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Shape variables and QCD

Shape variables in e+e− annihilation are the simplest contest
where we can study perturbative QCD.

For example, thrust:

T = max
~t

∑
|~pi · ~t|∑
|~pi |

equals 1 for two narrow back-to-back jets, and 2/3 < T < 1 for
three narrow jet.
Thus in the region 2/3 < T < 1 the thrust distribution is
proportional to αS , and can be used for its determination.
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On the other hand, the thrust distribution is sensitive to
non-perturbative hadronization effects.

For example, the emission of a soft hadron with momentum
500 MeV, perpendicular to the thrust direction, affects the thrust
by an amount 0.5/91 ≈ 0.005 on the Z peak. This shift in T can
affect the thrust distribution by an amount of the order of 5%.

In practice non-perturbative corrections can reach the 10% level,
and can affect at the same level the extracted value of αS .
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αs determinations (PDG)

Determination of αS from the first
seven rows of the jets & shapes
cathegory (highlighted in green) use
Monte Carlo model to correct for
non-perturbative effects.

The following three lines (Ab-
bate, Gehrmann, Hoang) are based
upon analytic modeling of non-
perturbative effects.
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Status

I The use of Monte Carlo modeling for hadronization
corrections is not totally satisfying, since it lacks a sound
theoretical basis.

I Analytic models seem to favour a too low value of αS as
compared to the world average and to the precise lattice
determination.

I No bridge between MC and analytic models

I It is disturbing that we do not fully understand the role of
non-perturbative effects at least in the simplest context where
they can be studied.

I Understanding non-perturbative effects can have important
consequences also for precision physics at hadron colliders,
where linear power corrections can play an important role.
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There are two broad classes of analytic methods:

I those based upon the so called “Dispersive approach”, Based
upon work of Dokshitzer, Webber, Marchesini, Salam and
others. It is based upon the computation of the emission of a
very soft gluon, with an associated non-perturbative coupling.
The reference to Gehrmann in the previous slide refers to this
method.

I Those based upon factorization, that separates the QCD
calculation into a perturbative and non-perturbative
contribution (a so called Shape Function), based upon work of
Collins, Soper, Korchemsky, Sterman, and followed by a vast
literature (Hoang, Stuart, Thaler, Mateu, Bauer, Schwartz
and many others) using SCET. The references to Abbate and
Hoang refer to this method.

These methods have however a common feature: the
non-perturbative correction is computed in the two-jet limit, and
then it is extrapolated to the three-jet region, where the
measurement is performed.
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Recent progress

There have been recently new findings regarding the structure of linear
power corrections in collider observables:

I In ref. Eur.Phys.J.C 81 (2021), (Luisoni, Monni, Salam) it was
shown that linear power corrections to the C parameter in the 3-jet
symmetric limit are about 1/2 of those in the two jet limit.

I In ref. JHEP 01 (2022) 093, (Caola, Ferrario-Ravasio, Limatola,
Melnikov, P.N.) it was demonstrated that linear power corrections
are absent in sufficiently inclusive observables, in a variety of
processes, in a model theory (large nf QCD) that shares some
properties with the full theory. These findings confirmed previous
results obtained at the numerical level JHEP 06 (2021) 018,
(Ferrario-Ravasio,Limatola,P.N.).

I The same findings opened the possibility to compute linear power
corrections to shape variables in the 3-jet configuration
arXiv:2204.02247, (Caola,Ferrario-Ravasio,Limatola,Melnikov,
Ozcelik,P.N.)
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The results of Luisoni, Monni, Salam are based upon the so called
“dispersive approach”, where one assumes that the strong coupling
at low energy can be given by an effective coupling

The results of Caola et al. and Ferrario-Ravasio et al. are obtained
from the study of IR renormalons.

The two approaches are deeply related.
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Non perturbative corrections are seen to arise from the variation of
the shape variable when emitting a very soft gluon (gluer).

I The calculability of the non-perturbative correction in the
two-parton case is based upon the fact that all shape variables have
a well defined value for two-partons final states
(from a state with the emission of a gluer, there is a unique state
without emission)

I The calculability of the non-perturbative correction to the C
parameter in the three-jet symmetric limit (Luisoni et al.) is based
upon the fact that the C parameter acquires a well-defined value
near the 3-partons symmetric limit, up to quadratic effects in the
deviation from the 3-partons symmetric configuration. (from a state
with the emission of a gluer, there are several close states without
emission, but C is not very sensitive to that)

I The calculability of the non-perturbative correction in the generic
case is based upon the findings of Caola et al., that in suitable recoil
schemes recoil effects cannot generate linear power corrections
(in general, differences in the state without emission don’t generate
linear corrections.)
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Non-perturbative corrections can be parametrized by a shift in the
perturbative cumulant distribution:

Σ(s + HNPζ(s))− Σ(s) ≈ dσ

ds
HNPζ(s), Σ(s) =

∫
dσ(Φ)θ(s − s(Φ))

and HNP ≈ Λ/Q is a non-perturbative parameter that is fully
calculable in the large nf approximation but must be fitted to data
in real QCD.
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The dot in the plots represents the constant value that was used in
earlier studies. Notice that the value of ζ at the symmetric point is
about one/half of the value at c = 0, consistent with Luisoni etal.
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In some cases the ζ function is negative!

11 / 30



Implications

I There is a clear indication that the non-perturbative
correction in the two jet limit cannot be safely extrapolated in
the region where αS is fitted.

I There is a hint that the small values of αS found in fits using
analytic models may be due to this assumption

I It is likely that this is not the whole story, and more needs to
be understood before these findings can be safely used.
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Mass corrections

I Shape variables are defined for massless partons, and the
analytic models refer to the “massless” definition.

I Final state hadrons are massive; so the definition of the shape
variables must be extended to massive objects. This leads to
ambiguities in the definition.

I This problem has been extensively studied in JHEP 05 (2001)
061, (Salam, Wicke). Three mass schemes where proposed:
I the p scheme, where the energy of a particle is set equal to the

modulus of the 3-momentum;
I the E scheme, where the modulus of the momentum is set

equal to the energy;
I the D scheme (“Decay scheme”), where massive hadrons are

decayed isotropically into a pair of fictitious massless particles
before the shape variable is computed.
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In the following I will illustrate preliminary results (Zanderighi,P.N.,
in preparation) obtained by fitting ALEPH data.
The non-perturbative shift for C and t are available from
arXiv:2204.02247, Caola et al..
In Zanderighi,P.N. we also computed it for the y3 in the Durham
scheme, the Heavy jet mass M2

h and the heavy-light mass
difference M2

h −M2
l . and the broadening of the wide jet BW .
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I The perturbative theoretical errors were estimated with a
3-point scale variation µR/Q = 0.25, 0.5, 1. An estimate of
the error on the non-perturbative component was also
included and added in quadrature.

I Diagonal terms of the covariant matrix were computed by
summing in quadrature the systematic statistical and
theoretical errors. The off-diagonal terms were computed as
Eij = min(δσ2syst,i , δσ

2
syst,j) (the so called minimal-overlap

model).

I We adopted the E scheme as our default treatment of hadron
masses. We computed the associated bin migration matrix
using Pythia8. Using Herwig7 we obtain compatible results
with a slightly worse χ2.
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PRELIMINARY RESULTS

Simultaneous fit to C , t and y3, both for our newly computed
ζ(v), and, for comparison, with ζ(v)→ ζ(0) (traditional method
for the computation of power corrections).
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PRELIMINARY RESULTS

Different correlation computation, using correlation data not
publicly available (thanks to Hasko Stenzel).
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Quality of the fit for C , τ and y3, using the new calculation of the
non-perturbative effect (i.e. the full ζ(v) dependence.)
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Prediction for M2
H , M2

D and BW using the values of αS and α0

obtained by fitting C , τ and y3.
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Prediction for M2
H , M2

D and BW using the values of αS and α0

obtained by fitting C , τ and y3.
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Quality of the fit for C , τ and y3, obtained setting ζ(v) = ζ(0).
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Prediction for M2
H , M2

D and BW using the fitted values of αS and
α0 obtained by fitting C , τ and y3.
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Prediction for M2
H , M2

D and BW using the fitted values of αS and
α0 obtained by fitting C , τ and y3.
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I The heavy jet mass, mass difference and y broadening are well
fitted far enough away from the two jet region with the newly
computed ζ functions.

I On the other hand, it seems impossible to fit them using a
constant, two-jet limit ζ.
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Variation αs α0 χ2 χ2/Ndeg

Default setup 0.1182 0.64 7.3 0.17
Renormalization scale Q/4 0.1202 0.60 9.1 0.21

Renormalization scale Q 0.1184 0.68 8.7 0.20

NP scheme (B) 0.1198 0.77 7.0 0.16
NP scheme (C) 0.1206 0.80 5.4 0.12
NP scheme (D) 0.1194 0.66 5.8 0.13

P-scheme 0.1158 0.62 10.7 0.24
D-scheme 0.1198 0.79 5.7 0.13
no scheme 0.1176 0.58 9.2 0.21

No heavy to light correction 0.1186 0.67 6.8 0.16

Herwig 6 0.1180 0.59 15.9 0.36
Herwig 7 0.1180 0.60 12.0 0.27

Ranges (2) 0.1174 0.62 12.7 0.23
Ranges (3) 0.1188 0.69 2.7 0.08

Replica method (around average) 0.1192 0.61 7.0 0.16
Replica method (around default) 0.1192 0.61 7.0 0.16

y3 clustered 0.1174 0.66 8.2 0.19

We have considered several variations of the methods. They lead substantially

to the same picture, with a spread in the value of αS of the order of 2%.

Hadron mass effects are particularly important ...
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Opportunity for future e+e− colliders: CEPC

I estimate the following number of hadronic events:

ECM σ (nb) Int. Lum. (ab−1) Num. had. events

91.2 33.1 100 3.31× 1012

160 0.026 6 1.5× 108

240 0.009 20 1.8× 108

360 0.0039 1 3.9× 106

Comparing to what was collected on the Z peak at LEP1 (16× 106

events), we may infer that statistics should not be a limiting factor.
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Opportunity for future e+e− colliders: FCC-ee

I estimate the following Z/γ∗ hadronic cross sections:

ECM σ (nb) Num. had. events

91.2 33.1 5.0× 1012

160 0.026 0.31× 109

240 0.009 0.45× 108

350 0.0039 0.58× 107

comparable number of events.
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Opportunity for future e+e− colliders

I We can expect hard to quantify systematics for running off
the Z peak.

I We can expect a negligible statistical error at the higher
energies.
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Opportunity for future e+e− colliders

I Would an N3LO calculation useful?
An N3LO calculation would be by itself of great value. For
example, to see if the factorial growth associated to
renormalons becomes visible.

I Power corrections are large on the Z peak (of order 10%).
Perturbative uncertainties are of order 2%. At the highest
energies NP corrections should be roughly a factor of 4
smaller, leading to further constraining power on the fits.

I Mass effects are partially uderstood in the two-jet limit. The
situation in the three-jet case is quite unclear. More work is
needed along that line.
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Opportunity for future e+e− colliders

I Something new has being recently understood on power
corrections. The theoretical consequences of these findings
have yet to be fully explored. Hopefully these finding will
bring in better agreement between power correction estimates
obtained with shower Monte Carlo and those obtained from
analytic methods generators.

I The impact of N3LO calculations for shape variables will
strongly depend upon the development of our understanding
of NP effects.

I This understanding can also be tested now, by using preserved
LEP data.

I Depending upon these developments, the availability of high
statistics data at higher energies may allow for a high
precision determination of αS at high energy, to be contrasted
with the low energy determination of the Lattice approach.
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