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TPC technology for future e+e- Colliders
 Some advantages of TPC detector

• Operation under 3&2 T magnetic field 

• Full 3D tracker

• Excellent pattern recognition capability

• good dE/dx resolution due to a large number

of  sampling points

CEPC CEPC TPC

• TPC detector plays a crucial role in 

the future e+e- Colliders 

• A lot of R&D already present

(LCTPC, CEPC)

Belle Ⅱ TPC upgrade plan
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TPC requirements for e+e- Higgs/EW/Top factories
 Provide decent #Hits (for track finding) with high spatial resolution compatible with PFA design

 σ1/pt~10-4GeV/c-1(TPC alone) and σpoint <100 μm

 Provide dE/dx and dN/dx with a resolution < 3%

• Essential for Particle ID

• Beneficial for Flavor @ Z pole & jet 

• b-tagging (electrons from semi-leptonic b-decays)

• c-tagging, D meson spectroscopy (kaon/pion separation)



An F, et al. Monte Carlo study of particle identification at the CEPC using TPC dE/dx information[J]. The European Physical Journal C, 2018, 78(6): 1-8.
Ligtenberg C, et al. Performance of a GridPix detector based on the Timepix3 chip[J]. NIMA, 2018, 908: 18-23.

5.4% typical dE/dx resolution for 1m track (fit in 2021)

dE/dx Resolution of TPC

 dE/dx Performance

• Separation looks clearer in TPC  (first 

study) shows a promising result

• Momentum increases PID decreases

• For track-finding purposes the number 

of hits per cm  d𝑁𝑁/d𝑥𝑥, is of interest
5

LCTPC Workpackage Meeting Andreas Löschcke Centeno
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dE/dx & dN/dx
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Classical dE/dx Measurement

𝒑𝒑 +    dE/dx    PID

𝒑𝒑 = 𝟏𝟏 + 𝒕𝒕𝒕𝒕𝒕𝒕𝟐𝟐𝜸𝜸

𝒑𝒑𝑻𝑻 = 𝟎𝟎.𝟑𝟑 𝑩𝑩𝑩𝑩

separation power = 𝒅𝒅𝒅𝒅/𝒅𝒅𝒅𝒅(𝑨𝑨)−𝒅𝒅𝒅𝒅/𝒅𝒅𝒅𝒅(𝑩𝑩)
σ(𝒅𝒅𝒅𝒅/𝒅𝒅𝒅𝒅)

 Classical dE/dx measurement by charge  (charge ≈ number of primary + secondary electrons)

• measure charge per sample along a track

• get “a mean” charge over the sample = dE/dx

• the fundamental, central problem of all dE/dx 

measurements by charge summation

sensitive to large fluctuations

Problem
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dN/dx Measurement by Cluster Counting
 Direct cluster counting  ultimate way to measure dE/dx

• How to resolve individual clusters and count them?

• Need devices with high time resolution or high granularity to resolve them

• high cluster density(~30 cl./cm in Ar mixture for m.i.p  typical drift velocities of 50 μm/ns 

 6 ~10 ns in between clusters  fast-shaping electronics (~ns needed ) In time)

• difficult to achieve

• need more R&D

• avoid any problems with cluster fluctuations

• no charge measurement need, just counting

• < 3% dE/dx resolution by cluster counting (statistical error only)

• 5.4% dE/dx resolution by charge measurement

 Obvious problem
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Cluster Counting in Space
 TPC with cluster counting

• Cluster Counting so far based on time measurement in small drift cells 

• Pixelated TPC makes space measurement possible

More detail - Michael Hauschild 
RD51 Workshop on Gaseous 
Detector Contributions to PID

projection of single electrons on endplate pad response (0.5 x 0.5 mm2)
above threshold (1500 e-)

• GEMs/Micromegas + small pixels have high granularity  resolve clusters in space

• Time information added  3D position in space



 Why Pixelated readout?

• High granularity readout allows measuring every ionization cluster

• High spatial resolution under 2T or 3T magnetic field

• Better momentum resolution

• High-rate operation (MHz/cm2)

• Excellent two tracks separation

Challenge
• Optimize Pixel Size

Pixelated readout technology

 Pixelated TPC with GridPixes

https://arxiv.org/abs/1902.01987
10

• Tests with single and 
quad devices have been 
successfully done.

• ~4.1% dE/dx resolution 
at B = 1.0T at DESY
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Simulation of pixelated readout  



Magboltz Simulation – Working Gas
 Magboltz simulation for optimal working point of electrical field for various parameters

12

• Gas mixture parameters (drift velocity, attachment, diffusion)  Provide key parameters 

for pixel size optimization

• T2K has a faster drift velocity & smaller longitudinal &transverse diffusion

• T2K gas has stable properties in TPC (LCTPC, T2K experiment)

longitudinal diffusion drift velocity transverse diffusion



 The transverse diffusion decreases under a higher magnetic field  

Magboltz Simulation – Magnetic Field

drift velocity attachment coefficient

13
longitudinal diffusion transverse diffusion



Simulation of the primary cluster 
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 Heed Simulation

• Typically ~30 primary ionization clusters/cm in gas at 1 bar Verify the validity of the model

• ~1.881 clusters/ 500μm , ~1.142 clusters/ 300μm 

• If pad size is at the level of cluster distances of primary ionization, Cluster counting becomes effective

More detailed research is needed
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• Need gas with low diffusion & large drift velocity 

• Need gas with good cluster statistic

• Pixel size  Optimize working gas & pressure

Simulation of the primary cluster 
 Simulation Study for 1000 mm tracks in T2K gas with different particles – different gas &  pressure



Particle Separation by Cluster Couting
 Simulation Study for 1000 mm tracks in T2K gas with different particles - π/κ/μ

S = 𝝁𝝁𝑨𝑨−𝝁𝝁𝑩𝑩

𝝈𝝈𝑨𝑨
𝟐𝟐+𝝈𝝈𝑩𝑩

𝟐𝟐

𝟐𝟐

estimators for the 
energy loss
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• The performance of particle separation is proportional to the difference in the average ionization

• The relative ionization of different particle species depends on the momentum

• Use always 1000 mm tracks of pions and kaons at maximum ionization difference at about 3 GeV



PID Improment by Cluster Counting

typically dE/dx by charge

 Calculate separation power S to determine PID performance
• Typical( average) particle separation power: π/k  2σ up to 8 ~ 20 GeV( max. 2.5 ~ 3.5 σ )

• Cluster counting efficiency  > 25% is sufficient to beat charge measurement

• The potential of better resolution by at least a factor of 2

17



Occupancy
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Primary electrons

• Occupancy is a very key issue at the high rate or high luminosity

• Smaller pad/pixel size→ smaller occupancy

• To be addressed by R&D

→ A detailed simulation would be 

necessary to determine the scaling factor

→ Simulation ongoing at IHEP & LCTPC

• Pad readout (1 mm×6 mm), innermost 

occupancy  1 × 10-4

• Pixelated readout (55 μm ×55 μm), 

much LOWER innermost occupancy ~ 1 × 10-6

• Increase the  number of channels & power consumption



Pixel Size Optimization
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• Charge measurement and cluster counting are a function of pad size

• 6mm  0.1mm : 30% improved resolution via the cluster counting (dN/dx)

• Cluster counting exhibits better pion/kaon separation power

• High readout granularity VS the primary cluster size optimization

https://arxiv.org/abs/2205.12160

 dE/dx resolution 

pion – kaon separation power dE/dx resolution



R&D Plan at IHEP
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Bump bond  pixelated readout with Micromegas
detector

Module 
size

To be addressed by R&D

• ≥300 μm×300 μm
• Developed the readout chip by Deng Zhi

(Tsinghua)
• Developed the Micromegas detector 

sensor at IHEP
• Development of the new module and 

prototype

1-2 cm2

• Research on pixelated readout technology realization 
• Optimization of cluster profile and pad size
• Study of the ‘dNcl+dx’

100 cm2
• Study the distortion using UV laser tracks and UV lamp to 

create ions disk
• In-situ calibration with UV Laser system
• Study of the ‘dE/dx+dNcl/dx’

 Realization of pixelated technology collaborated with Tsinghua



Summary
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 Classical PID with dE/dx by TPC charge measurement contributes to many large detectors 

• 5.4% typical dE/dx resolution for 1m track  no miracles to be expected

 Cluster Counting promises better dE/dx resolution ( < 3% ) 

• The potential of better resolution by at least a factor of 2

• Cluster counting efficiency  > 25%  is sufficient to beat charge measurement

 The pixelated readout is an efficient way to count every cluster in space 

• Many simulations are still necessary to understand the detailed requirements of the pixelated 

detector(e.g. number of ADC bits, pixel readout sizes, occupancy, ion backflow, etc.)

• new ideas are also welcome
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THANKS！
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PID from TPC dE/dx information

• Fit by Lehraus 1983 :   dE/dx res. = 5.7 * L -0.37 (%)

• Fit in 2021 (25 large detectors)  : dE/dx res. = 5.4 * L -0.37 (%)

• 5.4% typical dE/dx resolution for 1m track

effective detector length L = track length * pressure

What’s  the next?

• TPC provide dE/dx information  significant for PID
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dE/dx Measurement by Cluster Counting
 Count number of clusters along track

 Obvious problem

• Cluster density should be proportional to dE/dx

• How to resolve individual clusters and count them?

• Need device with high time resolution or high granularity to resolve them

• high cluster density(~30 cl./cm in Ar mixture for m.i.p  typical drift velocities of 50 μm/ns 

 6 ~10 ns in between clusters  fast-shaping electronics (~ns needed ) In time)

• difficult to achieve

 Direct cluster counting  ultimate way to measure dE/dx

• avoid any problems with cluster fluctuations

• no charge measurement need, just couting

• 1.8% dE/dx resolution by cluster counting (statistical error only)

• 5.4% dE/dx resolution by charge measurement

How to achieve 
cluster counting?
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