Dressing jets with flavour in an infrared safe way

Giovanni Stagnitto

University of Zurich^{UZH} Swiss National Science Foundation

International Workshop on the High Energy CEPC, 26.10.2022

Why flavoured jets?

... but flavoured jets appear everywhere: top physics, Higgs physics, new physics searches, ...

Naive definition: collimated bunch of hadrons flying roughly in the same direction

2 clear jets

3 jets? or 4 jets?

What are jets?

Proper definition: a collection of hadrons defined by means of a jet algorithm

"Jet [definitions] are legal contracts between theorists and experimentalists" **MJ** Tannenbaum

IRC safety

- An observable is **infrared and collinear safe** if, in the limit of a collinear splitting, or the emission of an **infinitely soft** particle, the observable remains **unchanged**:
 - $O(X; p_1, \ldots, p_n, p_{n+1} \to 0) \to O(X; p_1, \ldots, p_n)$ $O(X; p_1, \ldots, p_n \parallel p_{n+1}) \to O(X; p_1, \ldots, p_n + p_{n+1})$
- This property ensures cancellation of **real** and **virtual** divergences in higher order calculations
- If we wish to be able to calculate a jet rate in perturbative QCD the jet algorithm that we use must be IRC safe: soft emissions and collinear splittings must not change the hard jets

slide stolen from Matteo Cacciari

Popular jet algorithms

$d_{ii} = 2\min(E_i^2, E_i^2) \left(1 - \cos \theta_{ii}\right)$

 $d_{ij} = \min(p_{T,i}^{2p}, p_{T,j}^{2p}) \frac{\Delta y^2 + \Delta \phi^2}{R^2}, \quad d_{iB} = p_{T,i}^{2p} \qquad p = 0 \quad : \text{Cambridge/Aachen algorithm} \\ p = -1: \text{ anti-}k_t \text{ algorithm}$

e^+e^- colliders

k_{t} or Durham algorithm

pp colliders

$$p = 1$$
 : k_t algorithm

All IRC safe

IRC safe flavour definition of jets?

 $e^+e^- \rightarrow$ jets with the k_t algorithm (flavour agnostic) Issues at $\mathcal{O}(\alpha_s^2)$, when on top of $e^+e^- \to f\bar{f}$ we add a $f\bar{f}$ pair coming from gluon splitting.

When the *ff* pair from gluon is soft or collinear, the jet algorithm must return two flavoured jets.

IRC safe flavour definition of jets?

 $e^+e^- \rightarrow$ jets with the k_t algorithm (flavour agnostic) Issues at $\mathcal{O}(\alpha_s^2)$, when on top of $e^+e^- \to f\bar{f}$ we add a $f\bar{f}$ pair coming from gluon splitting.

When the *ff* pair from gluon is soft or collinear, the jet algorithm must return two flavoured jets.

The flavour- k_t algorithm

[Banfi, Salam, Zanderighi (hep-ph/0601139)]

1. Introduce a distance measure $d_{ij}^{(F)}$ between every pair of partons *i*, *j*:

$d_{ij}^{(F,\alpha)} = (\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2) \times \left\{ \right.$	$\left\{ egin{array}{l} \max(k_{ti},k_{tj})^{lpha}\min(k_{ti},k_{tj})^{2-lpha}, \ \min(k_{ti}^2,k_{tj}^2), \end{array} ight.$	softer softer
--	--	------------------

as well as distances to the two beams,

$$d_{iB}^{(F,\alpha)} = \begin{cases} \max(k_{ti}, k_{tB}(\eta_i))^{\alpha} \min(k_{ti}, k_{tB}(\eta_i))^{2-\alpha}, & i \text{ is flaw} \\ \min(k_{ti}^2, k_{tB}^2(\eta_i)), & i \text{ is flaw} \end{cases}$$

and an analogous definition of $d_{i\bar{B}}^{(F,\alpha)}$ involving $k_{t\bar{B}}(\eta_i)$ instead of $k_{tB}(\eta_i)$ (both defined as in eqs. (15) and (16)).⁹ As in section 2 we have introduced a class of measures, parametrised by $0 < \alpha \leq 2$.

- 2. Identify the smallest of the distance measures. If it is a $d_{ij}^{(F,\alpha)}$, recombine *i* and *j*; if it is a $d_{iB}^{(F,\alpha)}$ $(d_{i\bar{B}}^{(F,\alpha)})$ declare *i* to be part of beam $B(\bar{B})$ and eliminate *i*; in the case where the $d_{iB}^{(F,\alpha)}$ and $d_{i\bar{B}}^{(F,\alpha)}$ are equal (which will occur if *i* is a gluon), recombine with the beam that has the smaller $k_{tB}(\eta_i)$, $k_{t\bar{B}}(\eta_i)$.
- 3. Repeat the procedure until all the distances are larger than some d_{cut} , or, alternatively, until one reaches a predetermined number of jets.^{10,11}

Modified beam distance:

IRC flavour safe to all orders, but different kinematics (because new distance)

NNLO predictions with flavour- k_{t}

[Gauld et al. (2005.03016)]

Comparison with experimental data not straightforward

- based on Soft Drop grooming techniques [Caletti, Larkoski, Marzani, Reichelt (2205.01109)]
- through the alignment of flavoured particles along the Winner-Take-All axis [Caletti, Larkoski, Marzani, Reichelt (2205.01117)]
- through a modification of anti- k_t clustering distance [Czakon, Mitov, Poncelet (2205.11879)]
- with successive iterations of flavour- k_t and anti- k_t [Caletti, Fedkevych, Marzani, Reichelt (2108.10024)]
- using jet angularities and primary Lund jet plane as discriminants [Fedkevych, Khosa, Marzani, Sforza (2202.05082)]

Recent proposals

- However, none of the above reproduces the same jets as anti- k_t , can be applied to a generic process with one or more jets and it is IRC safe to all orders.

The flavour dressing algorithm

[Gauld, Huss, GS (2208.11138)]

Flavour assignment *factorised* from jet reconstruction: we assign flavour to flavour-agnostic jets in an IRC safe way

Inputs:

- Flavour agnostic jets $\{j_k\}$
- Flavoured clusters $\{\hat{f}_i\}$
- Association criterion
- Accumulation criterion

- Flavour agnostic jets {j_k}:
 set of jets obtained with an IRC sampossibly after a fiducial selection.
- Flavoured clusters $\{\hat{f}_i\}$
- Association criterion
- Accumulation criterion

set of jets obtained with an IRC safe jet algorithm (e.g. gen- k_t family),

- Flavour agnostic jets $\{j_k\}$
- Flavoured clusters $\{\hat{f}_i\}$: by dressing them with radiation close in angle (see below) "Naked" flavoured objects are collinear unsafe
- Association criterion
- Accumulation criterion

built out of quarks (e.g. c, b) or stable heavy-flavour hadrons (e.g. D, B),

- Flavour agnostic jets $\{j_k\}$
- Flavoured clusters $\{\hat{f}_i\}$
- Association criterion: whether f_i is "associated" to j_k At parton-level simply if f_i is a constituent of j_k Other options: $\Delta R(f_i, j_k) < R_{tag}$, ghost association, ... Flavour assignment based only on the association is not IRC safe
- Accumulation criterion

- Flavour agnostic jets $\{j_k\}$
- Flavoured clusters $\{\hat{f}_i\}$
- Association criterion
- Accumulation criterion: how to "sum" flavours

- sum flavoured if unequal number of f and \overline{f} (need charge information) - sum flavoured if odd number of f or \overline{f} (if no charge information)

Definition of flavoured cluster \hat{f}_i

- 1. Initialise a set with all the flavourless objects p_i (particles used as input to jets) and all the flavoured objects f_i (bare flavours), avoiding double counting if necessary.
- 2. Find the pair with the smallest angular distance ΔR_{ab} :
 - flavourless p_a , p_b : combine p_a and p_b into a flavourless p_{ab} ;
 - flavoured f_a , f_b : remove both from the set;
 - flavoured f_a , unflavoured p_b : remove p_b from the set and check a Soft Drop criterion

$$\frac{\min(p_{t,a}, p_{t,b})}{(p_{t,a} + p_{t,b})} > z_{\text{cut}} \left(\frac{\Delta R_{ab}}{\delta R}\right)^{\beta}$$

to recombine collinear while preserving soft. [default: $\delta R = 0.1$, $z_{cut} = 0.1$, $\beta = 2$] If satisfied, combine f_a and p_b into a flavoured f_{ab} .

3. Iterate while there are at least two objects in the set until $\Delta R_{ab} > \delta R$. The momentum of \hat{f}_i is given by the accumulated momentum into f_i .

The flavour dressing algorithm

1. Define tag_k = flavoured clusters assigned to jet j_k (initialised as empty for all jets) and populate set of distances: - $d(\hat{f}_i, \hat{f}_i)$ between flavoured clusters; - $d(\hat{f}_i, \hat{j}_k)$ if flavoured cluster \hat{f}_i associated to jet j_k - $d_B(\hat{f}_i)$ if \hat{f}_i not associated to any jet.

$$d(a,b) = \Delta R_{ab}^2 \max\left(p_{T,a}^{\alpha}, p_{T,b}^{\alpha}\right) \min\left(p_{T,a}^{2-\alpha}, p_{T,b}^{2-\alpha}\right)$$
$$d_{B\pm}(f) = \max\left(p_{t,f}^{\alpha}, p_{t,B_{\pm}}^{\alpha}(y_f)\right) \min\left(p_{t,f}^{2-\alpha}, p_{t,B_{\pm}}^{2-\alpha}(y_f)\right)$$

Distances (including beam) inherited from the flavour- k_{t} algorithm:

The flavour dressing algorithm

2. While the set of distances is not empty, select the smallest distance: $\rightarrow d(\hat{f}_i, \hat{f}_j)$:

 $\rightarrow d(\hat{f}_i, \hat{j}_k)$:

 $\rightarrow d_R(\hat{f}_i)$:

discard flavour \hat{f}_i and remove all entries that involve \hat{f}_i .

3. Assign flavour to jet j_k according to tag_k and accumulation criterion.

- the two flavours "annihilate", hence remove distances that involve \hat{f}_i or \hat{f}_i ;
- update $tag_k = tag_k \cup \{f_i\}$, then remove distances that involve \hat{f}_i .

IRC safety test in $e^+e^- \rightarrow jets$

Vanishing mis-identification of flavours in the fully unresolved regime = IRC safety

IRC safety test in $e^+e^- \rightarrow jets$

Vanishing mis-identification of flavours in the fully unresolved regime = IRC safety

IRC safety test in $e^+e^- \rightarrow jets$

IRC sensitivity in $2 \rightarrow 2$ QCD events in pp

Flavour dressing approaches zero faster than a naive flavour tagging as $y_3^{k_t} \rightarrow 0$

Test in a realist scenario: Z + b-jet

→ for most distributions largely insensitive to all-order corrections

Remarkable agreement between (N)NLO and NLO+PS

Test in a realist scenario: Z + b-jet

Some sensitivity observed in p_T^Z , likely due to:

Even if IRC finite, it leads to large migration of (unflavoured)-jet into the b-jet sample.

Test in a realist scenario: Z + b-jet

Some sensitivity observed in p_T^Z , likely due to:

Effect captured at NNLO

Conclusions

Thanks to an IRC safe flavour assignment to all orders in perturbation theory, we can compute massless fixed-order predictions, and in the case of massive calculations, we have a suppressed sensitivity on mass logarithms $\log(Q^2/m_f)$

Interesting to explore: experimental feasibility of the algorithm, how flavour dressing behaves for other processes and observables, and how it compares to the other approaches recently proposed.

With favour dressing, flavour assignment factorised from the initial jet reconstruction, hence it can be combined with any IRC safe definition of a jet

BACKUP

Flavour anti- k_t algorithm

[Czakon, Mitov, Poncelet (2205.11879)]

$$d_{ij} = R^2 \min(k_{T,i}^{-2}, k_{T,j}^{-2}) \cdot S_{ij}^a, \quad d_B = k_{T,i}^{-2}$$

 $S_{ii}^a = 1 - \theta(1 - \kappa)\cos \theta$

One recovers (IRC flavour unsafe) anti- k_t jets when $a \rightarrow 0$. Quite significant dependence of the result on the parameter a.

Recent proposal: modify anti- k_{t} distance when flavoured particles involved

where $S_{ii} \neq 1$ only when *i* and *j* are of opposite flavour

$$\left(\frac{\pi}{2}\kappa\right), \quad \kappa = \frac{1}{a}\frac{k_{T,i}^2 + k_{T,j}^2}{2k_{T,\max}^2}$$

Flavoured jets (experiments)

A jet defined as flavoured if it contains at least one heavy hadron within $\Delta R < R$ from the jet axis and with $p_T > p_{T,cut}$ (*naive* tagging)

This is the "truth" labelling used in Monte Carlo samples, used to train a ML architecture ("High-level tagger") which adopts low-level variables as inputs

IRC flavour safety

The experimental definition is both **collinear and soft unsafe**

"A jet defined as flavoured if it contains at least one heavy hadron

within $\Delta R < R$ from the jet axis

and with $p_T > p_{T,cut}$ "

 $g \rightarrow bb$ is always flavoured even in the collinear limit (an "even tag" removal is enough to fix this)

Soft large angle $g \rightarrow bb$ polluting different jets

 $b \rightarrow bg$ collinear with the gluon carrying most of the momentum (would an identified particle, hence FF)

