} = 85$ ab⁻¹
 \rightarrow Requires 2/3-loop corrections for $e^+e^- \rightarrow \mu^+\mu^-$

Summary

- QCD effects are important for precision measurements at future e^+e^- colliders:
 - Perturbative fixed-order corrections (in particular for hadronic final states)
 - Parton shower (resummation)
 - Hadronization effects

Need high-fidelity Monte-Carlo tools for analysis of:

- hadronization/fragmentation functions
- flavor tagging (contamination from gluon splitting)
- acceptance and selection efficiency/purity
- color reconnection
- Improved determinations of input parameters require advances in perturbative and non-perturbative theory tools

Backup slides