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Why fl voured jets?
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An example: W+c-jet
unique probe into the strange PDF
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™S4 contain [ATLAS (1402.6263)] and

[CMS (1310.1138)] /7 TeV data

... but flavoured jets appear everywhere:
top physics, Higgs physics, new physics searches, ...
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What are jets?

/ ..
Naive definition: collimated bunch of e _ -
: : =0 xt
hadrons flying roughly in the same quark })}g = K,
direction £ 'g R
I8 — K+
c 8 __
8 & >
i « o Proper definition: a collection
A ¢ of hadrons defined by means

of a jet algorithm

“Jet [definitions] are legal contracts
between theorists and experimentalists”™
MJ Tannenbaum

2 Clear jets 3 jets?



IRC safety

An observable is infrared and collinear safe if,
in the limit of a collinear splitting, or the emission of an
infinitely soft particle, the observable remains unchanged:
O(X7p17 ooy PnyPnt+1 — 0) — O(X7p17 R 7pn)
O(X;p1,--yPn || Pnt1) = O(X5p1,- - s Pn + Pry1)

This property ensures cancellation of real and virtual divergences
in higher order calculations

If we wish to be able to calculate a jet rate in perturbative QCD
the jet algorithm that we use must be IRC safe:
soft emissions and collinear splittings must not change the hard jets

slide stolen from Matteo Cacciari



Popular jet algorithms

ete™ colliders

d; = 2min(E7, E7) (1 — cos 6)) k. or Durham algorithm

pp colliders

= 1 :k, algorithm
Ay2+Agb2 P p SIOT

RZ

, dy=p;7 p=0 :Cambridge/Aachen algorithm

dij — mln(p%p p%,l;) I
p = — l: anti-k, algorithm

* 9
N/

All IRC safe
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IRC safe flavour definition of jets?

eTe” — jets with the k, algorithm (flavour agnostic)

4
y
o
4
F

Issues at @(asz), when on top of ete™ — ff we 7
add a ff pair coming from gluon splitting. =

AN 2
_ g " Collinear pair
When the ff pair from gluon is soft or collinear, emission

the jet algorithm must return two flavoured jets.

Q Collinear safe f
(as any IRC safe flavour-agnostic algorithm)



IRC safe flavour definition of jets?

eTe” — jets with the k, algorithm (flavour agnostic)

~ f
Issues at @(asz), when ontop of e"e™ — ff we
add a ff pair coming from gluon splitting. /
_ M7= Soft pair
When the ff pair from gluon is soft or collinear, ‘ emission
the jet algorithm must return two flavoured jets. /
AN
JF

e Soft unsafe
due to polluting large-angle soft pair
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The ﬂaVOur-kt alg()rithm Modified beam distance:

[Banfi, Salam, Zanderighi (hep-ph/0601139)] kes(n) =Y ki (©(n; —n) + O(n —mi)e™ ™)

1
1. Introduce a distance measure dg) between every pair of partons 7, j: k:B (77) = Z Kt (@(77 — 77z') + @(7772 — 77)677_7%)
L (Fa) _ 5 5 max (ky;, ki )® min(ky, ki )%, softer of 7, j is flavoured, | 1200 : ? 5
| 4 = (Am+Ady) X{ min(k;;, k7;) , softer of 4, j is flavourless, | R LEREET
as well as distances to the two beams, > dk/dn ——
e e e O 800 t Kig
L (F.o) max(ky, k:g(n;))* min(ky, kig(n;))?~*, 4 is flavoured, 8 Kg ----
| dig = (12 1.2 : ‘ (18) S
< min(k;;, kig(n;)) , i is flavourless, | & 600
and an analogous definition of dg’a) involving k,z(n;) instead of k;g(n;) (both defined 2 400
. . . . ©
as in egs. (IH) and (H)).” As in section @ we have introduced a class of measures, = - |
parametrised by 0 < a < 2. 200 r ‘ J|A JJI
: . . (F,) L . o Le= L Ir.. '
2. Identity the smallest of the distance measures. It it is a d;; ", recombine ¢ and j; if -6 -4 -2 0 2 4 6
it is a d'5® (dg’a)) declare ¢ to be part of beam B (B) and eliminate 7; in the case "

where the d'%* and dg’a) are equal (which will occur if ¢ is a gluon), recombine with

the beam that has the smaller k;g(n;), k:5(m:)- IRC ﬂavour Safe to a” OrderS,
but different kinematics
(because new distance)

3. Repeat the procedure until all the distances are larger than some d.,;, or, alterna-
tively, until one reaches a predetermined number of jets.!?:!



NNLO predlctlons with flavour-k,

Ratio to data

—  LO | — NNLO PDF unc.

| — NLO (flavor k) I I ATLAS (anti-kr)
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[Czakon et al. (2011.01011)]

Comparison with experimental data not straightforward




Recent proposals

based on Soft Drop grooming techniques
[Caletti, Larkoski, Marzani, Reichelt (2205.01109)]

through the alignment of flavoured particles along the Winner-Take-All axis
[Caletti, Larkoski, Marzani, Reichelt (2205.01117)]

through a modification of anti-k, clustering distance
[Czakon, Mitov, Poncelet (2205.11879)]

with successive iterations of flavour-k, and anti-k,
[Caletti, Fedkevych, Marzani, Reichelt (2108.10024)]

using jet angularities and primary Lund jet plane as discriminants
[Fedkevych, Khosa, Marzani, Sforza (2202.05082)]

However, none of the above reproduces the same jets as anti-k,, |

can be applied to a generic process with one or more jets
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The fi vour dressing algorithm

[Gauld, Huss, GS (2208.11138)]

| Flavour assignment factorised from jet reconstruction: |

Inputs:

e flavour agnostic jets {J, }

e flavoured clusters { fi}

® Assoclation criterion

® Accumulation criterion
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The fl vour dressing algorithm: inputs

e flavour agnostic jets {J, }:

set of jets obtained with an IRC safe jet algorithm (e.g. gen-k, family),
possibly after a fiducial selection.

e Flavoured clusters { fi}

® Association criterion

® Accumulation criterion
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The fl vour dressing algorithm: inputs

e flavour agnostic jets {J, }

e flavoured clusters { fi}:
built out of quarks (e.g. c, b) or stable heavy-flavour hadrons (e.g. D, B),

by dressing them with radiation close in angle (see below)
“Naked” flavoured objects are collinear unsafe
® Association criterion

® Accumulation criterion
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The fl vour dressing algorithm: inputs

® Flavour agnostic jets {jk}
e Flavoured clusters { fi}

e Association criterion: whether f. is “associated” to J,
At parton-level simply if /. is a constituent of j,
Other options: AR(f;, ;) < Ry,,, ghost association, ...
Flavour assignment based only on the association is not IRC safe

® Accumulation criterion
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The fl vour dressing algorithm: inputs

e flavour agnostic jets {J,

e Flavoured clusters { fi}

® Association criterion

® Accumulation criterion: how to “sum?” flavours
- sum flavoured if unequal number of  and t (need charge information)

- sum flavoured if odd number of f or f (if no charge information)
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Definition of flavoured cluster f.

1. Initialise a set with all the flavourless objects p; (particles used as input to jets) and all the
flavoured objects f: (bare flavours), avoiding double counting if necessary.

2. Find the pair with the smallest angular distance AR ,:

— flavourless p_, p,: combine p , and p, into a flavourless p_;;
— flavoured f, f,: remove both from the set;

— flavoured f,, unflavoured p,: remove p, from the set and check a Soft Drop criterion

: p
Min(p, ., p,;) AR,,
> Z

(Pt,a T pz,b) ! OR

to recombine collinear while preserving soft. [default: o0R = 0.1, z_,, = 0.1, / = 2]
If satisfied, combine f, and p, into a flavoured f ;.

3. lterate while there are at least two objects in the set until AR _, > OR.
The momentum of f; is given by the accumulated momentum into f..

16



The fi vour dressing algorithm

. Define tag; = flavoured clusters assigned to jet j, (initialised as empty for
all jets) and populate set of distances:

-d(f, f;) between flavoured clusters;

- d( f i> f k) ijflavoured cluster fi associated to |et jk
- dp(f;) if f; not associated to any jet.

Distances (including beam) inherited from the flavour-k, algorithm:
d(a, b) = ARc%b max (p%aa p%b) min (p%;la’ p%;?a>
dg.(f) = max(p. p () min(p2r® pZ(y))
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The fi vour dressing algorithm

2. While the set of distances is not empty, select the smallest distance:

— d(f, iaf,‘)i

the two flavours “annihilate”, hence remove distances that involve f; or f ;
— d(fia .]k) ~

update tag, = tag, U {f}, then remove distances that involve f..

— dg(f)):

A\

discard flavour f; and remove all entries that involve f .

3. Assign flavour to jet j, according to tag;, and accumulation criterion.
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(1/0Born) dOpag/dlog(ys) [x 183]

IRC safety testin eTe™ — jets

Vanishing mis-identification of flavours in the fully unresolved regime = IRC safety
only soft and/or collinear radiation

Durham (ky7) jets et e — jets at 0(ay)

4 | naive
dress [a=2] .
~y
3 .
2
1
0 L

-286 -18 -16 -14 -12 -18 -8 -6 -4 -2
log(ys)

Any gen-k, algo is safe!




(1/0Born) dOpag/dlog(ys) [x 183]

IRC safety testin eTe™ — jets

Vanishing mis-identification of flavours in the fully unresolved regime = IRC safety

only soft and/or collinear radiation

Durham (ky7) jets et e — jets at 0(ay) Durham (k) jets et e- — jets at 0(ag?)

| | | | | | | | OIO_I | | | | | | | |
4 | naive — — 4 naive —
dress [a=2] » X dress [a=2]
3+ 1 2 3F -
(@)
(@)
2 - 1 T 2t -
>
o)
1| - 1 F s
0 L \g 0 L
| | | | | | | | : | | | | | | | |
-206 -18 -16 -14 -12 -186 -8 -6 -4 -2 -20 -18 -16 -14 -12 -186 -8 -6 -4 -2
log(ys) log(ys)

Naive dressing unsafe,
flavour dressing safe!

Any gen-k, algo is safe!
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(1/0Born) dOpag/dlog(ys) [x 183]

Durham (ky7) jets

only soft and/or collinear radiation

IRC safety testin eTe™ — jets

Vanishing mis-identification of flavours in the fully unresolved regime = IRC safety

et e — jets at 0(ay)

| | | | | | | |
4 naive -
dress [a=2] .
~y
3 F _
2 _
1T F _
0 o
| | | | | | | |
-286 -18 -16 -14 -12 -186 -8 -6 -4 -2
log(ys)

Any gen-k, algo is safe!

(1/0gorn) dopag/dlog(ys) [x 10°]

Durham (k) jets

et e- — jets at 0(ag?)

Naive dressing unsafe,
flavour dressing safe!
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4 naive ~
dress [a=2]

3 F _
2 - _

L

| | | | | | | |
-286 -18 -16 -14 -12 -186 -8 -6 -4 -2
log(ys)

(1/0Born) dopag/dlog(ysz) [x 193]

Durham (k7) jets et e — jets at 6(agd)

15 | | | ! | i | |
18 | —
8.
8.
8.
5 .
-9.
-9.
%)
naive
dress [a=2]
_5 | | | | | | | |
-286 -18 -16 -14 -12 -186 -8 -6 -4 -2
log(ys)

Naive dressing unsafer,
flavour dressing still safe!




IRC sensitivity in 2 — 2 QCD events in pp

1 | | | | | | | ] 1 ¢ | | | | | | |

- LHC 13 TeV, Pythia8, gg(qd) > 99 I - LHC 13 TeV, Pythia8, gg(qd) -> ff

only soft and/or collinear radiation 9"'_ __ gtlon
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Flavour dressing approaches zero faster than a naive flavour tagging as ygkf — ()

22



do/dp7iv [pb/GeV]

Ratio to NLO

Test in a realist scenario: Z + b-jet

anti-kr jets (R=8.4) Pp— Z+b-jet anti-kr jets (R=8.4) pp— Z+ b-jet anti-kr jets (R=8.4) pp— Z+ b-jet
1 I I l | 2.b NN I I | 3 | I I |
LO K34 NNLO - = NN\
g . E@A%_T LO [ NNLO - % < LO 3 NNLO |
NLO L3 NLO+PS 2 I @ NLO 3 NLO+PS - === ] NLO 3 NLO+PS
-2 L | — 2
L 2 = = of o :
1.5 | - 7 S ——
1873 | - = < ~ 1.5 F -
S 1r % 12 =
1974 | LHC 13 TeV - ) LHC 13 TeV S 1L LHC 13 Tev _
dress [a=2] dress [a=2] = dress [a=2]
1975 | NNPDF3.1 - 8.5 | NNPDF3. 1 - g5 L NNPDF3. 1 i
e | | | | 9 | | | |
1 4 B | | | | _| 1 4 [ | | | | _|
S 1.3F - S 1.3F .
= 1.2 F - = 1.2 | _
S01.1 S01.1
o o 1F
D 0.9 | - D 0.9 [ -
& 0.8 | = & 0.8 | .
8.7 —~ I l 1 8.7 0 | | —
0 8.5 1 1.5 2 2.5 0 8.5 1 1.5 2 2
n3o y*

Remarkable agreement between (N)NLO and NLO+PS
— for most distributions largely insensitive to all-order corrections
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do/dpt? [ph/GeV]

Ratio to NLO

Qv

av) —_

Qv

~NOO O —m, —,DN WA~

Test in a realist scenario: Z + b-jet

anti-r; jets (R=8.4) pp — Z + b-jet

0 NLO 3 NLO#PS Some sensitivity observed in p%, likely due to:

LHC 13 TeV

f

B dress [a=2] J
i NNPDF3. 1 __*
| \\\ \\:\ \\\ § ‘ \ :
L P NN N N
\\ \;@ \ \\ \\ " " " " " "
Even if IRC finite, it leads to large migration of
o ' ' 7 (unflavoured)-jet into the b-jet sample.
b0 ‘;; 1006 200 00 _,”'888
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do/dpt? [pb/GeV]
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Test in a realist scenario: Z + b-jet

anti-r; jets (R=8.4)

pp —> Z + b-jet

LHC 13 TeV
dress [a=2]
NNPDF3.1

LO
NLO

|
K>3 NNLO

Y NLO+PS

B | —
i A N s -
— S ;jigjg;jz::Sj N e :
_ . %
- NN
,Q(\,\ -
B | | | :
58 N\ 106 200 8o /1000
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Some sensitivity observed in p%, likely due to:

Effect captured at NNLO



Conclusions

With favour dressing, flavour assignment factorised from the initial jet
reconstruction, hence it can be combined with any IRC safe definition of a jet

Thanks to an IRC safe flavour assignment to all orders in perturbation theory, we
can compute massless fixed-order predictions, and in the case of massive

calculations, we have a suppressed sensitivity on mass logarithms log(Qz/ mf)

Interesting to explore: experimental feasibility of the algorithm, how flavour
dressing behaves for other processes and observables, and how it compares to
the other approaches recently proposed.
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Flavour anti-k, algorithm

[Czakon, Mitov, Poncelet (2205.11879)]

Recent proposal: modify anti-k, distance when flavoured particles involved
— P2 nin(l—2 12 _ 72
dl:j — R mln(kT’l o kT,]) * Sl;l o dB — kT,l

where SU- #+ 1 only when i and j are of opposite flavour

| ki, + ki
Sla = 1 R 6(1 Il K)COS fK’ . K = — L, L,
| 2 2K

One recovers (IRC flavour unsafe) anti-k, jets when a — 0.
Quite significant dependence of the result on the parameter a.
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Flavoured jets (experiments)

A jet defined as flavoured if it contains
at least one heavy hadron

within AR < R from the jet axis
and with pr > Dr
(naive tagging)

Jet axis

Decay length Ly

. Secondary vertex
Track impact parameter

This is the "truth” labelling used in Monte f\
Carlo samples, used to train a ML R
architecture (“High-level tagger”) which L e
adopts low-level variables as inputs

Primary vertex
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IRC flavour safety

The experimental definition is both collinear and soft unsafe

“A et defined as flavoured if it contains
at least one heavy hadron

within AR < R from the jet aXIS\

and W'th PT > PT cut Soft large angle g — bb
\ polluting different jets

g — bb is always flavoured
even In the collinear [imit
(an “even tag” removal is

enough to fix this)

b — bg collinear with the gluon

carrying most of the momentum
(would an identified particle, hence FF)
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