Physics Requirement for the particle identification in terms of dE/dx for gaseous detector

Yongfeng Zhu advisor : Manqi Ruan

2022 CEPC Workshop

2022年10月26日

Yongfeng Zhu advisor : Manqi Ruan (IHEP) Physics Requirement for the particle identificatio

・ロト ・ 同ト ・ ヨト ・ ヨ

Motivation :

- The charged pions, kaons, protons and their antiparticles have identical interactions in sub-detectors. We use TOF and dE/dx information to separate these kinds of particles.
- The PID performance is essential for flavor physics.
- Tagging s quark (K^{\pm} , K_L , and K_S) is essential for CKM elements measurement.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Contents:

- charged $\pi/K/P$ separation with:
 - TOF
 - 2 dE/dx
 - ③ dE/dx and TOF
- PID evaluation with inclusive hadronic Z-pole samples
 - K[±] identification
 - (2) $D^0 \rightarrow \pi^+ K^-$ identification
 - (3) $\phi \rightarrow K^+K^-$ identification

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

TOF

- The particle flight time t over a given distance along the track trajectory.
- particles A/B separation power with TOF: $(S_{A/B} = \frac{|t_A t_B|}{\sqrt{\sigma_a^2 + \sigma_B^2}})$
- suppose $\sigma_{TOF} = 50$ ps that can be achieved by modern sensor technology

프 > 프

TPC

TPC parameters

- 4.7 m long with an inner and outer radii of 0.325 and 1.8 m
- 93%Ar + 5% CH₄ + 2% CO₂
- atmospheric pressure
- room temperature
- 3 Tesla along the beam direction
- In the endcaps, Micromegas detector modules with pad size of 6 mm along the radial direction and 1 mm along the azimuthal direction are arranged in 222 concentrical rings.

< ロ > < 同 > < 回 > < 回 >

dE/dx

- The dE/dx measurement by each pad is defined as the energy deposit divided by the track length.
- The dE/dx measurements of a track follow a Landau distribution.
- We estimate average dE/dx for a track by using the truncated mean method.
- The distribution of average dE/dx for a track, denoted as I, as a function of particle's momentum is shown in the following figure.

dE/dx resolution

- intrinsic dE/dx resolution depends on the number of the pad rings n, the pad height along the radial direction h, the density of the working gas ρ , the relativistic velocity $\beta\gamma$ and the polar angle θ of the particle trajectory.
- actual dE/dx resolution will be deteriorated by the detector effects arising in the processes of electron drift, signal amplification and readout in TPC.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

We only consider intrinsic resolution and study them with single-particle MC events:

$$\sigma_l / l = \frac{13.5}{n^{0.5} \cdot (h\rho)^{0.3}} \left[2.05 + 0.8(\beta\gamma)^{-0.3} \right] \times \left[2.5 - 1.5(\cos\Theta)^4 + 3.9(\cos\Theta)^{10} \right]$$

Yongfeng Zhu advisor : Manqi Ruan (IHEP) Physics Requirement for the particle identificatio

The following plots show the distribution of dE/dx resolution, which is a function of momentum and polar angle of incident particle.

Э

< ロ > < 同 > < 回 > < 回 >

Yongfeng Zhu advisor : Manqi Ruan (IHEP) Physics Requirement for the particle identificatio

Э

(4 同 ト 4 ヨ ト 4 ヨ ト

combine TOF and dE/dx

Э

< ロ > < 同 > < 回 > < 回 >

Yongfeng Zhu advisor : Manqi Ruan (IHEP) Physics Requirement for the particle identificatio

PID evaluation with K^{\pm} identification, $D^0 \rightarrow \pi^+ K^-$ and $\phi \rightarrow K^+ K^-$ reconstruction based on the full simulation of $Z \rightarrow q\bar{q}$ samples.

Process	B	Tera-Z yield	Sample used	
Z → uū	11.17%	1.117×10^{11}		
Z → dd̄	15.84%	1.584×10^{11}		
$Z \rightarrow s\bar{s}$	15.84%	1.584×10^{11}	2.525×10^{-6} of Tera – Z	
$Z \rightarrow c \bar{c}$	12.03%	1.203×10^{11}		
$Z \rightarrow b \bar{b}$	15.12%	1.512×10^{11}		

<ロト < 同ト < 三ト < 三ト < 三 ・ つ < つ</p>

K^{\pm} identification only with dE/dx

Yongfeng Zhu advisor : Manqi Ruan (IHEP) Physics Requirement for the particle identificatio

the dependence of ${\cal K}^\pm$ identification performance on dE/dx resolution

$\sigma_{actual} = factor \cdot \sigma_{intrinsic}$

 σ : dE/dx resolution

The factors are selected according to other detectors, such as PEP-4, TOPAZ, DELPHI, ALEPH, ALICE.

	factor	1.	1.2	1.5	2.
	ε _K (%)	95.97	94.09	91.19	87.09
dE/dx	purity _K (%)	81.56	78.17	71.85	61.28
dE/dx	ε _K (%)	98.43	97.41	95.52	92.3
& TOF	purity _K (%)	97.89	96.31	93.25	87.33

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$D^0 \rightarrow \pi^+ K^-$ reconstruction

Э

Summary

- Once uncertainties in the processes of electron drift, signal amplification and readout in TPC are under control, the dE/dx resolution could reaches 2.5% in the barrel region for GeV level hadron.
- The performance of K^{\pm} identification, $D^0 \rightarrow \pi^+ K^-$ reconstruction and $\phi \rightarrow K^+ K^-$ reconstruction all suggest that the dE/dx resolution need to be better than 3% in the barrel region for GeV level hadron, which corresponds to a degradation of the dE/dx resolution of less than 20%, with which the K^{\pm} identification efficiency/purity can be better than 97%/96%.
- It would be appreciated if an alternative technology, e.g., dN/dx, could achieve significantly better resolution.

Many thanks !

Yongfeng Zhu advisor : Manqi Ruan (IHEP) Physics Requirement for the particle identificatio

A B > A B > A B > B = B
 B
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
C